GF 45 A LABORATORIO 1 MEDICION DE FLUJOS RADIATIVOS

Otoño 2008

GUIA DE TRABAJO – Primera Parte

Objetivo: Medir las densidades de flujo radiativo (OC↓, OC↑, OL↑ y RN) para analizar su ciclo diario, calcular el albedo superficial y comparar las mediciones en torno al mediodía con fórmulas empíricas de aplicación climatológica (promedios mensuales). (OC: Radiación solar o de onda corta; OL: Radiación terrestre o de onda larga; RN: Radiación neta)

Datos básicos

Lugar: Terraza edificio DGF Latitud (φ): - 33. 5 grados (S) Fecha / día juliano (d): Longitud (λ): + 70,5 grados (W)

Declinación solar (δ):

Hora local (UTC -4): Angulo cenital (χ):

(Expresar minutos como décimas de hora)

Tipo de superficie: Baldosas grises Albedo superficial:

Emisividad superficial (ϵ_0): 0.90

Fracción de cielo con nubes (f):

Altura de las nubes (nefobasímetro): Tipo de nubes (*):

Presión parcial de vapor a la saturación (e_s) (**): Temperatura del aire (T):

Humedad relativa del aire (HR): Presión parcial de vapor (e_a):

Medición/estimación de densidades de flujo radiativo cerca de mediodía

 $OC\downarrow$ estimado (en función de f (*)) [W m] OC↓ medido [W m⁻²]

OC↑ medido [W m⁻²]: Albedo superficial:

 $OL\uparrow [W m^{-2}] = \sigma \cdot T_e^4$ Temperatura equivalente (T_e)

Radiación Neta [W m⁻²]:

OL↓ estimado (método de Brunt) OL↓ calculado (residuo balance radiativo) [W m] [W m]

• Graficar la marcha diaria de CS cos χ, OC↓ y RN en un gráfico y en otro la de Ta, HR, Te. Discutir resultados.

Los datos (excepto los de CScosy) les serán proporcionados con posterioridad a la experiencia.

(*) Determinación del tipo de nubosidad presente a partir de la altura de su base medida con el

Nefobasímetro Nubosidad BAJA MEDIA **ALTA**

< 2 kmAltura 2-6 km> 6 km

(**): Utilizar clausius Clayperon

GUIA DE TRABAJO – Segunda Parte

• **Objetivos**: Familiarizar a los alumnos con la sensibilidad de la radiación neta a cambios en la emisividad, temperatura y albedo superficiales.

Actividades

Se medirá las perturbaciones detectadas por el sensor de radiación neta al colocar bajo él una superficie diferente (emisividad, temperatura, albedo).

- a. Calentar agua en el hervidor eléctrico para llenar la bolsa de agua (guatero)
- b. Luego del llenado, medir con el termómetro digital la temperatura del agua (10 valores, tabla 1)

Tabla 1: temperatura del agua	
tiempo [s]	т° [К]
0	
15	
30	
45	
60	
75	
90	
105	
120	
135	

- c. Medir la temperatura equivalente de cuerpo negro (*) de la bolsa de agua con el radiómetro IR termal (10 valores, tabla 2)

$$OL \uparrow = \varepsilon_{OL} \cdot \sigma \cdot T^4 = \sigma \cdot T_e^4$$

Tabla 2: temperatura equivalente de la bolsa de agua	
tiempo [s]	T° [K]
0	
15	
30	
45	
60	
75	
90	
105	
120	
135	

- d. Estimar el valor de emisividad de la bolsa de agua ε_{oL} (suponiendo que su temperatura superficial es idéntica a la del agua que contiene)
- e. acercar la bolsa de agua bajo el sensor del radiómetro neto, a una distancia aproximada de 20 cm y registrar las mediciones entregadas por el *data-logger* (tabla 3)

Tabla 3: bolsa de agua caliente bajo el sensor		
tiempo [s]	RN [Wm-2]	
0		
15		
30		
45		
60		
75		
90		
105		
120		
135		

De la expresión de balance radiativo, podemos establecer que:

$$OL \downarrow = RN - OC \downarrow + \sigma \cdot T_e^4 + OC \uparrow$$

Donde $OL \uparrow = \sigma \cdot T_e^4$ y $OC \uparrow$ es la radiación solar reflejada por la bolsa de agua.

f. repetir el experimento anterior con bolsa de agua recubierta con papel de aluminio y en un paño negro.

El informe de la segunda parte del laboratorio deberá contener los siguientes aspectos:

- Descripción de los experimentos realizados
- Descripción de los resultados obtenidos
- Análisis y comentarios de estos últimos