Clarke and Wright Algorithm

Laboratorio di Simulazione e Ottimizzazione L

M.Battarra, R.Baldacci, D. Vigo

Dipartimento di Elettronica, Informatica e Sistemistica
e
Il Facolta di Ingegneria
Universita di Bologna

rev 2.0, 5/2007

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 1/24

]
Outline

Q The input data
9 The output data

e The Clarke and Wright algorithm
@ The merge concept

The algorithm schema

Data structure

Algorithm: the example

Pseudocode

Solution Data structure

Improvement

© 6 066 ¢ ¢

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 2124

Capacitated Vehicle Routing problem (CVRP):
Input Data

Input Data:
@ n = 4 customers
@ 0 depot @ s
o di =(0,5, 13,12, 8)
demands @ s
@ Cost Matrix= {c;;} =
ijlo 1 2 3 4 u @
0[]0 2 3 2 2
112 0 2 4 4
2 |3 2 0 45 5
312 4 45 0 3 ® w2
4 |2 4 5 3 0

@ Q = 20 vehicle capacity

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 3/24

Capacitated Vehicle Routing problem (CVRP):
Output Data

Output Data:
@ Solution cost: 14
@ Routes: @ s 2 2
i) Cost: 7; 2
Demand: 18;
; 13
#eust: 2; n 3 @
Sequence: 0120
i) Cost: 7; 7
Demand: 20;
#eust: 2; ® 12
Sequence: 0340

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 4124

The project goal

M.Battarra, R.Baldacci, D. Vigo ()

-

\ The improved solution /

A test instance

| Improvement Phase |

Clarke and Wright Algorithm

rev 2.0, 5/2007

5/24

The Clarke and Wright Algorithm (1964)

@ Clarke and Wright [1964]: Scheduling of vehicles form a central depot to
a number of delivery points

@ Constructive and greedy heuristic algorithm
@ Sequential and Parallel versions (Parallel version performs better, Toth
and Vigo [2002])
@ Pro:
o Fast: Complexity: O(n?logn)
@ Easy to implement
@ Cons : Accuracy

o Experimental result: +5% respect the best known solutions on benchmark
problems
@ Worst case analysis: CW (1)/OPT (l) <= [log2n] + 1 where:
@ | problem instance
@ CW(l) Clarke and Wright solution value on instance |
@ OPT(I) Optimal solution of instance |

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 6/24

The merge key concept

@ Initial solution: each vehicle serves oK

exactly one c.ustomer B @ 12
@ The connection (or merge) of two

distinct routes can determine a better

solution (in terms of routing cost)

@ Example:
We merge routes servicing customers
i =1andi= 2. How much do we save?

Sij = Cio +Coj — Cij

@ If s;; > 0 the merging operation is
convenient.

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 7124

The Clarke and Wright algorithm The merge concept

Merge feasibility (1/3)

@ Overload of the vehicle

The merge operation referred to @ s

the customers 2 and 3 in the

example is not feasible, in fact: @ 8
® Droute =d(2)+d(3) =25
@ Q = 20 (vehicle capacity) B 13
@ Droute > Q

The route 0 — 2 — 3 — 0 is not

feasible.

= This merge operation cannot

12
be performed!

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 8/24

Merge feasibility (2/3)

@ Internal customers
A customer which is neither the @ s
first nor the last at a route
cannot be involved in merge
operations. @ 8

Example:the customer 2 cannot

be involved in any merge operation,

because no arc exists connecting 2

to the depot 0.

= The merge operations @ 12
suggested by the s,; values cannot

be performed!

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 9/24

Merge feasibility (3/3)

@ Customers both in the same route
If the customers suggested by
the saving s; j are the extremes @ s
of the same route (the first or
the last) the merge operation /
cannot be performed (no 8 /
subtour are allowed) /

Example:The customer 1 and 3 ’
cannot be involved in any merge s,
operation, because they are in the P
same route. @/1’2
= The merge operation suggested

by the s; 3 value cannot be

performed!

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 10/ 24

Clarke and Wright

The Clarke and Wright algorithm starts as follows:
@ The solution is initialized with a route for each customer (lteration 0).

@ All the saving values s;;,Vi,j € 1,...,nandj > i are stored in a
half-square matrix M.

@ The saving values are ordered in not-increasing fashion in the list L (the
highest saving value the most appealing the merge operation is!).

@ s
OX:

® 12

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 11/24

Data structure

@ We compute for each couple of customers the saving value and we fill the
matrix M of saving objects.

@ Each saving object is composed by the triplet (s;j,i,])

@ The matrix M is sorted respect the s; ; value to create the list L, as shown
in the example:

Matrix M List L

|2 3 4 sj [0]

113 0 0 3 1 2

2|- 05 O 1 3 4

3|- - 1 = 05|2 3
0 1 3
0 1 4
0 2 4

@ The saving objects in the list are now sequentially considered: if the
associated merge operations are feasible, let's implement them.

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 12 /24

The Clarke and Wright algorithm Algorithm: the example

Algorithm: iteration 1

List L
Sijj i i
3 1 2
1 3 4
052 3
0 1 3
0 1 4
0 2 4

© Drowe =d(1)+d(2) =18 <20 =Q.

OK'!

© Both the customers are extern. OK!

© The customers 1,2 are not in the
same route. OK!

= The merge can be performed:
operation feasible.

M.Battarra, R.Baldacci, D. Vigo ()

Clarke and Wright Algorithm

New solution:
@ Solution cost: 11
@ Routes:
i) Cost: 7; Demand: 18;
#cust: 2; Sequence: 0120
i) Cost: 4; Demand: 12;
#cust: 1; Sequence: 030
iii) Cost: 4; Demand: 8;
#cust: 1; Sequence: 040

@ s 5

rev 2.0, 5/2007

13

13/24

Algorithm: iteration 2

New solution:

List L .
- @ Solution cost: 10
Si |1]
@ Routes:
1 3 4 i) Cost: 7; Demand: 18;
0512 3 #cust: 2; Sequence: 0120
0 1 3 i) Cost: 7; Demand: 20;
0 1 4 #cust: 2; Sequence: 0340
0 2 4
8 5
© Diowe =d(3)+d(4)=20=20=0Q. @ @
OK!!
© Both the customers are extern. OK!
© The customers 3,4 are not in the [| @ 13

same route. OK!

@) 12

= The merge can be performed:
operation feasible.

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 14 /24

Algorithm: iteration 3

The solution is not updated!!

List L .
s] @ Solution cost: 10
! @ Routes:
i) Cost: 7; Demand: 18;
0512 3 #cust: 2; Sequence: 0120
0 1 3 i) Cost: 7; Demand: 20;
0 1 4 #cust: 2; Sequence: 0340
0 2 4
8 5
© Diowe =d(3)+d(2)=38>20=0Q. @ @
NO!
© Both the customers are extern. OK!
© The customers 3,2 are not in the [| @ 13

same route. OK!

= The merge cannot be performed:
operation infeasible.

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 15/24

Algorithm: next iterations

@ The next s; j values in the list L are all 0.

@ These values correspond to merge operations without a save in the
solution routing cost.

@ Objective of the algorithm: minimize the number of routes in the solution
— consider the remaining savings!

@ Anyway in the example no more merge operations are feasible, so the
algorithm is terminated.

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 16 /24

Algorithm: Pseudocode

Algorithm 3.1: CLARKE AND WRIGHT(InputData)

fori,j,(j>1)«—(i=1j=2)to(i=n-1,j =n)
do sjj < Coi +Cjo—Ci; !Fill Matrix M
Sort Matrix M, filling list L
Shk < Firstsaving in L
Nroutes < N
while ((ListL not void) and (spx > 0))
Spk < Firsts;; € Lnot yet considered

if (MergeFeasibility (h, k) == YES) {Merge(ROUte“’ Route)

do

N routes

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 17124

Solution Data structure

@ Let's introduce a data structure R
to keep in memory partial @8
solutions during algorithm
iterations: [| ® 13
@ This data structure R has to
contain routes information.
© This data structure has to be

useful to implement easily the @ =
MergeFeasibility and Merge
functions. Figure: lIteration 0

Solution data structure R

froute | cost | load | fcust | extreme; | extreme, | Customer sequence
1 1 1
2 2 2
3 3 3
4 4 4

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 18/24

Solution Data structure: first iteration

OX:
@ Is the merge feasible?
) d(2)+d(1)<=20? YES [| 13
i) 2,1 are both in the extreme list?
YES
iii) 2,1 are extremes for distinct

frowe ? YES @

Figure: lteration 1

Solution data structure R

froute | cost | load | fcust | extreme; | extreme, | Customer sequence
1 1 1
2 2 2
3 3 3
4 4 4

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 19/24

Solution Data structure: implement the merge

R update:
@ A route has to be deleted. @ 8

@ In the remaining one, these
values have to be updated: n 13
I) ﬁCUSt
i) demand
iii) sequence (check if a route
sequence has to be inverted!!) @ 12

Iv) extremes Figure: lteration 1

Solution data structure R

froute | cOSt | load | fieust | extreme; | extreme, | Customer sequence
1 7 18 2 1 2 1 2
3 4 12 1 3 3 3
4 4 8 1 4 4 4

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 20/ 24

Solution Data structure: second iteration

@ Is the merge feasible?
i) d(4)+d(3)<=207? YES [@ 13
ii) 4,3 are both in the extreme list?
YES
iii) 4, 3 are extremes for distinct

frowe ? YES o

Figure: lteration 2

Solution data structure R

froute | cOSt | load | fieust | extreme; | extreme, | Customer sequence
1 7 18 2 1 2 1 2
3 4 12 1 3 3 3
4 4 8 1 4 4 4

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 21/24

Solution Data structure: implement the merge

R update:
@ A route has to be deleted. OX

@ In the remaining one, these
values have to be updated: n @ 1
I) ﬁCUSt
i) demand
iii) sequence (check if a route
sequence has to be inverted!!) () 12

Iv) extremes Figure: lteration 2

Solution data structure R

froute | cost | load | feust | extreme; | extreme, | Customer sequence
1 7 18 2 1 2 1 2
2 7 20 2 3 4 3 4

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 22124

Merge operation

How can we join the sequence of customers in a merge operation ?
Hp:
@ Two routes A = (1,2), B = (3,4)

@ A and B have to be merged in the final route C, according to the saving
criterion

@ The capacity of the vehicle is co.

Four merge situations can occur to obtain the final route C:
@ s3> = Simple Union deleting route B C=(1,2,3,4)
@ s41 = Simple Union deleting route A C=(3,4,1,2)

© s, = Route B has to be inverted B* = (4, 3), merged to A and then
deleted C=(1,2,4,3)

© sz = Route A has to be inverted A* = (2, 1), route B has to be merged
to A* and then deleted C=(2,1,3,4)

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 23/24

Algorithm Improvement

How can we improve the algorithm performance?

@ Accuracy:
@ Multistart approach
@ A parametric saving formula
@ Post-optimization

@ Speed:
@ Heap sorting procedure (one or few distinct heaps)
o Early stop in the saving list L
@ Subset of savings (grid structure)

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 2424

The Clarke and Wright algorithm Improvement

M.Battarra, R.Baldacci, D. Vigo () Clarke and Wright Algorithm rev 2.0, 5/2007 2424

	The input data
	The output data
	The Clarke and Wright algorithm
	The merge concept
	The algorithm schema
	Data structure
	Algorithm: the example
	Pseudocode
	Solution Data structure
	Improvement

	Riferimenti bibliografici

