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0.1 What is Cluster Analysis? 

Cluster analysis is concerned with forming groups of similar objects based on 
several measurements of different kinds made on the objects. The key idea is 
to identify classifications of the objects that would be useful for the aims of the 
analysis. This idea has been applied in many areas including astronomy, arche-
ology, medicine, chemistry, education, psychology, linguistics and sociology. For 
example, biological sciences have made extensive use of classes and sub-classes 
to organize species. A spectacular success of the clustering idea in chemistry 
was Mendelev’s periodic table of the elements. In marketing and political fore-
casting, clustering of neighborhoods using US postal Zip codes has been used 
successfully to group neighborhoods by lifestyles. Claritas, a company that 
pioneered this approach grouped neighborhoods into 40 clusters using various 
measures of consumer expenditure and demographics. Examining the clusters 
enabled Claritas to come up with evocative names, such as “Bohemian Mix,” 
“Furs and Station Wagons” and “Money and Brains,” for the groups that cap-
tured the dominant lifestyles in the neighborhoods. Knowledge of lifestyles can 
be used to estimate the potential demand for products such as sports utility 
vehicles and services such as pleasure cruises. 

The objective of this chapter is to help you to understand the key ideas 
underlying the most commonly used techniques for cluster analysis and to ap-
preciate their strengths and weaknesses. We cannot aspire to be comprehensive 
as there are literally hundreds of methods (there is even a journal dedicated to 
clustering ideas: “The Journal of Classification”!). 

Typically, the basic data used to form clusters is a table of measurements 
on several variables where each column represents a variable and a row repre-
sents an object often referred to in statistics as a case. Thus the set of rows 
are to be grouped so that similar cases are in the same group. The number of 
groups may be specified or has to be determined from the data. 

0.2 Example 1: Public Utilities Data 

Table 1.1 below gives corporate data on 22 US public utilities. 
We are interested in forming groups of similar utilities. The objects to be 

clustered are the utilities. There are 8 measurements on each utility described 
in Table 1.2. An example where clustering would be useful is a study to predict 
the cost impact of deregulation. To do the requisite analysis economists would 
need to build a detailed cost model of the various utilities. It would save 
a considerable amount of time and effort if we could cluster similar types of 
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utilities and to build detailed cost models for just one ”typical” utility in each 
cluster and then scaling up from these models to estimate results for all utilities. 
The objects to be clustered are the utilities and there are 8 measurements on 
each utility. 

Before we can use any technique for clustering we need to define a measure 
for distances between utilities so that similar utilities are a short distance apart 
and dissimilar ones are far from each other. A popular distance measure based 
on variables that take on continuous values is to standardize the values by 
dividing by the standard deviation (sometimes other measures such as range 
are used) and then to compute the distance between objects using the Euclidean 
metric. 

The Euclidean distance dij between two cases, i and j with variable values 
(xi1, xi2, . . . , xip) and (xj1, xj2, . . . , xjp) is defined by: 

dij = (xi1 − xj1)2 + (xi2 − xj2)2 + · · ·  + (xip − xjp)2 

All our variables are continuous in this example, so we compute distances using 
this metric. The result of the calculations is given in Table 1.2 below. 

If we felt that some variables should be given more importance than others 
we would modify the squared difference terms by multiplying them by weights 
(positive numbers adding up to one) and use larger weights for the important 
variables. The Weighted Euclidean distance measure is given by: 

dij = w1(xi1 − xj1)2 + w2(xi2 − xj2)2 + · · ·  + wp(xip − xjp)2 

where w1, w2, . . . , wp are the weights for variables 1, 2, . . . , p  so that wi ≥ 
p 

0, wi = 1.  
i=1 

0.3 Clustering Algorithms 

A large number of techniques have been proposed for forming clusters from 
distance matrices. The most important types are hierarchical techniques, opti-
mization techniques and mixture models. We discuss the first two types here. 
We will discuss mixture models in a separate note that includes their use in 
classification and regression as well as clustering. 

0.3.1 Hierarchical Methods 

There are two major types of hierarchical techniques: divisive and agglomera-
tive. Agglomerative hierarchical techniques are the more commonly used. The 
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No. Company X1 X2 X3 X4 X5 X6 X7 X8 
1 Arizona Public Service 1.06 9.2 151 54.4 1.6 9077 0 0.628 
2 Boston Edison Company 0.89 10.3 202 57.9 2.2 5088 25.3 1.555 
3 Central Louisiana Electric Co. 1.43 15.4 113 53 3.4 9212 0 1.058 
4 Commonwealth Edison Co. 1.02 11.2 168 56 0.3 6423 34.3 0.7 
5 Consolidated Edison Co. (NY) 1.49 8.8 1.92 51.2 1 3300 15.6 2.044 
6 Florida Power and Light 1.32 13.5 111 60 -2.2 11127 22.5 1.241 
7 Hawaiian Electric Co. 1.22 12.2 175 67.6 2.2 7642 0 1.652 
8 Idaho Power Co. 1.1 9.2 245 57 3.3 13082 0 0.309 
9 Kentucky Utilities Co. 1.34 13 168 60.4 7.2 8406 0 0.862 

10 Madison Gas & Electric Co. 1.12 12.4 197 53 2.7 6455 39.2 0.623 
11 Nevada Power Co. 0.75 7.5 173 51.5 6.5 17441 0 0.768 
12 New England Electric Co. 1.13 10.9 178 62 3.7 6154 0 1.897 
13 Northern States Power Co. 1.15 12.7 199 53.7 6.4 7179 50.2 0.527 
14 Oklahoma Gas and Electric Co. 1.09 12 96 49.8 1.4 9673 0 0.588 
15 Pacific Gas & Electric Co. 0.96 7.6 164 62.2 -0.1 6468 0.9 1.4 
16 Puget Sound Power & Light Co. 1.16 9.9 252 56 9.2 15991 0 0.62 
17 San Diego Gas & Electric Co. 0.76 6.4 136 61.9 9 5714 8.3 1.92 
18 The Southern Co. 1.05 12.6 150 56.7 2.7 10140 0 1.108 
19 Texas Utilities Co. 1.16 11.7 104 54 -2.1 13507 0 0.636 
20 Wisconsin Electric Power Co. 1.2 11.8 148 59.9 3.5 7297 41.1 0.702 
21 United Illuminating Co. 1.04 8.6 204 61 3.5 6650 0 2.116 
22 Virginia Electric & Power Co. 1.07 9.3 1784 54.3 5.9 10093 26.6 1.306 

Table 1: Public Utilities Data.


X1: Fixed-charge covering ratio (income/debt) 
X2: Rate of return on capital 
X3: Cost per KW capacity in place 
X4: Annual Load Factor 
X5: Peak KWH demand growth from 1974 to 1975 
X6: Sales (KWH use per year) 
X7: Percent Nuclear 
X8: Total fuel costs (cents per KWH) 

Table 2: Explanation of variables.
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1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  
1 0.0 3.1 3.7 2.5 4.1 3.6 3.9 2.7 3.3 3.1 3.5 3.2 4.0 2.1 2.6 4.0 4.4 1.9 2.4 3.2 3.5 2.5 
2 3.1 0.0 4.9 2.2 3.9 4.2 3.4 3.9 4.0 2.7 4.8 2.4 3.4 4.3 2.5 4.8 3.6 2.9 4.6 3.0 2.3 2.4 
3 3.7 4.9 0.0 4.1 4.5 3.0 4.2 5.0 2.8 3.9 5.9 4.0 4.4 2.7 5.2 5.3 6.4 2.7 3.2 3.7 5.1 4.1 
4 2.5 2.2 4.1 0.0 4.1 3.2 4.0 3.7 3.8 1.5 4.9 3.5 2.6 3.2 3.2 5.0 4.9 2.7 3.5 1.8 3.9 2.6 
5 4.1 3.9 4.5 4.1 0.0 4.6 4.6 5.2 4.5 4.0 6.5 3.6 4.8 4.8 4.3 5.8 5.6 4.3 5.1 4.4 3.6 3.8 
6 3.6 4.2 3.0 3.2 4.6 0.0 3.4 4.9 3.7 3.8 6.0 3.7 4.6 3.5 4.1 5.8 6.1 2.9 2.6 2.9 4.6 4.0 
7 3.9 3.4 4.2 4.0 4.6 3.4 0.0 4.4 2.8 4.5 6.0 1.7 5.0 4.9 2.9 5.0 4.6 2.9 4.5 3.5 2.7 4.0 
8 2.7 3.9 5.0 3.7 5.2 4.9 4.4 0.0 3.6 3.7 3.5 4.1 4.1 4.3 3.8 2.2 5.4 3.2 4.1 4.1 4.0 3.2 
9 3.3 4.0 2.8 3.8 4.5 3.7 2.8 3.6 0.0 3.6 5.2 2.7 3.7 3.8 4.1 3.6 4.9 2.4 4.1 2.9 3.7 3.2 

10 3.1 2.7 3.9 1.5 4.0 3.8 4.5 3.7 3.6 0.0 5.1 3.9 1.4 3.6 4.3 4.5 5.5 3.1 4.1 2.1 4.4 2.6 
11 3.5 4.8 5.9 4.9 6.5 6.0 6.0 3.5 5.2 5.1 0.0 5.2 5.3 4.3 4.7 3.4 4.8 3.9 4.5 5.4 4.9 3.4 
12 3.2 2.4 4.0 3.5 3.6 3.7 1.7 4.1 2.7 3.9 5.2 0.0 4.5 4.3 2.3 4.6 3.5 2.5 4.4 3.4 1.4 3.0 
13 4.0 3.4 4.4 2.6 4.8 4.6 5.0 4.1 3.7 1.4 5.3 4.5 0.0 4.4 5.1 4.4 5.6 3.8 5.0 2.2 4.9 2.7 
14 2.1 4.3 2.7 3.2 4.8 3.5 4.9 4.3 3.8 3.6 4.3 4.3 4.4 0.0 4.2 5.2 5.6 2.3 1.9 3.7 4.9 3.5 
15 2.6 2.5 5.2 3.2 4.3 4.1 2.9 3.8 4.1 4.3 4.7 2.3 5.1 4.2 0.0 5.2 3.4 3.0 4.0 3.8 2.1 3.4 
16 4.0 4.8 5.3 5.0 5.8 5.8 5.0 2.2 3.6 4.5 3.4 4.6 4.4 5.2 5.2 0.0 5.6 4.0 5.2 4.8 4.6 3.5 
17 4.4 3.6 6.4 4.9 5.6 6.1 4.6 5.4 4.9 5.5 4.8 3.5 5.6 5.6 3.4 5.6 0.0 4.4 6.1 4.9 3.1 3.6 
18 1.9 2.9 2.7 2.7 4.3 2.9 2.9 3.2 2.4 3.1 3.9 2.5 3.8 2.3 3.0 4.0 4.4 0.0 2.5 2.9 3.2 2.5 
19 2.4 4.6 3.2 3.5 5.1 2.6 4.5 4.1 4.1 4.1 4.5 4.4 5.0 1.9 4.0 5.2 6.1 2.5 0.0 3.9 5.0 4.0 
20 3.2 3.0 3.7 1.8 4.4 2.9 3.5 4.1 2.9 2.1 5.4 3.4 2.2 3.7 3.8 4.8 4.9 2.9 3.9 0.0 4.1 2.6 
21 3.5 2.3 5.1 3.9 3.6 4.6 2.7 4.0 3.7 4.4 4.9 1.4 4.9 4.9 2.1 4.6 3.1 3.2 5.0 4.1 0.0 3.0 
22 2.5 2.4 4.1 2.6 3.8 4.0 4.0 3.2 3.2 2.6 3.4 3.0 2.7 3.5 3.4 3.5 3.6 2.5 4.0 2.6 3.0 0.0 

Table 3: Distances based on standardized variable values. 

idea behind this set of techniques is to start with each cluster comprising of 
exactly one object and then progressively agglomerating (combining) the two 
nearest clusters until there is just one cluster left consisting of all the objects. 
Nearness of clusters is based on a measure of distance between clusters. All 
agglomerative methods require as input a distance measure between all the ob-
jects that are to be clustered. This measure of distance between objects 
is mapped into a metric for the distance between clusters (sets of objects) 
metrics for the distance between two clusters. The only difference between the 
various agglomerative techniques is the way in which this inter-cluster distance 
metric is defined. The most popular agglomerative techniques are: 

1. Nearest neighbor (also called single linkage). Here the distance be-
tween two clusters is defined as the distance between the nearest pair of 
objects with one object in the pair belonging to a distinct cluster. If clus-
ter A is the set of objects A1, A2, . . . Am  and cluster B is B1, B2, . . . Bn  
the single linkage distance between A and B is Min(distance(Ai, Bj)|i = 
1, 2 . . . m; j = 1, 2 . . . n). This method has a tendency to cluster together 
at an early stage objects that are distant from each other in the same clus-
ter because of a chain of intermediate objects in the same cluster. Such 
clusters have elongated sausage-like shapes when visualized as objects in 
space. 

2. Farthest neighbor (also called complete linkage). Here the dis-
tance between two clusters is defined as the distance between the far-
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thest pair of objects with one object in the pair belonging to a dis-
tinct cluster. If cluster A is the set of objects A1, A2, . . . Am  and clus-
ter B is B1, B2, . . . Bn  the single linkage distance between A and B is 
Max(distance(Ai, Bj)|i = 1, 2 . . . m; j = 1, 2 . . . n). This method tends 
to produce clusters at the early stages that have objects that are within a 
narrow range of distances from each other. If we visualize them as objects 
in space the objects in such clusters would have a more spherical shape. 

3.	 Group average (also called average linkage). Here the distance 
between two clusters is defined as the average distance between all pos-
sible pairs of objects with one object in each pair belonging to a dis-
tinct cluster. If cluster A is the set of objects A1, A2, . . . Am  and clus-
ter B is B1, B2, . . . Bn  the single linkage distance between A and B is 
(1/mn)Σdistance(Ai, Bj) the sum being taken over i = 1, 2 . . . m and j  = 
1, 2 . . . n. 

Note that the results of the single linkage and the complete linkage meth-
ods depend only on the order of the inter-object distances and so are invariant 
to monotonic transformations of the inter-object distances. 

The nearest neighbor clusters for the utilities are displayed in Figure 1 
below in a useful graphic format called a dendogram. For any given number 
of clusters we can determine the cases in the clusters by sliding a vertical line 
from left to right until the number of horizontal intersections of the vertical 
line equals the desired number of clusters. For example, if we wanted to form 
6 clusters we would find that the clusters are: 
{1, 18, 14, 19, 9, 10, 13, 4, 20, 2, 12, 21, 7, 15, 22, 6}; {3}; {8, 16}; {17}; {11}; and 
{5}. Notice that if we wanted 5 clusters they would be the same as for six 
with the exception that the first two clusters above would be merged into one 
cluster. In general all hierarchical methods have clusters that are nested within 
each other as we decrease the number of clusters we desire. 

The average linkage dendogram is shown in Figure 2. If we want six clus-
ters using average linkage, they would be: 
{1, 18, 14, 19, 6, 3, 9}; {2, 22, 4, 20, 10, 13}; {12, 21, 7, 15}; {17}; {5}; {8, 16, 11}. 
Notice that both methods identify {5} and {17} as small (“individualistic”) 
clusters. The clusters tend to group geographically – for example there is a 
southern group {1, 18, 14, 19, 6, 3, 9}, a east/west seaboard group: {12, 21, 7, 15}. 
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Figure1: Dendogram - Single Linkage 

1+--------------------------------+ 
18+--------------------------------+----+ 
14+--------------------------------+ | 
19+--------------------------------+----+----+ 
9+------------------------------------------++ 
10+------------------------+ | 
13+------------------------++ | 
4+-------------------------+-----+ | 
20+-------------------------------+-----+ | 
2+-------------------------------------+--+ | 
12+------------------------+ | | 
21+------------------------+---+ | | 
7+----------------------------+-------+ | | 
15+------------------------------------+---+-+| 
22+------------------------------------------++-+ 
6+---------------------------------------------+-+ 
3+-----------------------------------------------++ 
8+--------------------------------------+ | 
16+--------------------------------------+---------+-----+ 
17+------------------------------------------------------+-----+ 
11+------------------------------------------------------------+--+ 
5+---------------------------------------------------------------+ 
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Figure2: Dendogram - Average Linkage between groups 

1+-------------------------+ 
18+-------------------------+-----+ 
14+-------------------------+ | 
19+-------------------------+-----+----------+ 
6+------------------------------------------+-+ 
3+-------------------------------------+ | 
9+-------------------------------------+------+-----+ 
2+---------------------------------+ | 
22+---------------------------------+---+ | 
4+------------------------+ | | 
20+------------------------+---+ | | 
10+-------------------+ | | | 
13+-------------------+--------+--------+------------+-----+ 
12+------------------+ | 
21+------------------+----------+ | 
7+-----------------------------+---+ | 
15+---------------------------------+----------------+ | 
17+--------------------------------------------------+-----+---+ 
5+------------------------------------------------------------+--+ 
8+------------------------------+ | 
16+------------------------------+----------------+ | 
11+-----------------------------------------------+---------------+ 

0.3.2  Similarity Measures 
Sometimes it is more natural or convenient to work with a similarity measure 
between cases rather than distance which measures dissimilarity. An example 

2is the square of the correlation coefficient, rij , defined by 

p 
(xim − xm)(xjm − xm) 

2 rij ≡ � m=1 

p p 
(xim − xm)2 (xjm − xm)2 

m=1 m=1 

Such measures can always be converted to distance measures. In the above 
example we could define a distance measure dij = 1  − r2 

ij . 
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However, in the case of binary values of x it is more intuitively appealing 
to use similarity measures. Suppose we have binary values for all the xij ’s and 
for individuals i and j we have the following 2 × 2 table: 

Individual j 
0 1 

Individual i 0 a b a + b 
1 c d c + d 

a + c b + d p 

The most useful similarity measures in this situation are: 

•	 The matching coefficient, (a + d)/p 

•	 Jaquard’s coefficient, d/(b + c + d). This coefficient ignores zero matches. 
This is desirable when we do not want to consider two individuals to be 
similar simply because they both do not have a large number of charac-
teristics. 

When  the  variables  are  mixed  a  similarity  coefficient  suggested  by  Gower  is 
very useful. It is defined as 

p 
wijmsijm 

m=1 sij = p 
wijm 

m=1 

with wijm = 1 subject to the following rules: 

•	 wijm = 0 when the value of the variable is not known for one of the pair 
of individuals or to binary variables to remove zero matches. 

•	 For non-binary categorical variables sijm = 0 unless the individuals are 
in the same category in which case sijm = 1  

•	 For continuous variables sijm  =  1− | xim  − xjm  | /((max(xm) - min(xm)) 

Other distance measures 

Two useful measures of disimmilarity other than the Euclidean distance that 
satisfy the triangular inequality and so qualify as distance metrics are: 
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• Mahalanobis distance defined by 

dij = (xi − xj )′S−1(xi − xj ) 

where xi and xj are p-dimensional vectors of the variable values for i 
and j respectively; and S is the covariance matrix for these vectors. This 
measure takes into account the correlation between the variable: variables 
that are highly correlated with other variables do not contribute as much 
as variables that are uncorrelated or mildly correlated. 

• Manhattan distance defined by 

p 

dij = | xim − xjm |
m=1 

• Maximum co-ordinate distance defined by 

max | xim − xjm |dij = 
m = 1, 2, . . . , p  


