PAGE  
2

Discriminant Function Analysis with Three or More Groups(

With more than two groups one can obtain more than one discriminant function.  The first DF is that which maximally separates the groups (produces the largest ratio of among‑groups to within groups SS on the resulting D scores).  The second DF, orthogonal to the first, maximally separates the groups on variance not yet explained by the first DF.  One can find a total of K‑1 (number of groups minus 1) or p (number of predictor variables) orthogonal discriminant functions, whichever is smaller.


We shall use the data from Experiment 1 of my dissertation to illustrate a discriminant function analysis with three groups.  The analysis I reported when I published this research was a doubly multivariate repeated measures ANOVA (see Wuensch, K. L., Fostering house mice onto rats and deer mice: Effects on response to species odors.  Animal Learning and Behavior, 1992, 20, 253‑258).  Wild‑strain house mice were, at birth, cross‑fostered onto house‑mouse (Mus), deer mouse (Peromyscus) or rat (Rattus) nursing mothers.  Ten days after weaning, each subject was tested in an apparatus that allowed it to enter tunnels scented with clean pine shavings or with shavings bearing the scent of Mus, Peromyscus, or Rattus.  One of the variables measured was the number of visits to each tunnel during a twenty minute test.  Also measured were how long each subject spent in each of the four tunnels and the latency to first visit of each tunnel.  We shall use the visits data for our discriminant function analysis.


The data are in the SPSS data file, TUNNEL4b.sav.  Download it from my SPSS-Data page.  The variables in this data file are:
· NURS (nursing group, 1 for Mus reared, 2 for Peromyscus reared, and 3 for Rattus reared)

· V1, V2, V3, and V3 (labeled Clean-V, Mus-V, Pero-V, and Rat-V, these are the raw data for number of visits to the clean, Mus-scented, Peromyscus-scented, and Rattus-scented tunnels)

· V_Clean, V_Mus, V_Pero, and V_Rat (the visits data after a square root transformation to reduce positive skewness and stabilize the variances)

· T1, T2, T3, and T4 (time in seconds spent in each tunnel)

· T_Clean, T_Mus, T_Pero, and T_Rat (the time data after a square root transformation to reduce positive skewness)

· L1, L2, L3, and L4 (the latency data in seconds) and

· L_Clean, L_Mus, L_Pero, and L_Rat (the latency data after a log transformation to reduce positive skewness).

For this lesson we shall use one the NURS variable and the visits variables.

Obtaining Means and Standard Deviations for the Untransformed Data


Open the TUNNEL4b.sav file in SPSS.  Click Analyze, Tables, Basic Tables.  Put V1, V2, V3, and V4 in the Summaries Box.  Put NURS in the Subgroups Down Box.
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Click Statistics and select Mean (Add) and Std Deviation (Add).
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Continue, OK.  The output produced here is a table of means and standard deviations for untransformed number of visits to each tunnel for each nursing group.  Look at the means for the Mus group and the Peromyscus group.  These two groups were very similar to one another.  Both visited the tunnels with moderate frequency, except for the rat-scented tunnel, which they avoided.  Now look at the means for the Rattus-reared group.  These animals appear to have been much more active, visiting the tunnels more frequently than did animals in the other groups, and they did not avoid the rat-scented tunnel.

Conducting the Discriminant Function Analysis

Now let us do the discriminant function analysis on the transformed data.  Click Analyze, Classify, Discriminant.  Put V_Clean, V_Mus, V_Pero, and V_Rat into the Independents box.  Put NURS into the Grouping Variable box.
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Click define range and define the range from 1 to 3.
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Continue.  Click Statistics and , select Means, ANOVAs, and Box’s M.
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Continue.  Click Classify and select Casewise Results, Summary Table, Combined Groups Plot, and Territorial Map.
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Continue.  Click Save and select Discriminant scores.
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Continue, OK.

Interpreting the output


Now look at the output.  The means show the same pattern observed with the untransformed data and the standard deviations show that the heterogeneity of variance has been greatly reduced by the square root transformation.


The univariate ANOVAs show that the groups differ significantly on number of visits to the rat-scented tunnel and the clean tunnel, with the differences in number of visits to the other two tunnels falling short of statistical significance.  Box’s M shows no problem with the assumption of equal variance/covariance matrices.


Look under the heading “Eigenvalues”  Two discriminant functions are obtained.  The first accounts for 1.641/(1.641 + .111) = 94% of the total among‑groups variability.  The second accounts for the remaining 6%.


SPSS uses a Stepwise Backwards Deletion to assess the significance of the discriminant functions.  The first Wilks Lambda testing the null hypothesis that in the population the groups do not differ from one another on mean D for any of the discriminant functions.  This Wilks Lambda is evaluated with a chi‑square approximation, and for our data it is significant.  In the second row are the same statistics for evaluating all discriminant functions except the first.  We have only 2 functions, so this evaluates DF2 by itself.  If we had 3 functions, functions 2 and 3 would be simultaneously evaluated at this point and we would have a third row evaluating function 3 alone.  Our second DF falls short of statistical significance.


To interpret the first discriminant function, let us first look at the standardized discriminant function coefficients.  DF1 is most heavily weighted on V_Rat.  Subjects who visited the rat tunnel often should get a high score on DF1.  The loadings (in the structure matrix) show us that subjects who scored high on DF1 tended to visit all of the tunnels (but especially the rat-scented tunnel) frequently.

Although it fell short of statistical significance, I shall, for pedagogical purposes, attempt to interpret the second discriminant function.  Both the standardized discriminant function coefficients and the loadings indicate that scoring high on DF2 results from tending to visit the Peromyscus-scented tunnel frequently and the clean tunnel infrequently.


Under “Functions at Group Centroids” we are given the group means on each of the discriminant functions.  DF1 separates the rat-reared animals (who score high on this function) from the animals in the other two groups.  DF2 separates the Mus-reared animals (who score high on this function) from the Peromyscus-reared animals.  If you look back at the transformed group means you can see this separation:  Compared to the Peromyscus-reared animals, the Mus-reared animals visited the Peromyscus-scented tunnel more frequently and the clean tunnel less frequently.


Territorial maps provide a nice picture of the relationship between predicted group and two discriminant functions.  Look at the map on our example data.  Subjects with D1 and D2 scores that place them in the area marked off by 3’s are classified into Group 3 (rat-reared).  The ( marks the group centroid.  Group 3 is on the right side of the map, having high scores on DF1, (high activity and no avoidance of the rat-scented tunnel).  Subjects with low  D1 and high D2 scores fall in the upper left side of the map, and are classified into Group 1 (Mus-reared), while those with low scores on both discriminant functions are classified into Group 2 (Peromyscus-reared).


When the primary goal is classification, all discriminant functions (including any that are not significant) are generally used.  Look at the Casewise Statistics from our example analysis.  The classifications are based on probabilities using both discriminant functions.  For example, for subject 1, .881 = P(Group = 2 | D1 = ‑1.953 and D2 = ‑1.684), while the posterior probability of membership in Group 1 is .118.  Accordingly, this subject is classified as being in Group 2 (Peromyscus-reared), when, in fact, it was in Group 1 (Mus-reared).


The combined groups plot, “Canonical Discriminant Functions,” is best viewed in color, since group membership is coded by color.  I this plot you can see where each subject falls in the space defined by the two discriminant functions


The Classification Results show that knowledge of the animals’ behavior in the testing apparatus greatly increased our ability to predict what species of animal reared it.  If we were just guessing, we would expect to have a 33% success rate.  Using the discriminant function, we correctly classify 83% of the rat-reared animals and 62% of the other animals.


The combined groups plot, “Canonical Discriminant Functions,” is best viewed in color, since group membership is coded by color.  In this plot you can see where each case and each centroid falls in the space defined by the two discriminant functions.
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Follow-Up Analysis


Look back at the data set.  At the very end you will find two new variables, Dis1_1 and Dis2_1.  These are the rats’ scores on the two discriminant functions.  I find it useful to make pairwise comparisons on the means of the discriminant functions and on the means of the predictor variables which had significant univariate effects.


Click Analyze, Compare Means, One-Way ANOVA.  Scoot NURS into the Factor box and scoot into the Dependent List V_Clean, V_rat, Dis1_1, and Dis2_1.
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Click Post Hoc and select LSD.
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Continue.  OK.


Look at the output from the ANOVA.  For either discriminant function take the Among Groups sums of squares and divide by the Within Groups sum of squares.  You get the eigenvalue for that discriminant function.  Now take the Among Group sums of squares and divide by the total sum of squares and then take the square root of the resulting R2.  You get the canonical correlation for that discriminant function.  Finally, for the last (second) discriminant function, take the Error sum of squares and divide by the total sum of squares.  You will obtain the Wilks Lambda for that discriminant function.

The multiple comparisons show that on each the rat-reared group differs significantly from the other two groups on number of visits to the clean tunnel, on number of visits to the rat-scented tunnel and on the first discriminant function.

Presenting the Results of a Discriminant Function Analysis


The manner in which the results are presented depends in part on what the goals of the analysis were -- was the focus of the research developing a model with which to classify subjects into groups, or was the focus on determining how the groups differ on a set of continuous variables.  In the behavioral sciences the focus is more often the latter.


You should pay attention to the example presentations in Tabachnick and Fidell.  Here I supplement that material with an example from some research I did with Ron Poulson while he was here (see the Journal of Social Behavior and Personality, 12: 743-758).


There was a problem with multicollinearity among the continuous variables in this study.  We handled that by first conducting a principal components analysis and then doing the discriminant function analysis on the component scores.  Also note that I presented group means on each of the two discriminant functions, and made pairwise comparisons on these means (as well as on the original means).

Results


In order to determine which of the evaluative and attitudinal factors were important in producing the differences in verdict choice, we conducted a principal components discriminant function analysis.  A discriminant function is a weighted linear combination of the predictor variables, with the weights chosen such that the criterion groups differ as much as possible on the resulting discriminant function.  In our analysis, verdict choice served as the criterion variable.  The predictor variables were the five attitudinal and three evaluative clusters of variables described in the Methods section and in Appendix 1.  To avoid problems associated with multicollinearity among the original variables, these variables were subjected to a principal components analysis, with the resulting orthogonal components used as the predictors in the discriminant analysis.  The results of this analysis were then transformed back into a form interpretable in terms of the original variables by correlating the participants' raw scores on the original eight variables with the participants' scores on the two significant discriminant functions (DF). These correlations are given in the structure matrices displayed in Table 1.

Table 1

Structure of the Discriminant Functions

	
	Structure Matrix

	Variable
	DF1
	DF2

	Mental status of defendant
	
.87
	
-.19

	Evaluation of expert testimony
	
.75
	
.12

	Receptivity to insanity defense
	
.65
	
.28

	Opposition to death penalty
	
.54
	
.25

	Favoring lenient treatment
	
.34
	
.35

	Believing rehabilitation unlikely
	
-.41
	
.43

	Trusting the prosecuting attorneys
	
-.10
	
.50

	Trusting the defense attorneys
	
-.13
	
.29



Table 2 contains the classification means for the groups on each discriminant function as well as the group means on each of the eight original variables.  The classification means indicate that the first function distinguishes between participants choosing a guilty verdict and participants returning an insanity verdict, F(16, 252) = 10.71, p < .001.  Believing that the defendant was mentally ill, believing the defense’s expert testimony more than the prosecution’s, being receptive to the insanity defense, opposing the death penalty, believing that the defendant could be rehabilitated, and favoring lenient treatment were associated with rendering a insanity verdict.  Conversely, the opposite orientation on these factors was associated with rendering a guilty verdict. The second function separated those who rendered a guilty-ill verdict from those choosing guilty or insanity, F(7,127) = 3.40, p < .003.  Distrusting the attorneys (especially the prosecution attorney), thinking rehabilitation likely, opposing lenient treatment, not being receptive to the insanity defense, and favoring the death penalty were associated with rendering a guilty-ill verdict rather than a guilty or insanity verdict.


Those who prefer univariate presentation of results should focus on the last eight rows of Table 2.  Do note that on every variable, excepting the trust of the attorneys variables, the mean for the guilty-ill group is between that for the guilty group and that for the insanity group.  Fisher’s procedure was used to make pairwise comparisons among the groups on each of the variables, including the discriminant functions.  It should be noted that when employed to make pairwise comparisons among three and only three groups, Fisher’s procedure has been found to hold familywise error at or below the nominal rate and to have more power than commonly employed alternative procedures (Levin, Serlin, & Seaman, 1994).

Table 2

Group Means on the Discriminant Functions and the Original Eight Variables

	
	Verdict

	Variable
	Guilty
	Guilty-Ill
	Insanity

	Discriminant Function 1
	
-1.29a
	
-0.01b
	
2.32c

	Discriminant Function 2
	
0.48a
	
-0.39b
	
0.46a

	Mental status of defendant
	
2.86a
	
4.61b
	
6.98c

	Evaluation of expert testimony
	
-2.47a
	
-0.71b
	
3.43c

	Receptivity to insanity defense
	
2.01a
	
2.22a
	
3.02b

	Opposition to death penalty
	
1.56a
	
1.81a
	
2.82b

	Favoring lenient treatment
	
1.88a
	
1.89a
	
2.50b

	Believing rehabilitation unlikely
	
6.82a
	
5.47b
	
4.91b

	Trusting the prosecuting attorneys
	
2.21a
	
1.81b
	
2.00ab

	Trusting the defense attorneys
	
2.03a
	
1.75a
	
1.77a


Note.  Within each row, means having the same letter in their superscripts are not significantly different from each other at the .05 level.

Appendix 1


Complete details about the questions are available by request to the first author.  Here we present only a terse description of each of the eight predictor variables.


Attitude About Lenient Treatment:  Two Likert-type items summed such that a high score indicates a preference for lenient treatment.  The correlation between the two items was r = .32


Attitude Toward the Insanity Defense:  Four Likert-type items summed so that a high score indicates receptivity rather than opposition to the insanity defense.  Cronbach’s alpha was .67.


Attitude Toward the Death Penalty:  a single item, “are you strongly in favor, somewhat in favor, somewhat opposed, or strongly opposed to the death penalty,” with high scores indicating opposition to the death penalty.


Belief Regarding Expert Testimony:  Four nine-point items summed such that high scores indicate that the defense’s expert testimony was believed more than was the prosecution’s.  Cronbach’s alpha was .87.


Assessment of the Defendant's Mental Status:  Six Likert-type items summed so that high scores indicate that the participant believed the defendant to be insane.  Cronbach’s alpha was .88.


Belief that the Defendant Could Be Rehabilitated:  Two items summed such that high scores indicate disbelief in the possibility of rehabilitation.  The correlation between the two items was .56.


Attitude Toward the Defense Attorneys:  A single Likert-type item, “defense attorneys have to be watched carefully, since they will use any means they can to get their client acquitted,” with high scores indicating trust.


Attitude Toward the Prosecuting Attorneys:  A single Likert-type item, “prosecuting attorneys have to be watched carefully since they will use any means they can to get convictions,” with high scores indicating trust.

Return to Wuensch’s Statistics Lessons Page
Copyright 2006 Karl L. Wuensch - All rights reserved.

( Copyright 2006 Karl L. Wuensch - All rights reserved.





DFA3.doc

PAGE  

