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Discriminant analysis uses continuous variable measurements on different groups of  
items to highlight aspects that distinguish the groups and to use these measurements to  
classify new items. Common uses of the method have been in biological classification  
into species and sub-species, classifying applications for loans, credit cards and insurance  
into low risk and high risk categories, classifying customers of new products into early  
adopters, early majority, late majority and laggards, classification of bonds into bond  
rating categories, research studies involving disputed authorship, college admissions,  
medical studies involving alcoholics and non-alcoholics, anthropological studies such as  
classifying skulls of human fossils and methods to identify human fingerprints.  
 
Example 1 (Johnson and Wichern)  
A riding-mower manufacturer would like to find a way of classifying families in a city  
into those that are likely to purchase a riding mower and those who are not likely to buy  
one. A pilot random sample of 12 owners and 12 non-owners in the city is undertaken.  
The data are shown in Table I and plotted in Figure 1 below:  
 
Table 1  

Observation Income Lot Size Owners=1,
($ 000's) (000's sq. ft.) Non-owners=2

1 60 18.4 1 
2 85.5 16.8 1 
3 64.8 21.6 1 
4 61.5 20.8 1 
5 87 23.6 1 
6 110.1 19.2 1 
7 108 17.6 1 
8 82.8 22.4 1 
9 69 20 1 

10 93 20.8 1 
11 51 22 1 
12 81 20 1 
13 75 19.6 2 
14 52.8 20.8 2 
15 64.8 17.2 2 
16 43.2 20.4 2 
17 84 17.6 2 
18 49.2 17.6 2 
19 59.4 16 2 
20 66 18.4 2 
21 47.4 16.4 2 
22 33 18.8 2 
23 51 14 2 
24 63 14.8 2 
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We can think of a linear classification rule as a line that separates the x1-x2 region into  
two parts where most of the owners are in one half-plane and the non-owners are in the  
complementary half-space. A good classification rule would separate out the data so that  
the fewest points are misclassified: the line shown in Fig.1 seems to do a good job in  
discriminating between the two groups as it makes 4 misclassifications out of 24 points.  
Can we do better?  
 
We can obtain linear classification functions that were suggested by Fisher using  
statistical software. You can use XLMiner to find Fisher’s linear classification functions.  
Output 1 shows the results of invoking the discriminant routine.  
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Output 1  
Prior Class Probabilities  

 
Prior class probabilities According to relative occurrences in training data

1 0.5

2 0.5

Class Probability

Classification Functions

Classification Function
Variables

1 2

Constant -73.160202 -51.4214439

Income ($ 000's) 0.42958561 0.32935533

5.46674967Lot Size (000's sq. ft.) 4.68156528

Canonical Variate Loadings

Training Misclassification Summary

 

 
 
 
We note that it is possible to have a misclassification rate that is lower (3 in 24) by using  
the classification functions specified in the output. These functions are specified in a way  
that can be easily generalized to more than two classes. A family is classified into Class 1  
of owners if Function 1 is higher than Function 2, and into Class 2 if the reverse is the  
case. The values given for the functions are simply the weights to be associated with each  

Variables Variate1

Income ($
000's)

0.01032889

Lot Size
(000's sq. ft.)

0.08091455

Classification Confusion Matrix

Predicted Class

Actual Class 1 2

1 11 1

2 2 10

Error Report

Class # Cases # Errors % Error

1 12 1 8.33

2 12 2 16.67

Overall 24 3 12.50

4



variable in the linear function in a manner analogous to multiple linear regression. For  
example, the value of the Classification function for class1 is 53.20. This is calculated  
using the coefficients of classification function1 shown in Output 1 above as –73.1602 +  
0.4296 × 60 + 5.4667 × 18.4. XLMiner computes these functions for the observations in  
our dataset. The results are shown in Table 3 below.  
 
Table 3  

Observation

Classes Classification Function Values Input Variables

Predicted
Class Actual Class Max Value Value for

Class - 1
Value for
Class - 2

Income
($ 000's)

Lot Size
(000's sq. ft.)

1
2
3
4
5
6
7
8
9
10
11
12

2 1 54.48067856 53.203125 54.48067856 60 18.4

1 1 55.41075897 55.41075897 55.38873291 85.5 16.8

1 1 72.75873566 72.75873566 71.04259491 64.8 21.6

1 1 66.96770477 66.96770477 66.21046448 61.5 20.8

1 1 93.22903442 93.22903442 87.71740723 87 23.6

1 1 79.09877014 79.09877014 74.72663116 110.1 19.2

1 1 69.44983673 69.44983673 66.54447937 108 17.6

1 1 84.86467743 84.86467743 80.71623993 82.8 22.4

1 1 65.81620026 65.81620026 64.93537903 69 20

1 1 80.49964905 80.49964905 76.5851593 93 20.8

1 1 69.01715851 69.01715851 68.37011719 51 22

1 1 70.97122192 70.97122192 68.88764191 81 20

13
14
15
16

1 2 66.20701599 66.20701599 65.03888702 75 19.6

2 2 63.3450737 63.23031235 63.3450737 52.8 20.8

2 2 50.44370651 48.70503998 50.44370651 64.8 17.2

2 2 58.31063843 56.91959 58.31063843 43.2 20.4

17
18
19
20
21
22
23
24

1 2 59.13978195 59.13978195 58.63995361 84 17.6

2 2 47.17838669 44.19020462 47.17838669 49.2 17.6

2 2 43.04730988 39.82517624 43.04730988 59.4 16

2 2 56.45681 55.78063965 56.45681 66 18.4

2 2 40.96767044 36.85684967 40.96767044 47.4 16.4

2 2 47.46070862 43.79101944 47.46070862 33 18.8

2 2 30.917593 25.28316116 30.917593 51 14

2 2 38.61510849 34.81158447 38.61510849 63 14.8

 
Notice that observations 1, 13 and 17 are misclassified as we would expect from the  
output shown in Table 2.  
 
Let us describe the reasoning behind Fisher’s linear classification rules. Figure 3 depicts  
the logic.  
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Consider various directions such as directions D1 and D2 shown in Figure 2. One way to  
identify a good linear discriminant function is to choose amongst all possible directions  
the one that has the property that when we project (drop a perpendicular line from) the  
means of the two groups onto a line in the chosen direction the projections of the group  
means (feet of the perpendiculars, e.g. P1 and P2 in direction D1) are separated by the  
maximum possible distance. The means of the two groups are:  

 
Income Area

Mean1 79.5 20.3
Mean2 57.4 17.6
 
We still need to decide how to measure the distance. We could simply use Euclidean  
distance. This has two drawbacks. First, the distance would depend on the units we  
choose to measure the variables. We will get different answers if we decided to measure  
area in say, square yards instead of thousands of square feet. Second , we would not be  
taking any account of the correlation structure. This is often a very important  
consideration especially when we are using many variables to separate groups. In this  
case often there will be variables which by themselves are useful discriminators between  
groups but in the presence of other variables are practically redundant as they capture the  
same effects as the other variables.  
 
Fisher’s method gets over these objections by using a measure of distance that is a  
generalization of Euclidean distance known as Mahalanobis distance. This distance is  
defined with respect to a positive definite matrix . The squared Mahalanobis distance  
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between two p-dimensional (column) vectors y1 and y2 is (y1 – y2)’ -1 (y1 – y2) where
is a symmetric positive definite square matrix with dimension p. Notice that if is the

identity matrix the Mahalanobis distance is the same as Euclidean distance. In linear
discriminant analysis we use the pooled sample variance matrix of the different groups. If
X1 and X2 are the n1 x p and n2 x p matrices of observations for groups 1 and 2, and the
respective sample variance matrices are S1 and S2, the pooled matrix S is equal to
{(n1-1) S1 + (n2-1) S2}/(n1 +n2 –2). The matrix S defines the optimum direction
(actually the eigenvector associated with its largest eigenvalue) that we referred to when
we discussed the logic behind Figure 2. This choice of Mahalanobis distance can also be
shown to be optimal* in the sense of minimizing the expected misclassification error
when the variable values of the populations in the two groups (from which we have
drawn our samples) follow a multivariate normal distribution with a common covariance
matrix. In fact it is optimal for the larger family of elliptical distributions with equal
variance-covariance matrices. In practice the robustness of the method is quite
remarkable in that even for situations that are only roughly normal it performs quite well.

If we had a prospective customer list with data on income and area, we could use the
classification functions in Output 1 to identify the sub-list of families that are classified as
group 1. This sub-list would consist of owners (within the classification accuracy of our
functions) and therefore prospective purchasers of the product.
 
 
Classification Error  

What is the accuracy we should expect from our classification functions? We have an
training data error rate (often called the re-substitution error rate) of 12.5% in our
example. However this is a biased estimate as it is overly optimistic. This is because we
have used the same data for fitting the classification parameters as well for estimating the
error. In data mining applications we would randomly partition our data into training and
validation subsets. We would use the training part to estimate the classification functions
and hold out the validation part to get a more reliable, unbiased estimate of classification
error.

So far we have assumed that our objective is to minimize the classification error and that
the chances of encountering an item from either group requiring classification is the
same. . If the probability of encountering an item for classification in the future is not
equal for both groups we should modify our functions to reduce our expected (long run
average) error rate. Also we may not want to minimize misclassifaction rate in certain
situations. If the cost of mistakenly classifying a group 1 item as group 2 is very different
from the cost of classifying a group 2 item as a group 1 item, we may want to minimize
the expect cost of misclassification rather than the error rate that does not take cognizance
of unequal misclassification costs. It is simple to incorporate these situations into our
framework for two classes. All we need to provide are estimates of the ratio of the

* This is true asymptotically, i.e. for large training samples. Large training samples are
required for S, the pooled sample variance matrix, to be a good estimate of the population
variance matrix.
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chances of encountering an item in class 1 as compared to class 2 in future classifications  
and the ratio of the costs of making the two kinds of classification error. These ratios will  
alter the constant terms in the linear classification functions to minimize the expected  
cost of misclassification. The intercept term for function 1 is increased by ln(C(2|1)) +  
ln(P(C1)) and that for function2 is increased by ln(C(1|2)) + ln(P(C2)), where C(i|j) is the  
cost of misclassifying a Group j item as Group i and P(Cj) is the apriori probability of an  
item belonging to Group j.  
 
Extension to more than two classes
 
The above analysis for two classes is readily extended to more than two classes. Example  
2 illustrates this setting.  
 
 
 
Example 2: Fisher’s Iris Data This is a classic example used by Fisher to illustrate his  
method for computing clasification functions. The data consists of four length  
measurements on different varieties of iris flowers. Fifty different flowers were measured  
for each species of iris. A sample of the data are given in Table 4 below:  
Table 4  
OBS# SPECIES CLASSCODE SEPLEN SEPW PETLEN PETW

1 Iris-setosa
2 Iris-setosa
3 Iris-setosa
4 Iris-setosa
5 Iris-setosa
6 Iris-setosa
7 Iris-setosa
8 Iris-setosa
9 Iris-setosa

10 Iris-setosa
... …
51 Iris-versicolor
52 Iris-versicolor
53 Iris-versicolor
54 Iris-versicolor
55 Iris-versicolor
56 Iris-versicolor
57 Iris-versicolor
58 Iris-versicolor
59 Iris-versicolor
60 Iris-versicolor
... …

101 Iris-virginica
102 Iris-virginica
103 Iris-virginica
104 Iris-virginica

1 5.1 3.5 1.4 0.2
1 4.9 3 1.4 0.2
1 4.7 3.2 1.3 0.2
1 4.6 3.1 1.5 0.2
1 5 3.6 1.4 0.2
1 5.4 3.9 1.7 0.4
1 4.6 3.4 1.4 0.3
1 5 3.4 1.5 0.2
1 4.4 2.9 1.4 0.2
1 4.9 3.1 1.5 0.1
… … … … …
2 7 3.2 4.7 1.4
2 6.4 3.2 4.5 1.5
2 6.9 3.1 4.9 1.5
2 5.5 2.3 4 1.3
2 6.5 2.8 4.6 1.5
2 5.7 2.8 4.5 1.3
2 6.3 3.3 4.7 1.6
2 4.9 2.4 3.3 1
2 6.6 2.9 4.6 1.3
2 5.2 2.7 3.9 1.4
… … … … …
3 6.3 3.3 6 2.5
3 5.8 2.7 5.1 1.9
3 7.1 3 5.9 2.1
3 6.3 2.9 5.6 1.8
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105 Iris-virginica 3 6.5 3 5.8 2.2
106 Iris-virginica 3 7.6 3 6.6 2.1
107 Iris-virginica 3 4.9 2.5 4.5 1.7
108 Iris-virginica 3 7.3 2.9 6.3 1.8
109 Iris-virginica 3 6.7 2.5 5.8 1.8
110 Iris-virginica 3 7.2 3.6 6.1 2.5

 
The results from applying the discriminant analysis procedure of Xlminer are shown in  
Output 2:  
 
Output 2  
Classification Functions  

 
Classification Function

Variables
1 2 3

Constant -86.3084793 -72.8526154 -104.368332

SEPLEN 23.5441742 15.6982136 12.4458504

SEPW 23.5878677 7.07251072 3.68528175

PETLEN -16.4306431 5.21144867 12.7665491

PETW -17.398407 6.43422985 21.0791111

 
Canonical Variate Loadings  

 

 
 
 
 
 

Training Misclassification Summary

 
 
 
 

Variables Variate1 Variate2

SEPLEN 0.06840593 0.00198865

SEPW 0.12656119 0.17852645

PETLEN -0.18155289 -0.0768638

PETW -0.23180288 0.23417209

Classification Confusion Matrix

Predicted Class

Actual Class 1 2 3

1 50 0 0

2 0 48 2

3 0 1 49

Error Report

Class # Cases # Errors % Error

1 50 0 0.00

2 50 2 4.00

3 50 1 2.00

Overall 150 3 2.00
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10

For illustration the computations of the classification function values for observations 40
to 55 and 125 to 135 are shown in Table 5.

Table 5
40 1 1 85.83991241 85.83991241 40.3588295 -4.99889183 5.1 3.4 1.5 0.2

41 1 1 87.39057159 87.39057159 39.09738922 -6.32034588 5 3.5 1.3 0.3

42 1 1 47.3130455 47.3130455 22.76127243 -16.9656143 4.5 2.3 1.3 0.3

43 1 1 67.92755127 67.92755127 26.91328812 -17.0013542 4.4 3.2 1.3 0.2

44 1 1 77.24185181 77.24185181 42.59109879 3.833352089 5 3.5 1.6 0.6

45 1 1 85.22311401 85.22311401 46.55926132 5.797660828 5.1 3.8 1.9 0.4

46 1 1 69.24474335 69.24474335 32.9426384 -9.37550068 4.8 3 1.4 0.3

47 1 1 93.63198853 93.63198853 43.70898056 -2.24812603 5.1 3.8 1.6 0.2

48 1 1 70.99331665 70.99331665 30.5740757 -13.2355289 4.6 3.2 1.4 0.2

49 1 1 97.62510681 97.62510681 45.620224 -1.40413904 5.3 3.7 1.5 0.2

50 1 1 82.76977539 82.76977539 37.56061172 -7.88865852 5 3.3 1.4 0.2

51 2 2 93.16864014 52.40012741 93.16864014 84.05905914 7 3.2 4.7 1.4

52 2 2 83.35085297 39.81990051 83.35085297 76.14614868 6.4 3.2 4.5 1.5

53 2 2 92.57727814 42.66094208 92.57727814 87.10716248 6.9 3.1 4.9 1.5

54 2 2 58.96462631 9.096075058 58.96462631 51.02903748 5.5 2.3 4 1.3

55 2 2 82.61280823 31.09611893 82.61280823 77.19327545 6.5 2.8 4.6 1.5

125 3 3 108.2157593 19.08612823 98.88184357 108.2157593 6.7 3.3 5.7 2.1

126 3 3 111.5763855 28.78975868 105.6568604 111.5763855 7.2 3.2 6 1.8

127 3 3 82.33656311 15.52721214 80.8759079 82.33656311 6.2 2.8 4.8 1.8

128 3 3 83.10569 16.2473011 81.24172974 83.10569 6.1 3 4.9 1.8

129 3 3 101.362709 1.872017622 90.11497498 101.362709 6.4 2.8 5.6 2.1

130 3 3 104.0701981 30.83799362 101.9132233 104.0701981 7.2 3 5.8 1.6

131 3 3 115.9760056 20.68055344 107.1320648 115.9760056 7.4 2.8 6.1 1.9

132 3 3 131.8220978 49.37147522 124.2605438 131.8220978 7.9 3.8 6.4 2

133 3 3 103.4706192 0.132176965 90.75839996 103.4706192 6.4 2.8 5.6 2.2

134 2 3 82.07889557 18.17195129 82.07889557 81.08737946 6.3 2.8 5.1 1.5

135 3 3 82.13652039 2.270064592 79.48704529 82.13652039 6.1 2.6 5.6 1.4



Canonical Variate Loadings

The canonical variate loadings are useful for graphical representation of the discriminant
analysis results. These loadings are used to map the observations to lower dimensions
while minimizing loss of “separability information” between the groups.
Fig. 3 shows the canonical values for Example 1. The number of canonical variates is the
minimum of one less than the number of classes and the number of variables in the data.
In this example this is Min( 2-1 , 2 ) = 1. So the 24 observations are mapped into 24
points in one dimension ( a line). We have condensed the separability information into 1
dimension from the 2 dimensions in the original data. Notice the separation line between
the x values and the mapped values of the misclassified points.

Obs 1

 
In the case of the iris we would condense the separability information into 2 dimensions.  
If we had c classes and p variables, and Min(c-1,p) > 2 , we can only plot the first two  
canonical values for each observation. In such datasets sometimes we still get insight into  
the separation of the observations in the data by plotting the observations in these two co- 
ordinates.  
 
 
 

Obs.
Actual
Class

Predicted
Class

Canonical
Score 1

11

21

3
41

51

61

71

81

91

101

111

121

132

142

152

162

172

182

192

202

212

222

232

242

2 2.10856112

1 2.242484535

1 1 2.417066352

1 2.318249375

1 2.80819681

1 2.690770149

1 2.5396162

1 2.667718012

1 2.33098441

1 2.64360941

1 2.30689349

1 2.45493109

1 2.36059193

2 2.228388032

2 2.061042332

2 2.096864868

1 2.29172284

2 1.932277468

2 1.908168866

2 2.17053446

2 1.816588006

2 1.86204691

2 1.65957709

2 1.84825541

Obs 17 &13
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Extension to unequal covariance structures

When the classification variables follow a multivariate normal distribution with variance
matrices that differ substantially between different groups, the linear classification rule is
no longer optimal. In that case the optimal classification function is quadratic in the
classification variables. However, in practice this has not been found to be useful except
when the difference in the variance matrices is large and the number of observations
available for training and testing is large. The reason is that the quadratic model requires
many more parameters that are all subject to error to be estimated. If there are c classes
and p variables, the number of parameters to be estimated for the different variance
matrices is cp(p + 1)/2. This is an example of the importance of regularization in practice.

Logistic discrimination for categorical and non-normal situations

We often encounter situations in which the classification variables are discrete, even
binary. In these situations, and where we have reason to believe that the classification
variables are not approximately multivariate normal, we can use a more generally
applicable classification technique based on logistic regression.
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