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Abstract

The continuous wavelet transform has been used with much success in the analysis of non-stationary time series. It has

been used much less frequently in the interpretation of magnetic or gravity data, although several approaches have been

tried. A simple method of obtaining location and depth estimates of gravity and magnetic field sources is suggested here.

For gravity data the method uses wavelets based on the integer-order horizontal derivatives of the gravity anomaly from a

point source (the Poisson kernel). For magnetic data the wavelet is based on the integer-order horizontal derivatives of the

analytic signal of the anomaly from a contact or a thin sheet. The method is compared with Euler deconvolution, and is

demonstrated with synthetic models and on gravity and magnetic data from South Africa.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Wavelets are a powerful tool for analysing the
properties of a data set as a function of both time
(or position) and scale (which is related to
wavelength). The transform uses a wavelet C as its
basis function. To be admissible as a wavelet a
function must have a zero mean. The continuous
wavelet transform (CWT) is obtained by correlating
scaled versions of the wavelet with the data f

(Mallat, 1998, p.5)

Wf ðu; sÞ ¼

Z 1
�1

f ðtÞ
1ffiffi
s
p C�

t� u

s
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dt, (1)

where s is scale and u is position.
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Most applications of wavelets to potential field
data used wavelets derived from the Poisson kernel
(Moreau et al., 1999), which is based on the gravity
anomaly from a point source. In that case it is
possible to achieve the scaling of the wavelet in
Eq. (1) with an upward continuation operation.
When data profiles are being analysed the model is
assumed to be two dimensional, and the anomaly
and its derivatives are based on the buried cylinder
response and its derivatives (Beck, 1981 p.79);

g ¼
Gmz

ðx2 þ z2Þ
. (2)

When used as the basis for a family of wavelets, G

and m are not needed and z is set to one. Fig. 1
shows the gravity anomaly from a buried cylinder
and its first and second horizontal derivatives. The
derivatives are suitable as wavelets while the
.
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Fig. 1. (a) Gravity anomaly over a horizontal cylinder, calculated using Eq. (2). (b) First horizontal derivative of gravity anomaly over a

horizontal cylinder, calculated using Eq. (3). (c) Second horizontal derivative of gravity anomaly over a horizontal cylinder, calculated

using Eq. (4).
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anomaly itself is not, because it does not have a zero
mean. The derivatives of Eq. (2) are:

qg

qx
¼
�2Gmzx

ðx2 þ z2Þ2
, (3)

q2g
qx2
¼

2Gmzð3x2 � z2Þ

ðx2 þ z2Þ3
. (4)
2. Background and application of wavelets to gravity

data

There have been many papers published on the
application of wavelets to potential field data. Fedi
and Quarta (1998) used the discrete wavelet transform
to perform regional-residual separation. Ridsdill-
Smith and Dentith (1999) computed cleaner deriva-
tives of aeromagnetic data using the wavelet trans-
form. Moreau et al. (1999) analysed maxima in the
modulus of the CWT of gravity and magnetic data
as a guide to source depth determination. They also
determined the degree of source homogeneity from
the decay in amplitude of the wavelet coefficients.
Sailhac et al. (2000) extended this approach to
include complex wavelets, and applied it to mag-
netic data. Their approach did not require the prior
reduction of the data to the pole or equator before
wavelet processing. Martelet et al. (2001) took a
similar approach and applied it to gravity data from
Nepal. Boschetti et al. (2001) delineated the edges
and dip of sources by looking at the location of
local maxima of the upward continued field.
Leblanc and Morris (2001) used the discrete wavelet
transform to denoise aeromagnetic data, while de
Oliveira Lyrio et al. (2004) used it to denoise gravity
gradiometry data. Valee et al. (2004) used complex
wavelets to analyse magnetic data. They estimated
source depth from a ratio of the first- and second-
order wavelet coefficients.

This paper takes a different approach to those
discussed above. When applying the method, the
data is first differentiated by the same degree as the
wavelet order. For example, if the wavelet used is
based on the first horizontal derivative of the
gravity anomaly from a cylinder (Eq. (3)), then the
CWT is applied to the first horizontal derivative of
the data. The CWT then becomes a cross-correla-
tion between the wavelet and the data, and source
locations and depths may be read directly from the
CWT plot. Fig. 2 shows the application of this type
of wavelet analysis to gravity data from a simple
model. The gravity response of the model is shown
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Fig. 2. (a) Gravity anomaly produced by bodies (shown as black rectangles) in Figs. 2b–d. (b) CWT analysis using a wavelet based on Eq.

(3) applied to data in Fig. 2(a). Light shades correspond to a strong positive response while dark shades correspond to a strong negative

response. In Figs. 2b–d + symbols correspond to Euler deconvolution solutions. SI used was 1.0 and window size was 11 points. All

solutions are plotted. (c) CWT analysis using a wavelet based on Eq. (3) applied to first horizontal derivative of data in Fig. 2a. (d) CWT

analysis using a wavelet based on Eq. (4) applied to second horizontal derivative of data in Fig. 2a.

G.R.J. Cooper / Computers & Geosciences 32 (2006) 984–992986
in Fig. 2a, while the model itself is overlain on the
CWT in Figs. 2b–d. In Fig. 2b the CWT has been
calculated directly from the data using a wavelet
based on Eq. (3). The result is not promising, with
little obvious correlation between the body loca-
tions and the maxima or minima of the CWT plot.
However when the CWT of the first horizontal
derivative of the data was calculated (again using a
wavelet based on Eq. (3)) the plot shows maxima
located on or near the bodies (Fig. 2c). The
resolution of the result becomes poorer as the body
depth increases, as would be expected. When the
CWT of the second horizontal derivative of the data
was calculated using a wavelet based on Eq. (4) this
provided improved source location for the shal-
lower bodies, but the response from the deeper body
is degraded due to the second horizontal derivative
operation removing the longer wavelength content
of the signal, and hence the information about the
deeper sources.

Overlain on all the CWT plots is the Euler
deconvolution response. Euler deconvolution is a
commonly used first step in the interpretation of
magnetic data. It analyses potential field data in
terms of simple magnetic or gravity distributions
such as point poles or dipoles. These different
source types are described by a factor known as the
structural index which gives the rate of decay of the
amplitude of the field with distance from the source.
Euler deconvolution passes a moving window
through the data and uses least-squares inversion
to obtain the depth and horizontal location of
sources with different structural indices (Thomson,
1982; Reid et al., 1990). The Euler solutions from
the data in Fig. 2a correlate well with the results of
the CWT analysis. Euler deconvolution can also be
applied to the vertical derivative of potential field
data (Stavrev, 1997), which can give improved
source location if the data noise levels allow. For
the CWT analysis to be applied to the vertical
derivative of the field, the wavelets used must be
based on the horizontal derivatives of the vertical
derivative of the gravity function in Eq. (2), i.e.

q2g
qzqx

¼
�2Gmxðx2 � 3z2Þ

ðx2 þ z2Þ3
, (5)
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q3g

qzqx2
¼

6Gmðx4 � 6x2z2 þ z4Þ

ðx2 þ z2Þ4
. (6)

The use of higher derivatives obviously makes the
method susceptible to noise (as will be discussed in
more detail below), but noise is a problem for Euler
deconvolution also. Fig. 3 shows CWT plots of the
horizontal derivatives of the first vertical derivative
of the gravity data. As expected, the responses from
the deeper bodies are further degraded compared
with Fig. 2, but the CWT maxima over the
shallower bodies appears sharper. The location of
the Euler deconvolution solutions from the first
vertical derivative of the data is much improved
compared to that shown in Fig. 2.

Fig. 4 shows the CWT response (using the first
horizontal derivative wavelet) and Euler solutions
for a model consisting of three dyke-like bodies at
different depths. In Figs. 4c and d 5% and 15%
uniformly distributed random noise, respectively,
was added to the data prior to the CWT and Euler
calculations. It might be thought that the noise,
being composed of short wavelengths compared to
Fig. 3. (a) First vertical derivative of gravity anomaly produced by bo

using a wavelet based on Eq. (5) applied to data in Fig. 3(a). Light sh

correspond to a strong negative response. In Figs. 3b–d + symbols co

window size was 11 points. All solutions are plotted. (c) CWT analy

derivative of data in Fig. 3a. (d) CWT analysis using a wavelet based on
the signal, would appear only in the smaller scales
(corresponding to shallow depths) of the CWT.
However due to the ‘cone of influence’ effect
(Mallat, 1998, p.175) there is a noticeable effect at
larger scales as well, although the overall structure
of the CWT is not seriously disturbed even by 15%
random noise—a level (hopefully) far exceeding that
likely to be encountered in practice. By comparison
the Euler solutions have collapsed completely to
shallow depths at this noise level.

The Trompsburg gravity anomaly from the Free
State province, South Africa is shown in Fig. 5.
The anomaly was first discovered by B.D. Maree
in 1942, and Buchmann later performed a detailed
gravity survey (Buchmann, 1960). The anomaly
is a gravity high of 100mGals amplitude, and
may be caused by a granite sill. The CWT plots
(based on wavelets derived from the horizontal
derivatives of the gravity anomaly from a point
source, rather than a cylinder, due to the 3D nature
of the anomaly) locate a source at a depth
20–40 km, which agrees with the Euler deconvolu-
tion solutions.
dies (shown as black rectangles) in Figs. 3b–d. (b) CWT analysis

ades correspond to a strong positive response while dark shades

rrespond to Euler deconvolution solutions. SI used was 2.0 and

sis using a wavelet based on Eq. (5) applied to first horizontal

Eq. (6) applied to second horizontal derivative of data in Fig. 3a.
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Fig. 4. (a) Gravity anomaly produced by bodies (shown as black rectangles) in Figs. 4b–d. (b) CWT analysis using a wavelet based on Eq.

(3) applied to first horizontal derivative of data in Fig. 4(a). Light shades correspond to a strong positive response while dark shades

correspond to a strong negative response. In Figs. 4b–d + symbols correspond to Euler deconvolution solutions. SI used was 1.0 and

window size was 11 points. All solutions are plotted. (c) CWT analysis using a wavelet based on Eq. (3) applied to first horizontal

derivative of data in Fig. 4(a). Uniformly distributed random noise of amplitude equal to 5% of maximum data amplitude was added

before CWT analysis was performed. (d) CWT analysis using a wavelet based on Eq. (3) applied to first horizontal derivative of data in

Fig. 4(a). Uniformly distributed random noise of amplitude equal to 15% of maximum data amplitude was added before CWT analysis

was performed.
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3. Application to magnetic data

With magnetic data two families of mother
wavelets are discussed here, based on the horizontal
derivatives of the analytic signal of the anomaly
from two models, namely the contact and the thin
dyke. The analytic signal across a contact is given
by (Nabighian, 1972)

Ascon ¼
2kFc sin d

ðx2 þ z2Þ0:5
, (7)

where k is the susceptibility, F is the geomag-
netic field intensity, c ¼ 1� cos2 i sin2 A, d is dip, i is
the geomagnetic inclination, and A is the angle
between magnetic North and the profile azimuth.
The first and second horizontal derivatives of (7) are
then

qAscon

qx
¼
�2xkFc sin d

ðx2 þ z2Þ1:5
(8)
and

q2Ascon

qx2
¼

2kFc sin dð2x2 � z2Þ

ðx2 þ z2Þ2:5
. (9)

When used as wavelets, the 2kFc sin d terms are
dropped. The wavelets based on Eqs. (8) and (9) are
plotted in Fig. 6. The analytic signal across a thin
sheet is (Keating and Pilkington, 2004)

AsSheet ¼
2kFcw

ðx2 þ z2Þ
(10)

so that its first and second horizontal derivatives
are:

qAsSheet

qx
¼
�4xkFcw

ðx2 þ z2Þ2
(11)

and

q2AsSheet

qx2
¼

2kFcwð3x2 � z2Þ

ðx2 þ z2Þ3
. (12)
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Fig. 6. (a) First horizontal derivative of analytic signal across a contact, as given by Eq. (8). (b) Second horizontal derivative of analytic

signal across a contact, as given by Eq. (9). (c) First horizontal derivative of analytic signal across a sheet, as given by Eq. (11). (d) Second

horizontal derivative of analytic signal across a sheet, as given by Eq. (12).

Fig. 5. (a) Gravity anomaly over Trompsburg structure, Free State province, South Africa. (b) CWT analysis of first horizontal derivative

of data in Fig. 5a. In Figs. 5b and c + symbols correspond to Euler deconvolution solutions. SI used was 2.0 and window size was 21

points. All solutions are plotted. (c) CWT analysis of second horizontal derivative of data in Fig. 5a.
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Fig. 7. (a). Magnetic anomaly over contact shown in Figs. 7b–d. Profile orientation was SN and field inclination used was �601. (b)

Analytic signal of data in Fig. 7a. (c) CWT analysis using a wavelet based on Eq. (8) applied to first horizontal derivative of analytic signal

of data in Fig. 7a. In Figs. 7c and d + symbols correspond to Euler deconvolution solutions. SI used was 0.1 and window size was 11

points. All solutions are plotted. (d) CWT analysis using a wavelet based on Eq. (9) applied to second horizontal derivative of analytic

signal of data in Fig. 7a.
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The wavelets based on Eqs. (11) and (12) are also
plotted in Fig. 6. As can be seen from a comparison
of Figs. 1 and 6, all of the wavelets discussed here
are similar in form and differ only subtly.

Fig. 7 shows the CWT analysis of data from a
contact model using a wavelet based on Eq. (8), i.e.
the first horizontal derivative of the analytic signal
of the data is calculated, and the CWT analysis is
applied to that. In Fig. 7d a wavelet based on Eq. (8)
has been used and the CWT analysis applied to the
second horizontal derivative of the analytic signal of
the data. In both cases the maximum of the CWT
plot occurs over the contact, with the resolution
improving in the latter case.

Fig. 8 shows aeromagnetic data over a dyke in the
Eastern Bushveld complex, South Africa. The dykes
in this area are frequently remanent, and the
palaeomagnetic studies and subsequent modelling
required to produce the dyke model shown in the
figure were performed by Mr. S. Letts of the School
of Geosciences, University of the Witwatersrand. The
CWT analyses, which used the wavelets based on
Eq. (11) and (12), have maxima over the dyke
location. Although the data itself does not look
noisy, the use of its higher derivatives produces a
noisy CWT plot, although the maxima location is still
clear. Euler deconvolution solutions are overlain on
the plots for comparison once again, and their
location correlates well with the CWT maxima.

4. Conclusions

CWT analysis using wavelets based on the
horizontal derivatives of simple gravity and mag-
netic models can give useful information on the
positions and depths of sources, providing the CWT
is applied to the appropriate order of horizontal
derivative of the data and not directly to the data
itself. The technique was demonstrated on synthetic
models and on gravity and magnetic data from
South Africa.
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Fig. 8. (a) Magnetic profile across a dyke in Eastern Bushveld complex, South Africa. Flight height was 50m and data were interpolated

to a sample interval of 5m. Field inclination at this location is �601. (b) Analytic signal of data in Fig. 8a. (c) CWT analysis using a

wavelet based on Eq. (10) applied to first horizontal derivative of analytic signal of data in Fig. 8a. In Figs. 8c and d + symbols

correspond to Euler deconvolution solutions. SI used was 1.0 and window size was 11 points. All solutions are plotted. (d) CWT analysis

using a wavelet based on Eq. (11) applied to second horizontal derivative of analytic signal of data in Fig. 8a.
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