
NCSSM Statistics Leadership Institute  Sampling Methods and Practice 
July, 1999 

1

Sampling Methods and Practice 
 

Richard L. Scheaffer 
University of Florida 

 
 The topic of Sampling Methods and Practice fits well with that of Categorical 
Data Analysis.  Indeed, most survey questionnaires produce categorical data by asking 
for Yes/No or Agree/Disagree responses.  Typically, the reports on the surveys present 
proportions and percentages of the responses.  In this section, we will consider the topic 
of Survey Sampling, its important features and appropriate techniques of analysis.   
 
Sample Surveys and Experiments 
 
 A sample survey differs from an experiment in several important ways.  A sample 
survey is characterized by  

• a clearly specified population 
• a sample selected by a random process from that population 
• the goal of estimating some population parameters  

 
An experiment is characterized by  

• a treatment or treatments of interest 
• some form of control, either a control group or another treatment 
• randomized assignment of the experimental unit (subject) to a treatment 
• the goal of establishing treatment differences, if they exist. 

 
The goals of a sample survey and an experiment are very different.  The role of 

randomization also differs.  In both cases, without randomization there can be no 
inference.  Without randomization, the researcher can only describe the observations and 
cannot generalize the results.  In the sample survey, randomization is used to reduce bias 
and to allow the results of the sample to be generalized to the population from which the 
sample was drawn.  In an experiment, randomization is used to balance the effects of 
confounding variables. 
 
Some Terminology 
 
 Element:  An element is an object on which a measurement is made.  This could 
be a voter in a precinct, a product as it comes off the assembly line, or a  plant in a field 
that has either bloomed or not. 
 
 Population:  A population is a collection of elements about which we wish to 
make an inference.  The population must be clearly defined before the sample is taken. 
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 Sampling Units:  Sampling units are nonoverlapping collections of elements 
from the population that cover the entire population.  The sampling units partition the 
population of interest.   The sampling units could be households or individual voters. 
 
 Frame:  A frame is a list of sampling units.  
 
 Sample:  A sample is a collection of sampling units drawn from a frame or 
frames.  Data are obtained from the sample and are used to describe characteristics of the 
population.   
 
Example 1   Suppose we are interested in what students in a particular high school 
think about the drilling for oil in our national wildlife preserves.  The elements are the 
high school students and the population is the students who attend this high school.  The 
sampling units could be the students as individuals with the frame the alphabetical listing 
of all students enrolled in the school.   The sampling units could be homerooms, since 
each student has one and only one homeroom, and the frame the class list for 
homerooms. 
 
Example 2   Suppose we are interested in what voters in a particular precinct think 
about the drilling for oil in our national wildlife preserves.  The elements are the 
registered voters in the precinct.  The population is the collection of registered voters.  
The sampling units will likely be households in which there may be several registered 
voters.  The frame is a list of households in the precinct.   
 
 When the population is the residents of a city, the frame will commonly be the 
city phone book.  However, not everyone in the city has their phone listed in the phone 
book.  In this situation, the frame does not match the population.  A survey conducted 
from the frame of the phone book would likely suffer from undercoverage bias. 
 
Probability Samples  
 
 Sample designs that utilize planned randomness are called probability samples.  
The most fundamental probability sample is the simple random sample.  In a simple 
random sample, a sample of n sampling units is selected in such a way that each sample 
of size n has the same chance of being selected.  In practice, other more sophisticated 
probability sampling methods are commonly used, but most of the statistical theory for 
the introductory course in statistics is based on the simple random sample.    
 
 First, we will define a stratified random sample, a systematic sample, and a cluster 
sample. 
 
Stratified Random Sample:  A stratified random sample is one obtained be separating the 
population elements into non-overlapping groups, called strata, and then selecting a 
simple random sample from each stratum.  (Scheaffer, Mendenhall, and Ott, Elementary Survey 
Sampling, 5 th edition, page 125). 
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Systematic Sample:  A systematic sample is obtained by randomly selecting at random 
one element from the first k elements in the frame and every kth  element thereafter.  This 
is known as a 1-in-k systematic sample. (Scheaffer, Mendenhall, and Ott, Elementary Survey 
Sampling, 5 th edition, page 252). 
 
Cluster Sample:  A cluster sample is a probability sample in which each sampling unit is 
a collection, or cluster, of elements. (Scheaffer, Mendenhall, and Ott, Elementary Survey Sampling, 
5th edition, page 289). 
 

Dick Scheaffer, in Elementary Survey Sampling (p. 407-408) gives and 
excellent overview and comparison of the different standard methods of 
conducting probability samples. We include this discussion with only slight 
modification. 
 

COMPARISONS AMONG THE DESIGNS AND METHODS 
 
Simple random sampling is the basic building block and point of 

reference for all other designs discussed in this text. However, few large-
scale surveys use only simple random sampling, because other designs 
often provide greater accuracy or efficiency or both. 

 
Stratified random sampling produces estimators with smaller 

variance than those from simple random sampling, for the same sample 
size, when the measurements under study are homogeneous within strata 
but the stratum means vary among themselves. The ideal situation for 
stratified random sampling is to have all measurements within any one 
stratum equal but have differences occurring as we move from stratum to 
stratum.  

Systematic sampling is used most often simply as a convenience. It 
is relatively easy to carry out. But this form of sampling may actually be 
better than simple random sampling, in terms of bounds on the error of 
estimation, if the correlation between pairs of elements within the same 
systematic sample is negative. This situation will occur, for example, in 
periodic data if the systematic sample hits both the high points and the low 
points of the periodicities. If, in contrast, the systematic sample hits only 
the high points, the results are very poor. Populations that have a linear 
trend in the data or that have a periodic structure that is not completely 
understood may be better sampled by using a stratified design. Economic 
time series, for example, can be stratified by quarter or month, with a 
random sample selected from each stratum. The stratified and the 
systematic sample both force the sampling to be carried out along the 
whole set of data, but the stratified design offers more random selection 
and often produces a smaller bound on the error of estimation. 

Cluster sampling is generally employed because of cost 
effectiveness or because no adequate frame for elements is available. 
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However, cluster sampling may be better than either simple or stratified 
random sampling if the measurements within clusters are heterogeneous 
and the cluster means are nearly equal. The ideal situation for cluster 
sampling is, then, to have each cluster contain measurements as different 
as possible but to have the cluster means equal. This condition is in 
contrast to that for stratified random sampling in which strata are to be 
homogeneous but stratum means are to differ. 

 
Another way to contrast the last three designs is as follows. 

Suppose a population consists of N nk=  elements, which can be thought 
of as k systematic samples each of size n. The nk elements can be thought 
of as n clusters of size k, and the systematic sample merely selects one 
such cluster. In this case the clusters should be heterogeneous for optimal 
systematic sampling. By contrast, the nk elements can also be thought of 
as n strata of k elements each, and the systematic sample selects one 
element from each stratum. In this case the strata should be as 
homogeneous as possible, but the stratum means should differ as much as 
possible. This design is consistent with the cluster formulation of the 
problem and once again produces an optimal situation for systematic 
sampling. So we see that the three sampling designs are different, and yet 
they are consistent with one another with regard to basic principles. 

 
The Need for Probability Samples 
 
Consider the table shown below of the accuracy in the final Gallup Presidential Polls 
from 1936 to 1984. 
 

Gallup Poll Accuracy 
Year Gallup Final Survey Election Result % Error 
1936 55.7% Roosevelt 62.5% Roosevelt 6.8% 
1940 52.0% Roosevelt 55.0% Roosevelt 3.0% 
1944 51.5% Roosevelt 52.3% Roosevelt 0.8% 
1948 44.5% Truman 49.9% Truman 5.4% 
1952 51.0% Eisenhower 55.4% Eisenhower 4.4% 
1956 59.5% Eisenhower 57.8% Eisenhower 1.7% 
1960 51.0% Kennedy 50.1% Kennedy 0.9% 
1964 64.0% Johnson 61.3% Johnson 2.7% 
1968 43.0% Nixon 43.5% Nixon 0.5% 
1972 62.0% Nixon 61.8% Nixon 0.2% 
1976 48.0% Carter 50.0% Carter 2.0% 
1980 47.0% Reagan 50.8% Reagan 3.8% 
1984 59.0% Reagan 59.2% Reagan 0.2% 

 
Source:  G. Gallup, Jr. The Gallup Poll, Public Opinion 1984.  Copyright  1985, Scholarly Resources Inc., Wilmington, DE.   
From Scheaffer, Mendenhall, Ott, Elementary Survey Sampling, 5th Edition, Duxbury Press.  
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Prior to 1948, the Gallup Poll used a quota sampling technique, which is not a probability 
sample.  They had sought to find a representative group that matched the demographics 
of the country.  Although the resulting sample did accurately represent the demographics 
of the country, it incorrectly predicted that Dewey would beat Truman in the election.  
Quota sampling failed.  The samples taken after 1948 were probability samples.  Even 
though the number of people in the sample was smaller than for polls used prior to 1948, 
the errors are generally much smaller.   
 
Sources of Errors in Surveys 
 
 Statistician Robert Gross of the University of Michigan has categorized the kinds 
of errors in surveys into errors of non-observation and errors of observation. 
 

Errors of non-observation include sampling error, error in coverage, and errors due to 
non-response. 
 

• Sampling error is the “natural” error that is a part of any sampling process. If the 
sampling process were repeated a number of times, the results would differ each 
time, producing a variation in the estimates of the population parameters. 

 
• Coverage error results when the frame does not match the population.  For 

example, if the frame is the town phone book, then people with unlisted numbers 
and those without phones will be missing from the frame. 

 
• Non-response error is a result of elements in the frame that have died, moved 

away, refuse to participate, or otherwise are missing from the sample. 
 
Errors of observation include interviewer error, respondent error, measurement error, and 
errors in data collection. 
 

• Interviewer error is a result of the interaction between the interviewer and the 
subject being interviewed. Most people who agree to an interview do not want to 
appear disagreeable and will tend to side with the view apparently favored by the 
interviewer, especially on questions for which the respondent does not have a 
strong opinion.  Reading a question with inappropriate emphasis or intonation can 
force a response in one direction or another. Interviewers of the same gender, 
racial, and ethnic groups as those being interviewed are, in general, slightly more 
successful. 

 
• Respondent error is a result of the differing abilities of the respondents in a 

sample to answer correctly the questions asked.  Most respondent errors are 
unintentional and are due to either recall bias (the respondent does not remember 
correctly) or prestige bias (the respondent exaggerates).  At times, respondent 
error may be due to intentional deception (the respondent will not admit breaking 
a law or has a particular gripe against an agency). 
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• Measurement error occurs when inaccurate responses are caused by errors of 
definition in survey questions. For example, what does the term unemployed 
mean? Should the unemployed include those who have given up looking for 
work, teenagers who cannot find summer jobs, and those who lost part-time jobs?  

Does education include only formal schooling or technical training, on-the-job 
classes and summer institutes as well? Items to be measured must be precisely 
defined and be unambiguously measurable. 

 
• Errors in data collection occur in all surveys.  The most commonly used methods 

of data collection in sample surveys are personal interviews and telephone 
interviews. These methods, with appropriately trained interviewers and carefully 
planned callbacks, commonly achieve response rates of 60% to 75%. The 
procedure usually requires the interviewer to ask prepared questions and to record 
the respondent's answers.                                                         
 The primary advantage of these interviews is that people will usually 
respond when confronted in person.  However, if the interviewers are not 
thoroughly trained, they may deviate from the required protocol, thus introducing 
a bias into the sample data. Any movement, facial expression, or statement by the 
interviewer can affect the response obtained.  Errors in recording the response can 
also lead to erroneous results.        
 A major problem with telephone surveys is the establishment of a frame 
that closely corresponds to the population. Telephone directories have many 
numbers that do not belong to households, and many households have unlisted 
numbers. A technique that avoids the problem of unlisted numbers is random digit 
dialing. In this method, a telephone exchange number (the first three digits of the 
seven-digit number) is selected, and then the last four digits are dialed randomly 
until a fixed number of households of a specified type are reached. 
 A mailed questionnaire sent to a specific group of interested persons can 
achieve good results, but, response rates for this type of data collection are 
generally so low that all reported results are suspect. Nonresponse can be a 
problem in any form of data collection, but since we have the least contact with 
respondents in a mailed questionnaire, we frequently have the lowest rate of 
response. The low response rate can introduce a bias into the sample because the 
people who answer questionnaires may not be representative of the population of 
interest. To eliminate some of this bias, investigators frequently contact the 
nonrespondents through follow-up letters, telephone interviews, or personal 
interviews. 

 
Steps in Planning a Survey  
(modified from Scheaffer, et al. Elementary Survey Sampling, 5 th Ed., 1996. p. 68-70) 
 
1. Statement of objectives.  State the objectives of the survey clearly and concisely 
and refer to these objectives regularly as the design and the implementation of the survey 
progress. Keep the objectives simple enough to be understood by those working on the 
survey and to be met successfully when the survey is completed. 
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2. Target population. Carefully define the population to be sampled. If adults are to 
be sampled, then define what is meant by adult (all those over the age of 18, for example) 
and state what group of adults are included (all permanent residents of a city, for example). 
Keep in mind that a sample must be selected from this population and define the population 
so that sample selection is possible. 
 
3.  The frame.  Select the frame (or frames) so that the list of sampling units and the 
target population show close agreement. Keep in mind that multiple frames may make the 
sampling more efficient. For example, residents of a city can be sampled from a list of 
city blocks coupled with a list of residents within blocks. 
 
4.  Sample design.  Choose the design of the sample, including the number of sample 
elements, so that the sample provides sufficient information for the objectives of the 
survey. 
 
5.  Method of measurement.  Decide on the method of measurement, usually one or 
more of the following methods: personal interviews, telephone interviews, mailed 
questionnaires, or direct observations. 
 
6.  Measurement instrument.  In conjunction with step 5, carefully specify how and 
what measurements are to be obtained. If a questionnaire is to be used, plan the questions 
so that they minimize nonresponse and incorrect response bias. 
 
7.  Selection and training of field-workers.  After the sampling plan is clearly and 
completely set up, someone must collect the data. Those collecting data, the field-
workers, must be carefully taught what measurements to make and how to make them. 
Training is especially important if interviews, either personal or telephone, are used 
because the rate of response and the accuracy of responses are affected by the 
interviewer's personal style and tone of voice. 
 
8.  The pretest.   Select a small sample for a pretest. The pretest is crucial because it 
allows you to field-test the questionnaire or other measurement device, to screen 
interviewers, and to check on the management of field operations. The results of the 
pretest usually suggest that some modifications must be made before a full-scale 
sampling is undertaken. 
 
9.  Organization of fieldwork.  Plan the fieldwork in detail. Any large-scale survey 
involves numerous people working as interviewers, coordinators, or data managers. The 
various jobs should be carefully organized and lines of authority clearly established 
before the survey is begun. 
 
10.  Organization of data management.  Outline how each piece of datum is to be 
handled for all stages of the survey. Large surveys generate huge amounts of data. Hence, 
a well-prepared data management plan is of the utmost importance. This plan should 
include the steps for processing data from the time a measurement is taken in the field 
until the final analysis is completed. A quality control scheme should also be included in 
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the plan in order to check for agreement between processed data and data gathered in the 
field. 
 
11.  Data analysis.  Outline the analyses that are to be completed. Closely related to 
step 10, this step involves the detailed specification of what analyses are to be performed. 
It may also list the topics to be included in the final report. 
 
12. Final Report.  The final report should match the stated objectives in step 1.  
Considering the final report before the survey is conducted may be helpful in determining 
what items are to be measured in the survey. 
 
13. Recapitulation.  After the final report is completed, you should consider what 
changes should be made if/when the survey is repeated.  Most surveys are conducted 
periodically.  It is important to keep track of what went well and what difficulties 
occurred.   
 
Simple Random Sampling 
 
 Suppose the observations 1 2, , ny y y…  are to be sampled from a population with 
mean µ , standard deviation σ , and size N in such a way that every possible sample of 
size n has an equal chance of being selected.  Then the sample 1 2, , ny y y…  was selected 
in a simple random sample.  If the sample mean is denoted by y , then we have 
 

( )E y µ=   
and  

( )
2

1
N n

V y
n N

σ − =  − 
. 

 

The term 
1

N n
N

− 
 − 

 in the above expression is known as the finite population correction 

factor.   For the sample variance 2s , it can be shown that  
 

( )2 2

1
N

E s
N

σ =  − 
. 

 

When using 2s  as an estimate of 2σ , we must adjust with 2 21N
s

N
σ

− ≈  
 

.   

Consequently, an unbiased estimator of the variance of the sample mean is given by  
 

( )
2

2
1

ˆ
1

N
s

N n s N nNV y
n N n N

− 
  − −    = =   −   

. 
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As a rule of thumb, the correction factor 
N n

N
− 

 
 

 can be ignored if it is greater than 0.9, 

or if the sample is less than 10% of the population. 
 
 As an example, consider the finite population composed of the 4N =  elements 
{ }0, 2, 4 ,6 .  For this population 3µ =  and 2 5σ = .   Simple random samples, without 
replacement, of size 2n =  are selected from this population.  All possible samples along 
with their summary statistics are listed below. 
 

Sample Probability Mean Variance 

{ }0, 2  1/6 1 2 

{ }0, 4  1/6 2 8 

{ }0, 6  1/6 3 18 

{ }2, 4  1/6 3 2 

{ }2 ,6  1/6 4 8 

{ }4 ,6  1/6 5 2 

 
(1) The expected value of the sample means is  

( ) ( ) ( )
6

1

1
1 2 3 3 4 5 3

6i i
i

E y y p y
=

 = ⋅ = + + + + + = 
 

∑ .   

Notice that ( )E y µ= . 
 

(2) The variance of the sample means is  

( ) ( ) ( )( ) ( ) ( )
2 22 2 3V y E y E y E y= − = − .   So 

( ) ( ) ( )
6

2 2 2 2 2 2 2 2 2

1

1 64
1 2 3 3 4 5

6 6i i
i

E y y p y
=

 = ⋅ = + + + + + = 
 

∑   

and 

( ) 64 5
9

6 3
V y = − =  

 

 We see in this example that ( )
2 5 4 2 5 2 5

1 2 4 1 2 3 3
N n

V y
n N

σ − −       = = = =       − −       
. 

 
(3) The expected value of the sample variances is 
 

( ) ( ) ( )
6

2 2 2

1

1 20
2 8 18 2 8 2

6 3i i
i

E s s p s
=

 = ⋅ = + + + + + = 
 

∑ . 
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Again, we see that ( ) ( )2 2 4 20
5

1 3 3
N

E s
N

σ   = = =   −   
, as the theory states must 

be true. 
 
Estimation of a Population Mean 
 

If we are interested in estimating a population mean from a simple random 
sample, we have  

1ˆ

n

i
i

y
y

n
µ == =

∑
. 

If we are interested in estimating a population variance from a simple random sample, we 
have 

( )
2

ˆ s N n
V y

n N
− =  

 
  

where 

( )2

2 1

1

n

i
i

y y
s

n
=

−
=

−

∑
. 

 
The margin of error is 2 standard errors, so  

( )
2

ˆ2 2
s N n

V y
n N

− =  
 

. 

 
Estimation of a Population Proportion 
 

If each observation in the sample is coded 1 for “success” and 0 for “failure”, the 
sample mean becomes the sample proportion.   In addition, we have  
 

( )2 ˆ ˆ1

1

p ps
n n

−
=

−
, 

 

where p̂  denotes the sample proportion.  To see this, recall that 
( )2

2 1

1

n

i
i

y y
s

n
=

−
=

−

∑
, so 

( ) ( ) ( ) ( )22 2 2 2 2

1 1 1 1 1

1 2 2
n n n n n

i i i i i
i i i i i

n s y y y y y y y y y y
= = = = =

− = − = − + = − +∑ ∑ ∑ ∑ ∑ . 

Since 1

n

i
i

y
y

n
==
∑

, we have 
1

n

i
i

n y y
=

= ∑ .  Also, since each iy  is either 0 or 1, we 

have 2
i iy y=∑ ∑  and ˆy p= .   
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Then  

( ) ( )2 2 2 2 2 2

1 1 1 1

ˆ ˆ ˆ ˆ2 2 1
n n n n

i i i
i i i i

y y y y y ny ny ny ny np np np p
= = = =

− + = − + = − = − = −∑ ∑ ∑ ∑ . 

So, we have ( ) ( )2 ˆ ˆ1 1n s np p− = −  or equivalently, 
( )2 ˆ ˆ1

1

p ps
n n

−
=

−
. 

 
Using the formulas for the mean and the equality above, we can determine the 

estimator of the population proportion, of the variance of p̂ , and the margin of error for 
the proportion. 

The estimator of the population proportion is 1ˆ

n

i
i

y
p y

n
== =
∑

. 

 

The estimated variance of p̂  is ( ) ( )ˆ ˆ1ˆ ˆ
1

p p N n
V p

n N

− − =  −  
. 

 

The margin of error of estimation is ( ) ( )ˆ ˆ1ˆ ˆ2 2
1

p p N n
V p

n N

− − =  −  
. 

 
 
Estimating the Population Total 
 
 Finding an estimate of the population total is meaningless for an infinite 
population.  However, for a finite population, the population total is a very important 
population parameter.  For example, we may want to estimate the total yield of corn in 
Iowa, or the total number of apples in an orchard.  If we know the population size N and 
the population mean µ , then the total τ  is just Nτ µ= .   
 

So, the estimator of the population total τ  is  1ˆ

n

i
i

N y
N y

n
τ == =

∑
.   

 

The estimated variance of τ  is  ( ) ( ) ( )
2

2 2ˆ ˆ ˆˆ
s N n

V V N y N V y N
n N

τ
  − = = ⋅ =   

  
.   

 
Finally, the margin of error of estimation for τ  is   

( )
2

2 1 1ˆ2 2 2
s N n

V N y N Ns
n N n N

  − = = −  
  

. 
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Sampling with Subsamples 
 
 Suppose you require several field workers to perform the sampling or the 
sampling takes place over several days.  There will be variation in the measurements 
among the field workers or among the days of sampling.  The population mean can be 
estimated using the subsample means of each of the field workers or for each of the days.  
This is not a stratified sample, but simply breaking up the sample into subsamples.  This 
method of sampling was developed by Edward Deming. 
 
 The sample of size n is to be divided into k subsamples, with each subsample of 
size m.  Let iy  denote the mean of the ith  subsample.   

• The estimator of the population mean µ  is 
1

1 k

i
i

y y
k =

= ∑ , the average of the 

subsample means.   

• The estimated variance of y  is ( )
2

ˆ ksN n
V y

N k
− =  

 
 where 

( )2

2 1

1

k

i
i

k

y y
s

k
=

−
=

−

∑
 and 

measures the variation among the subsample means.   
 

 
Stratified Random Sampling 
 

As described earlier, stratified random sampling produces estimators with smaller 
variance than those from simple random sampling, for the same sample size, when the 
measurements under study are homogeneous within strata but the stratum means vary 
among themselves. The ideal situation for stratified random sampling is to have all 
measurements within any one stratum equal but have differences occurring as we move 
from stratum to stratum.  To create a stratified random sample, divide the population into 
subgroups so that every element of the population is in one and only one subgroup (non-
overlapping, exhaustive subgroups). Then take a simple random sample within each 
subgroup.   

The reasons one may choose to perform a stratified random sample are 

(1) Possible reduction in the variation of the estimators (statistical reason) 

(2) Administrative convenience and reduced cost of survey (practical reason) 

(3) Estimates are often needed for the subgroups of the population 

Stratification is a widely used technique as most large surveys have stratification 
incorporated into the design.  Additionally, stratification is one of the basic principles of 
measuring quality and of quality control.  (The noted statistician Edward Deming spent 
half of his life working in survey sampling and the other half in quality control.)  Finally, 
stratification can substitute for direct control in observational studies. 
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 A stratified sample cannot be a simple random sample.  As an example, consider 
the population of 10 letters given below. 

 

Take a sample of size 4 from the population on the left.  The probability that A is in the 

sample is ( ) 4
10

P A = .  The probability of the sample ABCF (order does not matter) is 

( ) 1
10
4

P ABCF =
 
 
 

.  In the stratified population on the right, in which two elements are 

taken from the first row and two from the second, the probability that A is in the sample 

is still ( ) 4
10

P A = .  However, the probability of achieving the sample ABCF is  

( ) 0P ABCF = .  Even though the probability of any single element being in the sample is 
the same, all samples of size 4 are not equally likely, and thus, this is not a simple 
random sample.  

 

Stratification methods for the Gallop Poll and New York Times are presented 
below (quoted from Scheaffer, et al, Elementary Survey Sampling, 5th Edition, page 50-
51): 

The Gallup Poll 

Although most Gallup poll findings are based on telephone 
interviews, a significant proportion is based on interviews conducted in 
person in the home. The majority of the findings reported in Gallup Poll 
surveys is based on samples consisting of a minimum of 1,000 interviews. 
The total number, however, may exceed 1,000, or even 1,500, interviews, 
where the survey specifications call for reporting the responses of low-
incident population groups such as young public-school parents or 
Hispanics. 

Design of the Sample for Telephone Surveys 

The findings from the telephone surveys are based on Gallup's 
standard national telephone samples, consisting of unclustered directory-
assisted, random-digit telephone samples utilizing a proportionate, 
stratified sampling design. The random-digit aspect of the sample is used 
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to avoid "listing" bias. Numerous studies have shown that households with 
unlisted telephone numbers are different from listed households. 
"Unlistedness" is due to household mobility or to customer requests to 
prevent publication of the telephone number. To avoid this source of bias, 
a random-digit procedure designed to provide representation of both listed 
and unlisted (including not-yet-listed) numbers is used. 

Telephone numbers for the continental United States are stratified 
into four regions of the country and, within each region, further arranged 
into three size-of-community strata. The sample of telephone numbers 
produced by the described method is representative of all telephone 
households within the continental United States. 

Only working banks of telephone numbers are selected. 
Eliminating nonworking banks from the sample increases the likelihood 
that any sampled telephone number will be associated with a residence. 

Within each contacted household, an interview is sought with the 
youngest man 18 years of age or older who is at home. If no man is home, 
an interview is sought with the oldest woman at home. This method of 
respondent selection within households produces an age distribution by 
sex that closely approximates the age distribution by sex of the total 
population. 

Up to three calls are made to each selected telephone number to 
complete an interview. The time of day and the day of the week for 
callbacks are varied to maximize the chances of finding a respondent at 
home. All interviews are conducted on weekends or weekday evenings in 
order to contact potential respondents among the working population. 

The final sample is weighted so that the distribution of the sample 
matches current estimates derived from the U.S. Census Bureau's Current 
Population Survey (CPS) for the adult population living in telephone 
households in the continental United States. 

 
Design of the Sample for Personal Surveys 

The design of the sample for personal (face-to-face) surveys is 
that of a replicated area of probability sample down to the block level in 
the case of urban areas and to segments of townships in the case of rural 
areas. 

After stratifying the nation geographically and by size of 
community according to information derived from the most recent 
census, over 350 different sampling locations are selected on a 
mathematically random basis from within cities, towns, and counties 
that, in turn, have been selected on a mathematically random basis. 

The interviewers are given no leeway in selecting the areas in 
which they are to conduct their interviews. Each interviewer is given a 
map on which a specific starting point is marked and is instructed to 
contact households according to a predetermined travel pattern. At each 
occupied dwelling unit, the interviewer selects respondents by following 
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a systematic procedure that is repeated until the assigned number of 
interviews has been completed. 

 
The New York Times 

The latest New York Times/CBS News Poll is based on 
telephone interviews conducted from Sept. 8 to 11 with 1,161 adults 
around the country, excluding Alaska and Hawaii. 

The sample of telephone exchanges called was selected by a 
computer from a complete list of exchanges in the United States. The 
exchanges were chosen to assure that each region of the country was 
represented in proportion to its population. For each exchange, the 
telephone numbers were formed by random digits, thus permitting access 
to both listed and unlisted numbers. Within each household, one adult 
was designated by a random procedure to be the respondent for the 
survey. 

The results have been weighted to take account of the household 
size and the number of telephone lines into the residence, and to adjust 
for variations in the sample relating to region, race, sex, age and 
education. 

In theory, in 19 cases out of 20 the results based on such samples 
will differ by no more than three percentage points in either direction 
from what would have been obtained by seeking out all American adults. 
For smaller subgroups the potential sampling error is larger. For 
example, for blacks it is plus or minus 10 percentage points. 

In addition to sampling error, the practical difficulties of 
conducting any survey of public opinion may introduce other sources of 
error into the poll. Variations in question wording or the order of 
questions, for example, can lead to somewhat different results.  

 
Estimating the Population Mean in a Stratified Sample 
 
 Suppose we wish to estimate the yield of corn in two counties (A and B) in 
Iowa.  County A has AN  acres of corn and County B has BN  acres of corn. Here, we 
are assuming that all iN  are sufficiently large so that the finite population correction 
factor can be ignored.  The counties constitute two strata and we will take a simple 
random sample of size An   from County A and  Bn   from County B, as described in the 
diagram below.   
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We want to estimate the total amount of corn for the two counties.  If Ay  is the 
mean yield of corn per acre for the 4 plots in County A and By  is the mean yield of 
corn per acre for the 6 plots in County B, then  

ˆ A A B BN y N yτ = +  
is our estimate of the total amount of corn in the two counties.   
 
 Our estimate of the mean yield of corn per acre for the two counties is 

ˆ A A B B A B
A B

A B

N y N y N N
y y

N N N N
µ

+
= = +

+
,  

if we let A BN N N= +  be the total acreage for the two counties.  This estimator can be 
written as a weighted average  

ˆ A A B BW y W yµ = +  with A
A

N
W

N
=  and B

B

N
W

N
=  

where the weights are the population proportions.  The variance of µ̂  is easily 
computed 

( ) ( ) ( ) ( )
2 2

2 2 2 2ˆ A B
A A B B A A B B A B

A B

V V W y W y W V y W V y W W
n n
σ σ

µ = + = + = + . 

 In general, if there are L strata of size iN  with 
1

L

i
i

N N
=

=∑  with samples of size 

in  with 
1

L

i
i

n n
=

=∑  taken from each strata, respectively, then: 

• the estimator of the total is 
1

ˆ
L

i i
i

N yτ
=

= ∑ . 



NCSSM Statistics Leadership Institute  Sampling Methods and Practice 
July, 1999 

17

• the estimator of the mean is 
1

ˆ
L

i
i

i

N
y

N
µ

=

= ∑  or 
1

ˆ
L

i i
i

W yµ
=

= ∑  with i
i

N
W

N
=  the 

population proportion. 
 
We have our estimated mean  

1

L

i i
i

y W y
=

= ∑ , so ( ) ( )
2

2 2

1 1

L L
i

i i i
i i i

V y W V y W
n
σ

= =

= =∑ ∑ . 

This last expression can be rewritten using sample proportions as weights i
i

n
w

n
= .  So, 

( )
2 2

1

L
i i

i i

W
V y

n w
σ

=

= ∑ . 

 
The Problems of Sample Size and Allocation 
 
 Suppose we want to estimate the mean yield of corn to within 100 bushels/acre.  
How can we use the equations above to determine the appropriate sample size n and the 
allocations in  to produce an estimate accurate to a specified tolerance?   We will, as 

usual,  use ( )2 V y B=  as our margin of error.  We require values of n and  in  so that 

( )
2

4
B

V y D= =  (called the dispersion).  Then 
2 2

1

1 L
i i

i i

W
D

n w
σ

=

 
=  

 
∑  and consequently,  

2 2

1

1 L
i i

i i

W
n

D w
σ

=

 
=  

 
∑ , 

with 
2

4
B

D =  when estimating µ  and 
2

24
B

D
N

=  when estimating τ . 

 

We know that i
i

N
W

N
=  are population proportions.  However, in order to find n we 

must know the weights iw .   
 
 One method for determining the sample proportions iw  is to simply assign them 

the same values as the population proportions, so i
i i

N
w W

N
= = .  This method is 

particularly useful when the variances of the strata are similar.   
 
 Another standard procedure is to use the weights that minimize the variance.  
Consider the case when two strata are used.  Then  

( )
2 2 2 2 2 2

1 1 2 2 1 2

1 2 1 1

W W k k
V y

n n n n n
σ σ

= + = +
−

 where 2 2 2
i i ik W σ=  is a constant. 
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Now, to find the value of 1n  that minimizes ( )V y , we use calculus.  So,  

( )

2 2 2 2
1 2 1 2

22
1 1 1 1 1

0
d k k k k

dn n n n n n n

  −
+ = + = − − 

. 

Solving for 1n , we have 

( )

2 2
2 1

2 2
11

k k
nn n

=
−

 or 
2 2
1 1
2 2
2 2

n k
n k

= , so 1 1 1 1

2 2 2 2

n k W
n k W

σ
σ

= = . 

 

Then 2 1 2
1 2 1 1 1

1 1

k k k
n n n n n n

k k
 +

= + = + =  
 

.  Solving for 1n , we have 1
1

1 2

k
n n

k k
 

=  + 
.  

In general, we have 

1 1

i i i
i L L

i i i
i i

k W
n n n

k W

σ

σ
= =

   
   
   = =
   
   
   
∑ ∑

. 

 
 This last equation indicates that the allocation to region i will be large if 

i
i

N
W

N
=  is large, that is, if it contains a large portion of the population.  This should 

make sense.  It also indicates that the allocation to region i will be large if there is a lot 
of variability in the region.  If there is little variation in the region, the allocation will be 
small, since a small sample will give the necessary information.  As an extreme 
example, if there is no variation in a region, a single sample will tell you everything 
about the region.  This optimal allocation was developed by the statistician Jerzy 
Neyman and is called the Neyman allocation. 
 
Example 1.    Consider the two counties A and B with 5000AN =  acres and 9000BN =  
acres.  Suppose we can approximate the variance of the yields for  the two counties 
based on past performance as 12Aσ ≈  bushels/acre and 20Bσ ≈  bushels/acre.  We 
want to estimate the mean yield in bushels per acre for the two counties with a margin 
of error of 5 bushels/acre.  What are the values of n, An , and Bn  if 
a)   we use proportional allocation 
b)   we allocate samples to minimize the variance (optimal allocation)  
 

a) Here we have 
5
9

A A

B B

n N
n N

= = .  This means that 
5

14An n=  and 
9

14Bn n=  and 

5
14

A
A

n
w

n
= =  with 

9
14Bw = .  Using the formula derived above,  

2 2 2 2 2 2

1

1 1L
i i A A B B

i i A B

W W W
n

D w D w w
σ σ σ

=

   
= = +   

  
∑ , 
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we can find the appropriate values of n, An , and Bn .   We know everything except D.  

To find D, we have 5B = , so 
2 25

4 4
B

D = = .   

 Now,  

( ) ( )
2 2

2 25 9
12 20

4 14 14 50
5 925

14 14

n

    
    
    = + ≈

    
        

 

So proportional allocation gives 50n = , 
5

50 18
14An  = ≈ 

 
 and 

9
50 32

14Bn  = ≈ 
 

. 

 
b) Optimal allocation requires that  

( )
( )

( ) ( )

5
12

114
5 9 412 20

14 14

A A
A

A A B B

W
n n n n

W W
σ

σ σ

 
    = = = +      +   

   

 

and 

( )
( )

( ) ( )

9
20

314
5 9 412 20

14 14

B B
B

A A B B

W
n n n n

W W
σ

σ σ

 
    = = = +      +   

   

. 

As before,  
 

2 2 2 21 A A B B

A B

W W
n

D w w
σ σ 

= + 
 

, 

and so,   

( ) ( )
2 2

2 25 9
12 20

4 14 14 47
1 325
4 4

n

    
    
    = + ≈

    
        

 

 

So proportional allocation gives 47n = , 
1

47 12
4An  = ≈ 

 
 and 

3
47 35

4Bn  = ≈ 
 

. 

 Notice that, although fewer samples were needed, more samples came from 
County B, since it had both greater variation and was a larger proportion of the 
population. 
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Considering Cost and Finite Population Factor 
 
 The equations developed in this section become somewhat more complex if 
the finite population correction factor must be included in the calculations.  In this 
case, we have 

2
2

1

2 2

1

L
i

i
i i

L

i i
i

N
w

n
N D N

σ

σ

=

=

=
+

∑

∑
 

with 
2

4
B

D =  when estimating µ  and 
2

24
B

D
N

=  when estimating τ . 

 
The approximate allocation that minimizes total cost for a fixed variance, or 
minimizes variance for a fixed costs ( ic ) is 
 

1

i i

i
i L

k k

k k

N
c

n n
N

c

σ

σ

=

 
 
 =
 
  
 
∑

. 

Note that in  is directly proportional to iN  and iσ  and inversely proportional to ic . 

Also note that if all ic  are equal, the allocation is Neyman’s optimal allocation 
presented earlier.  
 
Comparison of Stratified Random Sampling to Simple Random 
Sampling 
 
 Stratification usually produces gains in precision, especially if the 
stratification is accomplished through a variable correlated with the response.  We 
would like to stratify when the strata are homogeneous and different, that is, we have  
 1) low variation in the strata  
 2) differing means among the strata. 
 
The following comparisons apply for situations in which the iN  are all relatively 

large, so we can replace 
1

1iN −
 with 

1

iN
.  Here we use 

n
f

N
=  and i

i

N
W

N
= . 

 The variance of a SRS, denoted SRSV , compared to the variance of a 
proportional allocation, denoted propV  is described in the equation 

( )21
SRS prop i i

i

f
V V W Y Y

n
−

− = −∑ . 
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 From this equation, we see that the proportional allocation will be useful 
(produce a smaller variance than SRS) when there is a large difference in the means 
for the different strata. 
 
 The variance of proportional allocation compared to the variance of an optimal 
Neyman allocation, denoted optV  is described in the equation 

( )21
prop opt i i

i

V V W S S
n

− = −∑ , 

where iS  is a measure of the random variation of the population strata and 

i i
i

S W S= ∑ .  From this equation, we see that the optimal allocation is an 

improvement over proportional allocation when there is a large difference in the 
variation among the strata. 
 
 In summary, one should attempt to construct strata so that the strata means 
differ.  If strata variances do not differ much, use proportional allocation.  If strata 
variances differ greatly, use optimum Neyman allocation. 
 
A Word on Post Stratification 
 
 At times, we wish to stratify a sample after a simple random sample has been 
taken.  For example, suppose you wish to stratify on gender based on a telephone poll, 
where you can’t know the gender of the respondent until after the SRS is taken.  What 
penalty do we pay if we decide to stratify after selecting a simple random sample?  It 
is possible to show that the estimated variance, ( )ˆ

pV y , is given by  

( ) ( )2 2
2

1 1

1ˆ 1
L L

p i i i i
i i

N n
V y W s W s

Nn n= =

− = + − 
 

∑ ∑ . 

The first term is what you would expect from a stratified sample mean using proportional 
allocation, so the second term is the price paid for stratifying after the fact.  Notice that 

the term 2

1
n

 reduces the penalty as n increases.  Post-stratification produces good results 

when n is large and all in  are large as well. 
 

Ratio Estimation 
 
 Ratio estimation is an important issue in cluster sampling.  We will develop 
the principles of ratio estimation and then proceed to cluster sampling. 
 
How do you determine the mpg for your car?  One way would be to note the miles 
driven and the number of gallons of gas used each time you fill up the gas tank.  This 
will produce a set of ordered pairs, each of which can be used to estimate your mpg.  
What is the best estimate you can make from this information? 
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miles 1y  2y  3y  L  ny  

gallons 1x  2x  3x  L  nx  
 

We can compute all n ratios i

i

y
x

  and find the average value 
1 i

i

y
n x

 
 
 

∑ .  

Unfortunately, yi

i x

y
E

x

µ

µ
 

≠ 
 

.  Each division of i

i

y
x

 produces some bias, so we want to 

perform as few divisions as possible.   

 The best estimator of the population ratio y

x

R
µ

µ
=  is 1

1

n

i
i

n

i
i

y
y

r
xx

=

=

= =
∑

∑
.  

The estimated variance of r can be approximated by 
 

( )
2

1
2

1

1ˆ ˆ

n

i
i r
n

x
i

i

y
N n s

V r V
N nx µ

=

=

 
    −  = =    
      
 
 

∑

∑
, 

where 
( )2

2 1

1

n

i i
i

r

y rx
s

n
=

−
=

−

∑
.  The estimated variance of r is similar to the formula for the 

variance of a sample mean, but has the additional 2

1

xµ
 
 
 

 term.  The value of 2
rs  is 

similar to the variance of residuals.   
 If we plot the ordered pairs ( ),i ix y , we are comparing these points to the line 
y r x= . 
 
 Our estimate of the ratio r allows us to make estimates of the population mean, 

ˆ yµ , and the population total, ˆyτ .   If y

x

µ

µ
 is estimated by 

y
x

, then we should be able to 

estimate yµ  with  

ˆ y x x

y
r

x
µ µ µ= = . 

The estimated variance of yµ  is  

( ) ( )
2

2ˆ ˆˆ r
y x

N n s
V V r

N n
µ µ

− = =  
 

. 
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Similarly, the ratio estimator of the population total, yτ , is  

ˆy x x

y
r

x
τ τ τ= = . 

The estimated variance of yτ  is  

( ) ( )
2

2 2
2

1ˆ ˆˆ r
y x x

x

N n s
V V r

N n
τ τ τ

µ
 − = =   

  
. 

Note that we do not need to know xτ  or N to estimate yµ  when using the ratio 

procedure.  However, we must know xµ . 
 
Example (Adapted from Scheaffer, et al, Elementary Survey Sampling, 5 th Edition, page 205-206): 
 In Florida, orange farmers are paid according to the sugar content in their 
oranges.  How much should a farmer be paid for a truckload of oranges?  A sample is 
taken, and the total amount of sugar in the truckload can estimated using the ratio 
method.   
 
 Suppose 10 oranges were selected at random from the truckload to be tested 
for sugar content.  The truck was weighed loaded and unloaded to determine the 
weight of the oranges.  In this case, there were 1800 pounds of oranges.  Larger 
oranges have more sugar, so we want to know the sugar content per pound for the 
truckload and use this to estimate the total sugar content of the load.   
 
Orange 1 2 3 4 5 6 7 8 9 10 
Sugar Content (lbs) 0.021 0.030 0.025 0.022 0.033 0.027 0.019 0.021 0.023 0.025 
Wt of Orange (lbs) 0.40 0.48 0.43 0.42 0.50 0.46 0.39 0.41 0.42 0.44 
 
 

 
 
 The scatterplot above shows a strong linear relationship between the two 

variables, so a ratio estimate is appropriate.  Using the formula ˆy x x

y
r

x
τ τ τ= =  we 

estimate  
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( ) ( )( )0.0246ˆ 1800 0.05655 1800 101.8
0.4350yτ = = =  pounds 

of sugar in the truckload.  A bound on the error of estimation can be found as well.  

We have ( ) ( )
2

2 2
2

1ˆ ˆˆ r
y x x

x

N n s
V V r

N n
τ τ τ

µ
 − = =   

  
, but in this case, we know neither N 

nor xµ .  Since N is large (a truckload of oranges will be at least 4,000 oranges), so the 

finite population correction 
N n

N
− 

 
 

 is essentially 1.  We will use x  as an estimate of 

xµ .   With these modifications, we can compute  
 

( ) ( )
2 2

22
2 2

1 1 0.0024ˆ ˆ2 2 2 1800 6.3
0.435 10

r
y x

s
V

x n
τ τ    = = =   

   
 

 
Our estimate of the total sugar content of the truckload of oranges is 101.8 6.3±  
pounds.   
 
 If the population size N is know, we could also use the estimator N y  instead 
of xrτ  to estimate the total.  Generally, the estimator xrτ  has a smaller variance than 
N y  when there is a strong positive correlation between x and y.  As a rule of thumb, 
if 1

2ρ > , the ratio estimate should be used. This decrease in variance results from 
taking advantage of the additional information provided by the subsidiary variable x 
in our calculations with the ratio estimation.   
 
Relative Efficiency of Estimators 
 
 Suppose there are two unbiased (or nearly unbiased) estimators, 1E  and 2E , 
for the same parameter.  The relative efficiency of the two estimators is measured by 
the ratio of the reciprocals of their variances.  That is,  
 

( )
( )

21

2 1

V EE
RE

E V E
 

= 
 

. 

If 1

2

1
E

RE
E

 
> 

 
, estimator 1E  will be more efficient.  If the sample sizes are the same, 

the variance of 1E  will be smaller.  Another way to view this is that estimator 1E  will 
produce the same variance as 2E  with a smaller sample size.  
 
 We can compute the relative efficiency of yµ  and y .  Here, we have  
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 Both variances have the same values of N and n, so the finite population 
correction factor divides out.  The variance of ˆ yµ  can be re-written in terms of the 

predicted correlation ρ̂  so that  
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 then ˆ yµ  is a more efficient estimator.  To determine when 
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As is often the case in ratio estimation, yx
ss

x y
≈ , we see that ˆ yµ  is a more efficient 

estimator than y  when 
1ˆ
2

ρ > . 

 
 

Cluster Sampling 
 

Sometimes it is impossible to develop a frame for the elements that we would like 
to sample.  We might be able to develop a frame for clusters of elements, though, such as 
city blocks rather than households or clinics rather than patients.  If each element within a 
sampled cluster is measured, the result is a single-stage cluster sample.  A cluster sample 
is a probability sample in which each sampling unit is a collection, or cluster, of elements.  
Cluster sampling is less costly than simple or stratified random sampling if the cost of 
obtaining a frame that lists all population elements is very high or if the cost of obtaining 
observations increases as the distance separating the elements increases. 
 

To illustrate, suppose we wish to estimate the average income per household in a 
large city.  If we use simple random sampling, we will need a frame listing all households 
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(elements) in the city, which would be difficult and costly to obtain. We cannot avoid this 
problem by using stratified random sampling because a frame is still required for each 
stratum in the population.  Rather than draw a simple random sample of elements, we could 
divide the city into regions such as blocks (or clusters of elements) and select a simple 
random sample of blocks from the population. This task is easily accomplished by using a 
frame that lists all city blocks. Then the income of every household within each sampled 
block could be measured.  
 

Cluster sampling is an effective design for obtaining a specified amount of 
information at minimum cost under the following conditions: 

1.  A good frame listing population elements either is not available or is very costly to 
obtain, while a frame listing clusters is easily obtained. 
 
2.  The cost of obtaining observations increases as the distance separating the elements 
increases. 

Elements other than people are often sampled in clusters. An automobile forms a 
nice cluster of four tires for studies of tire wear and safety. A circuit board manufactured 
for a computer forms a cluster of semiconductors for testing. An orange tree forms a 
cluster of oranges for investigating an insect infestation. A plot in a forest contains a 
cluster of trees for estimating timber volume or proportions of diseased trees.  
 

Notice the main difference between the optimal construction of strata and the 
construction of clusters. Strata are to be as homogeneous (alike) as possible within, but one 
stratum should differ as much as possible from another with respect to the characteristic 
being measured. Clusters, on the other hand, should be as heterogeneous (different) as 
possible within, and one cluster should look very much like another in order for the 
economic advantages of cluster sampling to pay off. 

 
 

Estimation of a Population Mean and Total  

Cluster sampling is simple random sampling with each sampling unit containing a 
collection or cluster of elements. Hence, the estimators of the population mean µ  and 
total τ  are similar to those for simple random sampling. In particular, the sample mean 
y  is a good estimator of the population mean µ .  

 
The following notation is used in this section: 

N  =  the number of clusters in the population 

n   =  the number of clusters selected in a simple random sample  

im  =  the number of elements in cluster i, i = 1, . . . , N  
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m  =  
1

1 n

i
i

m
n =
∑ = the average cluster size for the sample  

M  =  
1

n

i
i

m
=

∑  = the number of elements in the population 

M  =  
M
N

 = the average cluster size for the population 

iy  = the total of all observations in the ith   cluster 
 

ijy  =  the measure for the jth element in the ith cluster 
 
The estimator of the population mean µ  is the sample mean y , which is given by 
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Since both iy  and im  are random variables, y  is a ratio estimator, so the formulas 
developed earlier will apply.  We simply replace ix  with im .  
 
The estimated variance of  y  is 
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If M  is unknown, it can be estimated by m .  This estimated variance is biased and will 
be a good estimate of ( )V y  only if n is large.  A rule of thumb is to require 20n ≥ .  The 

bias disappears if all im  are equal. 
 
Example 8.2 (Scheaffer, et al, page 294) 
 

A city is to be divided into 415 clusters.  Twenty-five of the clusters will be 
sampled, and interviews are conducted at every household in each of the 25 blocks 
sampled. The data on incomes are presented in the table below. Use the data to estimate 
the per-capita income in the city and place a bound on the error of estimation. 
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Cluster 
i 

Number 
of 

Residents, 
im  

Total 
income 

per 
cluster, 

iy  

 

Cluster 
i 

Number of 
Residents, 

im  

Total 
income 

per 
cluster, 

iy  
1 8 $96,000 14 10 $49,000
2 12 121,000 15 9 53,000
3 4 42,000 16 3 50,000
4 5 65,000 17 6 32,000
5 6 52,000 18 5 22,000
6 6 40,000 19 5 45,000
7 7 75,000 20 4 37,000
8 5 65,000 21 6 51,000
9 8 45,000 22 8 30,000
10 3 50000 23 7 39,000
11 2 85,000 24 3 47,000
12 6 43.000 25 8 41,000
13 5 54,000    

 

Here we have 
1

151
n

i
i

m
=

=∑ ,  
1

1,329,000
n

i
i

y
=

=∑ , and 25,189rs = . 

Solution  

The best estimate of the population mean µ  is 
$1,329,000

$8801
151

y = = . The 

estimate of per capita income is $8801.  

 Since M is not known, M  must be estimated by 1 151
6.04

25

n

i
i

m
m

n
== = =
∑

.  Since there 

were at total of 415 clusters, 415N = .  So, 
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2 2
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1 415 25 1 25189ˆ 653,785
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rN n s
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   − −     = = =        

        
 

 
Thus, the estimate of  µ  with a bound on the error of estimation is given by 
 

( )ˆ2 8801 2 653,785 8801 1617y V y± = ± = ±  

 
The best estimate of the average per-capita income is $8801, and the error of 

estimation should be less than $1617 with probability close to 0.95. This bound on the 
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error of estimation is rather large; it could be reduced by sampling more clusters and, 
consequently, increasing the sample size. 

 
 
Comparing Cluster Sampling and Stratified Sampling 
 
 It is advantageous to use a cluster sample when the individual clusters contain 
as much within cluster variability as possible, but the clusters themselves are as 
similar as possible.  This can be seen in the computation of the variation,  
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which will be small when the iy ’s are similar in value.  For cluster sampling, the 
differences are found within the clusters and the similarity between the clusters. 
 
 It is advantageous to use stratified sampling when elements within each strata are 
as similar as possible, but the strata themselves are as different as possible.  Here, the  
differences are found between the strata and the similarity within the strata.  Two 
examples will help illustrate this distinction.   
 
Example 1 Suppose you want to take a sample of a large high school and you must 
use classes to accomplish your sampling.  In this school, students are randomly assigned 
to homerooms, so each homeroom has a mixture of students from all grade-levels 
(Freshman-Senior).   Also, in this school, the study halls are grade-level specific, so all of 
the students in a large study hall are from the same grade.  If you believe that students in 
the different grade-levels will have different responses, you want to be assured that each 
grade-level is represented in the sample.    
 You could perform a cluster sample by selecting n homerooms at random and 
surveying everyone in those homerooms.  You would not use the homerooms as strata, 
since there would be no advantage over a simple random sample.  
 You could perform a stratified sample using study halls as your strata.  Randomly 
select k students from study halls for each grade-level.   Study halls would make a poor 
cluster, since the responses from all of the students are expected to be similar. 
 
Example 2 We would like to estimate the number of diseased trees in the forest 
represented below.  The diseased trees are indicated with a D, while the trees free of 
disease are represented by F.  Consider the rows and columns of the grid. 
 
(a) If a cluster sample is used, should the rows or columns be used as a cluster? 
 
(b) If a stratified sample is used, should the rows or columns be used as strata? 
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Row C1 C2 C3 C4 C5 
1 F F F D D 
2 F F D D D 
3 F F F F F 
4 F F D F D 
5 F F F F D 
6 D F D F F 
7 F F D F D 
8 F D D F D 
9 F F F D D 
10 F F F D D 
11 F F F D F 
12 F D D D D 
13 F D F D D 
14 F F F D D 
15 F D F D D 
16 F F D D D 
17 F F D D D 
18 F F F D D 
19 F F D D D 
20 F F F F F 
21 D F F D F 
22 F D F F D 
23 F F D D F 
24 F F F D D 
25 F F F D D 
26 F D F F D 
27 F F D F D 
28 D F F F D 
29 F F F F D 
30 F F D D D 

 
 
 It appears that there are more diseased trees in the right-most columns, however, 
there does not appear to be a difference among the rows.  If we wanted a sample of size 
25, we could obviously select a simple random sample, but we might miss the 
concentration of diseased trees in C4 and C5 just by chance.  We want to insure that C4 
and C5 show up in the sample.    We have two choices: 
  

• For a cluster sample, we should use the rows as clusters.  We could select 5 rows 
at random, and consider every tree in each of those clusters (rows).    

 
• For a stratified sample, we could use the columns as strata.  We would select 5 

elements from each of the 5 strata (columns) to consider.   
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Systematic Sampling 
 
 Suppose the population elements are on a list or come to the investigator 
sequentially.  It is convenient to find a starting point near the beginning of the list and 
then sample every kth  element thereafter.  If the starting point is random, this is called a 
1-in-k systematic sample.   
 
 If the population elements are in random order, systematic sampling is equivalent 
to simple random sampling.  If the population elements have trends or periodicities, 
systematic sampling may be better or worse than simple random sampling depending on 
how information on population structure is used.  Many estimators of variance have been 
proposed to handle various population structures.   
 
Repeated Systematic Sampling 
 
 In the 1-in-k systematic sample, there is only one randomization, which limits the 
analysis.  The randomness in the systematic sample can be improved by choosing more 
than one random start.  For example, instead of selecting a random number between 1 
and 4 to start and then picking every 4th element, you could select 2 numbers at random 
between 1 and 8, and then selecting those elements in each group of 8. 
 
Relationship to Stratified and Cluster Sampling 
 
 Recall that if the elements are in random order, we have no problem with 
systematic sampling.  If there is some structure to the data, as shown below, we can 
compare systematic sampling to stratified and cluster samples.   
 

 
 

 
Systematic sampling is closely related to 

• stratified sampling with one sample element per stratum 
• cluster sampling with the sample consisting of a single cluster 
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 As a stratified sample, we think of having 4 different strata, each with 5 elements.  
The elements of the strata are similar and the means of the strata are different, so this fits 
the requirements for a stratified sample.  We take one element from each stratum (in this 
illustration, the second in each stratum).  We have lost some randomness, since the 
second item is taken from all strata rather than a random element from each stratum.   
 
 As a cluster sample, we think of the 5 possible clusters.  Cluster 1 contains all of 
the first elements,  cluster 2 (the one selected) contains all the second elements, etc.  Here 
we have surveyed all elements in one cluster (cluster 2).  In this case, the clusters contain 
as much variation as possible with similar means, so the cluster process is appropriate.   
Since we have only one cluster, we have no estimate of the variance.  A repeated 
systematic sample (taking clusters 2 and 5, for example) would eliminate this difficulty.   
 
 If the structure of the data is periodic, it is important that the systematic sample 
not mimic the periodic behavior.  In the diagram below, the circles begin at the 3rd 
element and select every 8th element.  Since this matches closely the period of data, we 
select only values in the upper range.  If we begin at the 3rd element and select every 5th 
element, we are able to capture data across the full range.   

 
 
Estimating the Size of the Population 
 

In the preceding sections, we estimated means, totals, and proportions, assuming 
that the population size was either known or so large that it could be ignored if not 
expressly needed to calculate an estimate.  Frequently, however, the population size is not 
known and is important to the goals of the study.  In fact, in some studies, estimation of 
the population size is the main goal.  The maintenance of wildlife populations depends 
crucially on accurate estimates of population sizes.  

 
Direct Sampling  

One common method for estimating the size of a wildlife population is direct 
sampling. This procedure entails drawing a random sample from a wildlife population of 
interest, tagging each animal sampled, and returning the tagged animals to the population. 
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At a later date, another random sample of a fixed size n is drawn from the same 
population, and the number s of tagged animals is observed. If N represents the total 
population size, t represents the number of animals tagged in the initial sample, and p 

represents the proportion of tagged animals in the population, then 
t

p
N

= .  Also, we 

expect to find approximately the same proportion (p) of the sample of size n tagged as 

well.  So 
s

p
n

≈ .  This gives us a way to estimate the size of the population N , 

since
s t
n N

≈  .  Solving for N  provides an estimator for N ,  

ˆ nt
N

s
= . 

The approximate estimated variance of N̂  is  

( ) ( )2

3
ˆ ˆ t n n s

V N
s

−
= . 

Notice that we have serious problems when s is zero, and a large variance 
when s is small.   

 
As an example, suppose we initially capture and tag 200 fish in a lake.  

Later, we capture 100 fish, of which 32 were tagged.  So 200t = , 100n = , and 
32s = .  Then our estimate of N  is  

( )100 200ˆ 625
32

nt
N

s
= = =  fish. 

Also, we approximate the variance with 
 

( ) ( ) ( ) ( ) ( )22

3 3

200 100 100 32ˆ ˆ 8301
32

t n n s
V N

s

− −
= = = . 

 

The margin of error is ( )ˆ ˆ2 2 8301 182V N = = .  Our estimate of the 

number of fish in the Lake is between 443 and 807 fish.   
  
The graphs below illustrate how sensitive are both the estimate of N and the 

margin of error when s is small.  If s is less than 4, the error of the estimate is 
larger than the estimate for these values of n and t .   
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Inverse Sampling 
We can get around the problem of having a small value of s by sampling 

until we have a pre-specified value of s.  For example, we could fish until we have 
caught 50 of the tagged fish.  This technique is called inverse sampling.  That is, we 
sample until a fixed number of tagged animals, s, is observed. Using this procedure, we 

can also obtain an estimate of N, the total population size by computing 
nt

N
s

= .  This is 

the same computation as before, only s is fixed and n is random.  This changes the 
variance of N̂ .   The estimated variance of  N̂  is  

( ) ( )
( )

2

2
ˆ

1
t n n s

V N
s s

−
=

+
. 

This variance estimate is almost the same as before, but it can be 
considered as a function of n, rather than s.  We no longer have to worry about a 
small s, but this procedure may take much longer and be more expensive, since we 
do not know how long we need to continue the recapturing process before the pre-
set value of s is achieved.  
 

Example Consider our earlier example in which we initially captured and 
tagged 200 fish in a lake.  Later, we fished until we had captured 50 fish that had 
previously been tagged.  This required us to catch 162 fish.  So 200t = , 162n = , 
and 50s = .  Then our estimate of N  is  
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( )162 200ˆ 648
50

nt
N

s
= = =  fish. 

 
We approximate the variance with 
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The margin of error is ( )ˆ ˆ2 2 5692 151V N = = .   Our margin of error is 

smaller since we forced a larger value of s, but it required more resources to catch 
the extra 62 fish.    
 
 Another method for computing the estimated interval is to find a confidence 

interval on the proportion ˆ s
p

n
=  and use it to create the interval for N algebraically.  In 

our first example, we have 
32

0.32
100

s
n

= = .  A 95% confidence interval for this 

proportion is  

( )1.96 0.32 0.68
0.32 0.32 0.09

100
± = ±  or (0.23, 0.41). 

 

Now, we have ˆ n
N t

s
= , so our estimate is ( )

200ˆ 625
0.32s

n

t
N ≈ = =  fish.  An interval 

estimate can be derived using the two extremes of the interval (0.23, 0.41).  So 

( )
200ˆ 870
0.23s

n

t
N ≈ = =  and ( )

200ˆ 488
0.41s

n

t
N ≈ = = .  Our estimate then is between 488 and 

870 fish.  Notice that the point estimate 625 is not in the center of the interval (488, 870).   
 
Experimental Design for Capture-Recapture 
 
 There are two factors, t and n, that influence the variability of the estimate of N 
when using capture/recapture.  A common question about capture recapture is, “Is it 
better to mark more fish initially or is it better to take a larger sample in the recapture 
phase?”  The question is really about where to put your energy and resources.  The 
recapture phase can be repeated many times and the resulting estimates of N compared, 
perhaps in a stem-leaf plot.  One could then vary the number of tagged animals and 
repeat the process to see how the variability of the estimates depends on t.  One could 
also vary the size of the second capture to see how the variability of the estimates 
depends on n.   
 
 Below are box-plots comparing 100 estimates of 1000N =  using either 100t =  or 

200t =  and either 60n =  or 120n = .  From the boxplots you can see that changing t 
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from 100 to 200 has a greater effect on reducing the variability than does changing n 
from 60 to 120.  Greater benefits are achieved when more effort is put on the initial 
sample to be tagged.   Note that when both t and n are small, small values of s were more 
often generated producing large estimates of N.    
 

 


