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In the previous chapter we discussed the diamagnetic effect, which is observed in allf
materials, even those in which the constituent atoms or molecules have no perma-‘
nent magnetic moment. Next we are going to discuss the phenomenon of paramag- |
netism, which occurs in materials that have net magnetic moments. In paramagnetic ]
materials these magnetic moments are only weakly coupled to each other, and so
thermal energy causes random alignment of the magnetic moments, as shown in
Fig. 5.1(a). When a magnetic field is applied, the moments start to align, but only

a small fraction is deflected into the field direction for all practical field strengths, }
This is illustrated in Fig. 5.1(b).

f 5.1 Langevin theory of paramagnetism
Many salts of transition elements are paramagnetic. In transition metal salts, |

each transition metal cation has a magnetic moment resulting from its partially {
filled d shell, and the anions ensure spatial separation between cations. Therefore

the interactions between the magnetic moments on neighboring cations are weak.
The rare earth salts also tend to be paramagnetic. In this case the magnetic moment

is caused by highly localized f electrons, which do not overlap with f electrons
on adjacent ions. There are also some paramagnetic metals, such as aluminum,
and some paramagnetic gases, such as oxygen, O,. All ferromagnetic materials
(which we will discuss in the next chapter) become paramagnetic above their Curie

temperature, when the thermal energy is high enough to overcome the cooperative
ordering of the magnetic moments.

e 1.angevin theory explains the temperature depe.ndence.of the susi‘eptlb(l)hn:znlt:
1 parumugnetic materials by assuming that the non—mterac.:tmg maglne ic m Whe,}
| on atomic sites are randomly oriented as a resul.t of their the@a energyt.‘ e
an external magnetic field 1s applied, the orientation of .the atc.)mlc. mosm]en \; é Wi{l
slightly towards the field direction as showg schematl?ally in F]g.t &h.en o
derive the expression for the susceptibility using a clas.swa.l argument,
It 10 the quantum mechanical case at the end of the d.erwa}tlon. ity of
l'or 2 moment which makes an angle 6 to the apppe.d field H, the probability

occupying an energy state, E, is (by Boltzmann statistics)

e—E/kBT — em-H/kBT — echns()/kl,'I'. (5‘)
At low fields, the flux density within a paramagnetic material is directly pro-
portional to the applied field, so the susceptibility, x = M/H, is approximately
constant. Generally y is between around 10~* and 107>, Because the susceptibility
is only slightly greater than zero, the permeability is slightly greater than | (unlike

(Here the un-bold m and H represent the magnitude of the magnetic moment mlul
“ ‘ ‘ _ LY e . [} . ¥
held vectors respectively, and kg is Boltzmann’s cnnslunl).‘ We can calnu:.nc“l.h
nnmber of moments lying between angles 6 and 6 + d0) with respect to the el
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Figure 5.2 The fraction of paramagnetic moments between angles 6 and 6 + 46 around an |

1Xis is equal to the fractional area that the angle d6 sweeps out on the surface of the sphere
s shown.

1, by noticing that it is proportional to the fractional surface area of a surrounding
phere, as shown in Fig. 5.2. This fractional surface area, d A = 27 r? sin 0d6.
So the overall probability, p(6), of an atomic moment making an angle between
and 6 + d6 is
et eost/kT gin 0de

p0) = foﬂ emHcos8/ksT gin 040’

(5.2)

here the denominator is the toral number of atomic magnetic moments, and the
wctors of 2772 cancel out.

Each moment contributes an amount m cos g to the magnetization parallel to the
1agnetic field, and so the magnetization from the whole system is

M = Nm(cos6) (5.3)
= Nm/ cos8p(6)de 5.4
0
Nads €T cos 9 sin 66 55
= Nm .
fo” emH cos0/ksT ¢in 0do
(5.6)
irrying out the nasty integrals (or looking them up in tables!) gives
P
mH kBT

M=N thf — ) — —=— 5.7
" [CO (kBT) mH] G

= NmlL(x), (5.8)

ere « = mH [kgT and L(x) = coth(a) — 1/« is called the Langevin function.
e form of L(a) is shown in Fig. 5.3. If « were made large enough, for example
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Figure 5.3 The Langevin function, L(c).

by upplying a very large field, or lowering the temperature towards zero kelvin,
then M would approach Nm, and complete alignment of the magnetic spins could
be achieved.

Now what about our earlier statement that x o | /T? We were expecting to
Nee M = some constant x H/T and we’ve ended up with something far more
complicated. Well, the Langevin function can be expanded as a Taylor series:

o a3

L(Q)ZE_E+
So, keeping only the first term, (which dominates at all practical fields and temper-

atures since ¢ is very small),

(5.9)

Nma

Nm?H
M— —

3 3kg T

(5.10)

(The equivalent expression in SI units is M = (N/L()Illz/3k|;)(H/T). since
I: = —pom - H). The magnetization is proportional to the applied ficld and inver-
sely proportional to the temperature, as we expected. This gives the suseeptibility
M Nm?

X=g

C
S 3kpT T

(5.1
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vhere C = Nm?/3kg is a constant. This is Curie’s law — the susceptibility of a
aramagnet is inversely proportional to the temperature.

So far we have assumed that the magnetic dipole moment can take all possible
rientations with respect to the applied magnetic field, whereas in reality it can
ave only discrete orientations because of spatial quantization. If we incorporate
he quantization into the derivation of the total magnetization, we obtain:

27 +1 27 +1 1 a
M=NgJ th — —coth —) 5.12
g“B[ 27 CO(2J “>V2J°° (21] (5.12)
= NgJugB,(a). (5.13)

3 () is the Brillouin function, which is equal to the Langevin function in the limit
1at J — oo: The Brillouin function can also be expanded in a Taylor series:

J+1 [+ +1)
o — o +
3J 90J3
lere « = JgupH /kgT.
Keeping only the first term in the expansion, the quantum mechanical expression
or the susceptibility becomes
Ng?J(J +ui C
_ N Dy € (5.15)
3kgT T
gain, to obtain the susceptibility in SI units, this expression is multiplied by .
he overall form of the response is the same as in the classical, case, but this time the
roportionality constant, C, is given by Ng>J(J + 1)u3 /3ks = Nm?;/3kg where
eff = &/ J(J + Dug.

B(a) =

(5.14)

5.2 The Curie—Weiss law

| fact many paramagnetic materials do not obey the Curie law which we just
rived, but instead follow a more general temperature dependence given by the
urie—Weiss law:

C
X = T (5.16)
wramagnets which follow the Curie-Weiss law undergo spontaneous ordering and
come ferromagnetic below some critical temperature, the Curie temperature, T¢
vhich we’ll see later is for all practical purposes equal to 6).

In our derivation of the Curie law we assumed that the localized atomic magnetic
oments do not interact with each other at all — they are just reoriented by the applied
agnetic field. Weiss explained the observed Curic—Weiss behavior by postulating
c existence of an internal interaction between the localized moments which he
lled a *molecular field”. He did not speculate as to the origin of his molcecular
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field, beyond suggesting that it is a mutual interaction between the electrons which
tends to align the dipole moments parallel to each other. (We can’t really criticize
Weiss for this — remember that the electron had been discovered only 10 years
carlier, and quantum mechanics hadn’t been ‘invented’ yet!)

Weiss assumed that the intensity of the molecular field is directly proportional
1o the magnetization:

Hy = yM, (5.17)

where y is called the molecular field constant. So the total field acting on the
material is

H,, = H+ Hy,. (5.18)
We just derived
M C
=—=— 5.19
X=g=7 (5.19)
so, replacing H by Hyoc = H + yM,
L — E (5.20)
H+yM T
or
CH
M=— 5.21
Ty (5.21)
Therefore
M C
=— = 5.22
X=Hg=7_g¢ (5.22)

the Curie—Weiss law!

When T = 6 there is a divergence in the susceptibility, which corresponds to the
phase transition to the spontaneously ordered phase. A positive value of 8 indicates
that the molecular field is acting in the same direction as the applied field, and
lending to make the elementary magnetic moments align parallel to one another
ind to the applied field. This is the case in a ferromagnetic material.

We can estimate the size of the Weiss molecular field. Below the critical tem-
perature, Te, paramagnetic materials exhibit ferromagnetic behavior. Above ¢,
the thermal energy outweighs Hy, and the ferromagnetic ordering is destroyed.
Therefore at Tc, the interaction energy, ugHw, must be approximately cqual (o
the thermal energy, kgTc. So Hw ~ kgTc/up =~ 10719103 /10 20 2 107 Oc. This
s extremely large! In the next chapter we will apply Weiss™s molecular field theory
helow the Curie temperature to understand the ferromagnetic phase, and we will
discuss the origin of the molecular field.
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The Langevin theory and the Curie—Weiss law give accurate descriptions of many

paramagnetic materials. Next, we will look at two cases where they don’t do so
well. The first is not really a problem with the theory, but a difference in the size
of the measured and predicted magnetic moments of the ions. The second is an

example of a class of materials (the Pauli paramagnets) where the assumptions of |

the Langevin localized moment theory no longer apply.

5.3 Quenching of orbital angular momentum

The total magnetization in a paramagnet depends on the magnetic moment, m, of

the constituent ions. Once we know the g-factor of an ion, and the J value, we !

can calculate it’s magnetic moment — it’s Justm = gug/J(J + 1). (This after all
was the whole purpose of Chapter 3!) In general this formula works very well

for paramagnetic salts, even though the ions have formed into crystals and are |

no longer ‘free’. As an example we show the calculated and experimental values
for the rare earth ions in Table 5.1. In all cases (except for the Eu’* ion) the
agreement is very good. In Eu3* the calculated magnetic moment for the ground
state is zero, however there are low-lying excited states which do have a magnetic
moment and which are partially occupied at practical temperatures. Averaging over

Table 5.1 Calculated and measured effective
magnetic moments for the rare earth ions.
(From Ref. 16, Kittel, Introduction to solid state physics,

Tthedn. Copyright 1995 John Wiley & Sons, Inc. Reprinted
by permission of John Wiley & Sons, Inc.)

ion configuration g/ J(J+ 1D m/ug
Ce?t 4f15525p0 2.54 2.4
Prit 4f25525p° 3.58 35
Nd*+ 435525p6 3.62 35
Pm’* 4f*5525p0 2.68 -
Sm’+ 4f35525p5 0.84 1.5
Eu’t 465525p0 0.00 34
Gd3+ 4f75525p° 7.94 8.0
Tb** 4£85525p5 9.72 9.5
Dy3+ 4£95525p0 10.63 10.6
Ho’* 41055250 10.60 10.4
Er’t 4f15525p° 9.59 9.5
Tm?+ 41255255 7.57 7.3
YbHt 4f135525p0 4.54 4.5
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Table 5.2 Calculated und measured effective magnetic
moments for the first row transition metal ions.
(From Ref. 16, Kittel, /ntroduction to solid state physics, Tth edn.

Copyright 1995 John Wiley & Sons, Inc. Reprinted by permission of
John Wiley & Sons, Inc.)

ion configuration g/ J(J+1) g/SS+1) m/us
Ti*t, V4t 3d! 1.55 1.73 1.8
v 3d? 1.63 2.83 2.8
Crit, v 3d’ 0.77 3.87 3.8
Mn?+, Cr¥* 3d4 0.00 4.90 4.9
Fe’*, Mn?* 3d° 5.92 5.92 5.9
Fe’* 3d6 6.70 4.90 5.4
Co** 3d’ 6.63 3.87 4.8
Ni*+ 3d8 5.59 2.83 3.2
Cu’t 3d° 3.55 1.73 1.9

L the calculated magnetic moments for these excited states gives a value which is in
t upreement with the measured value.

. However for the first row transition metals, things do not work out quite so
nicely, and in fact the measured magnetic moment is closer to that which we would
E culculate if we completely ignored the orbital angular momentum of the electrons,
t Tuble 5.2 lists the measured magnetic moments, and the calculated values using
E the total and spin-only angular momenta. It’s clear that the spin-only values are
L In much better agreement with experiment than the values calculated using the
total angular momentum. This phenomenon is known as quenching of the orbital
angular momentum, and is a result of the electric field generated by the surrounding
lons in the solid. Qualitatively, these electric fields cause the orbitals to be coupled
strongly to the crystal lattice, so that they are not able to reorient towards an applied
flicld, and so do not contribute to the observed magnetic moment. The spins, on
the other hand are only weakly coupled to the lattice — the result is that only the
spins contribute to the magnetization process, and, consequently, to the resultant
magnetic moment of the specimen. For a more detailed discussion see Ref. 16.

5.4 Pauli paramagnetism

In the Langevin theory we assumed that the electrons in the partially occupicd
valence shells (which cause the net atomic magnetic moments) were fully localized
on their respective atoms. We know that, in metals, the electrons arce able to wander
through the lattice and give rise to electrical conductivity. So the localized mo-
ment approximation is unlikely to be a good one. This is in fact the case, and in
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spondingly narrow bands.
Just as in free atoms, the electrons in solids occupy the energy bands starting

with those of the lowest energy and working up. The bands which derived from
filled atomic orbitals are filled completely. In sodium, the electrons which occupied
the 3s orbital in the atom now occupy the overlapping 3s—3p bands — a fraction are
in 3s states and the remainder are in 3p states. (We’ll see in the next chapter that
this overlapping of energy bands has an important effect in determining the average
atomic magnetic moments in ferromagnetic transition metals.)

The highest energy level which is filled with electrons at zero kelvin is called the
F'ermi energy, Er. One characteristic of paramagnetic metals is that the energy states
for up- and down-spin electrons are the same, and so the energy levels at the Fermi
encergy are identical for up- and down-spins. (We’ll see later that this is not the case
in ferromagnetic metals, where there are more electrons of one spin, giving rise to a
net magnetic moment.) This is illustrated schematically in Fig. 5.5(a). (Remember
that the energy levels really form a continuous band; we have drawn discrete levels
for clarity). When a magnetic field is applied, however, those electrons with their

magnetic moments aligned parallel to the field have a lower energy than those
which are antiparallel. (If the field is applied in the up direction, then the down-spin
¢lectrons have lower energy than the up-spin electrons, since the negative electronie
charge makes the magnetic moment point in the opposite direction to the spin.) So
there is a tendency for the antiparallel electrons to try and reorient themselves
purallel to the field. However, because of the Pauli exclusion principle, the only
way that they can do this is by moving into one of the vacant parallel-moment
Muates, and only those electrons close to the Fermi level have sufficient energy to
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do this. For the lower-lying electrons, the energy gained by realignment would be
outweighed by that required to promote the electron to the vacant state. This is
illustrated in Fig. 5.5(b). Figure 5.5 also shows that Pauli paramagnets develop an
overall magnetization when a magnetic field is applied.

Before we can quantify this change in induced magnetization, and derive an
expression for the susceptibility, we need to have a model for the electrons in a
metal. In the next section we’ll derive the so-called “free electron theory’ which
describes the properties of many simple metals well.

5.4.2 Free electron theory of metals

The free electron theory assumes that the valence electrons in asolid are completely
ionized from their parent atoms, and behave like a ‘sea’ of electrons wandering
around in the solid. These electrons, the free electron gas, move in the average
field created by all the other electrons and the ion cores, and, for each electron, the
repulsive potential from the other electrons is assumed to exactly cancel out the
attractive ion core potentials. Despite this huge approximation, the free electron
theory yields surprisingly good results for simple metals. (The reasons for the
success of the free electron model are rather subtle and confused condensed matter
physicists for a long time. Unfortunately we don’t have time to go into them here —
there is an excellent discussion in the review by Cohen.!7)

The Schrodinger equation for free electrons includes only a kinetic energy term,
because by definition the potential energy is zero. So, in three dimensions it is

w2 92 92
- ( + e + 37,2) Vi (r) = Exn(r). (5.23)

2me Bﬁxz
The most straightforward method for solving this equation is to pretend that the

electrons are confined to a cube of edge length L, and that they satisfy periodic
boundary conditions. Then the solutions are traveling plane waves,

Yi(r) = ™7 (5.24)
provided that the wavevector k satisfies

2nm
ki ky, k, = j:T (5.25)
where n is any positive integer. In a macroscopic solid, L is very large and so the
spectrum of allowed k values is effectively continuous.
Substituting ¥ (r) back into the Schrédinger equation gives us the energy
eigenvalues

2

h 2 2 2
E; = . (k; + k2 +&2). (5.26)
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Figure 5.6 Energy versus wavevector for a free electron gas.

The energy is quadratic in the wavevector, as shown in Fig. 5.6.

Now as we saw in Section 5.4.1, the important quantity for determining the
response of a Pauli paramagnet to a magnetic field is the number of electrons close
to the Fermi energy level which are able to reverse their spin when a field is applied.
So next let’s derive an expression for the density of states (that is the number of
clectron energy levels per unit energy range) at the Fermi level.

We just showed that the energy of a particular k-state is given by E = (5° /2me)k?,
In particular the Fermi energy is givenby E = (#*/ 2me)kE, where kg is the wavevec-
tor of the highest filled state, and lies on a sphere of volume 37k}, within which all
states are filled. We also know that the components of the k-vector, k., k, and k,,
ure quantized in multiples of 277 /L. So the volume occupied by a single quantum
state in k-space must be (277 /L)*. Therefore the total number of electrons, which
is cqual to twice the number of occupied orbitals (one electron each of up- and
down-spin), is given by

N = volume of Fermi sphere %2 (5.27)

volume per k-state

4 3
4k
_ 32” Flx2 (5.28)
—\
(%)
_ 3_"2kg (5.29)
T
N\ 32
_ % <%) (5.30)
AT 1
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Figure 5.7 (a) Density of states in a free electron gas with no applied field. The up- and |

down-spin densities of states are equal and proportional to the square root of the energy.

(b) Density of states in a free electron gas when a magnetic field is applied in the ‘up’ direc- |

ion (i.e. parallel to the down-spin magnetic moments). The down-spin states (which have

up magnetic moment) are lowered in energy, and the up-spin states are raised in energy,

cach by an amount yugH.

where V is the volume of the crystal. Similarly, the number of electrons required to

ill up the states to a general energy level E (below Ef) is (V /372)(2m.E /ii*)*/2.
T'he density of states, D(E), is defined as the derivative of the number of electron 1
states with respect to energy. So differentiating the above expression gives us the |

lensity of states at the Fermi level,

2
he number of electronic states per unit energy range is proportional to the square
oot of the energy, as shown in Fig. 5.7(a). We can simplify the expression by
ecognizing that (V /372)(2m./h*)*? = N/E./*. Substituting gives
3N

D(Ep) = - —.
2 Ex
Next let’s use this expression for the density of states of a free electron gas to derive
he susceptibility of our Pauli paramagnet.

Vo(2m\? |
D(Em:m( ) E}*. (5.31)

(5.32)

5.4.3 Susceptibility of Pauli paramagnets

We saw in Chapter 3 that a single free electron, with spin angular momentum only,
148 a magnetic moment along the field direction of one Bohr magneton. (Remember,
hc moment along the field direction, m = —g.ugm, = 4ug for a free electron.)
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L Also, the application of a magnetic field will change the energy of the electron by an
E amount pous cos @ where 6 is the angle between the axis of the magnetic moment
~ uand the applied field. So an electron with its magnetic moment in the direction of
| the ficld will be lowered in energy by an amount poupH, and one antiparallel to
the ficld will be increased in energy by woupH. Thus a magnetic field changes the
~density of states in a free electron gas as shown in Fig. 5.7(b).

If the field is applied in the up direction (so that it is parallel to the down-spin

magnetic moment), there is a spill-over of electrons from up-spin to down-spin
L until the new Fermi levels for up- and down-spin are equal (and in fact very close
to the original Fermi level, Er.) The zero of energy for the down-spin density of
L wtates is at —poupH and for the up-spin density of states at +uougH. Therefore
E the total number of down-spin electrons is now given by

(e
—/ D(E + wougH)dE (5.33)
7 2 —popus H
" and of up-spin electrons
| -
—f D(E — popupH)dE. (5.34)
2 +uoupH

(The factor of % occurs because only one electron occupies each up- or down-spin
 #tute, and the density of states was defined for two electrons per orbital).

The net magnetic moment, M, is the number of down-spin moments minus the

v pumber of up-spin moments, multiplied by the moment per spin, ug:

EF EF
M= il [/ D(E + pougH)dE — f D(E — ;LO/LBH)dE] .
2 —pousH +pousH
(5.35)
i Changing variables gives
UB Er+pousH
M = —f D(E)dE. (5.36)
2 Erp—popusH

'I'he value of the integral is equal to the area of a strip of width 2ugugH centered
uround Eg. This areais 2uoupH D(EF), so the net magnetic moment in the direction
of the field is given by

M = popugHD(EF), (5.37)

where D(EE) is the density of states at the Fermi level, which we derived carlier:

3N
D(Er) = 2B

(5.38)
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So the susceptibility,

m _ 3Npopd

=H 2Ep

(5.39)
which is independent of temperature! Remember that there is also a diamagnetic
contribution to the susceptibility, which it turns out is one-third of the Pauli param-
agnetism and of course in the opposite direction. Thus the expression for the total
susceptibility of a metal which fits the free electron model is

2
= HogN

Er (5.40)

in SI units). The values of susceptibility calculated using this formula are in good
igreement with measured values for metals such as Na or Al which are well de-
cribed by the free electron model.

5.5 Paramagnetic oxygen

When two oxygen atoms (each with electronic configuration 1s2, 2s%, 2p*) join
ogether to form an O, molecule, their atomic orbitals combine to form molecular
orbitals, as shown in Fig. 5.8. (For an explanation of why the orbitals are ordered as
hown, see Ref. 6.) The 16 electrons fill up the molecular orbitals from the lowest
n energy up, and they occupy orbitals of equal energy individually before pairing
1p, just as they did in the atom. The consequence of this occupation scheme is that
here are unpaired electrons in an O, molecule, and therefore gaseous oxygen has
| paramagnetic response to an applied magnetic field.

2p /,’f’/’ - - :11\ 2p

B -~ 2s

s et s

Figure 5.8 Molecular orbitals in oxygen.

Homework

5.6 Uses of paramagnets

like the diamagnets, paramagnets do not find wide application because they have
no permanent net magnetic moment. They are used, however, in the production
of very low temperatures, by a process called adiabatic demagnetization. At a
‘conventional’ low temperature, such as that of liquid helium (a few degrees above
absolute zero), the term « in the Langevin function is actually quite large — certainly
greater than unity. Therefore if a paramagnet is cooled to liquid helium temperature
in the presence of a strong magnetic field, the magnetization is nearly saturated, so
most of the spins are lined up parallel to the field. If the paramagnet is then thermally
isolated (for example by removing the liquid helium and leaving a good vacuum)
and the field is turned off slowly, then the temperature of the paramagnet drops
even further. The reason for the temperature drop is that, when the spins randomize
as a result of the field’s being removed, they must do work against whatever field
remains. The only energy which is available to them is their thermal energy, and
when they use this to demagnetize they lower their temperature. It is possible to
reach temperatures as low as a few thousandths of a degree using this technique.

In addition, paramagnets allow us to study the electronic properties of materials
which have atomic magnetic moments, without the interference of strong cooper-
wtive effects.

In the next chapter we will extend the Langevin theory of paramagnetism to
help us start to understand the properties of the most important class of magnetic
materials — the ferromagnets — in which the cooperative effects between magnetic
moments are indeed strong.

Homework

Exercises

5.1 Show that the Brillouin function approaches the Langevin function as / — co. What

are the limits of the Brillouin function as J — % and ¢ — 07

5.2 Calculate the room temperature paramagnetic susceptibility of an ideal gas, in which

cach atom has J = | and g = 2. (Remember the ideal gas law: PV = nRT). These are in

fact the values of J and g for molecular oxygen. Note that your answer is small and positive.

5.3 In this problem we will explore the properties of a model three-dimensional lattice of

spins, cach with spin, § = %

(1) What is the magnetic moment of each spin? What are the allowed values ol the
projection of the magnetic moment, m;, onto some chosen axis, z say?

(b) What are the possible values of the magnetic energy of each spin?

(¢) Assuming that the spins are non-interacting, calculate the magnetization of the la(-
tice of spins when a magnetic field, H is applied along the z axis. (HIN'T: Use the
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result from statistical thermodynamics that the average magnetization of a spin is ]

given by (M) = (1/Z)E;m;e~E/*T where m; is the magnetization of a spin along

the field direction when it has energy E;, and Z = ;e E/%7 js called the partition ]

function.)

(d) Fora given value of field, H, how does the magnetization, M, depend on temperature? ’

Explain the behavior of M, for T — 0. Taking the number of spins per unit volume
to be 3.7 x 10°®* m 3, calculate the numerical value of the saturation magnetization,
M, at T = 0. Explain the behavior of M for T — oc.

(e) What does the relationship between M and H reduce to for weak fields (H — 0)?
What is the expression for the susceptibility, x, in this case, and how does it depend |

on temperature? Calculate the numerical value of x at room temperature.

(f) Comment on the results which you have obtained for this spin system. What kind of
magnetic behavior (antiferromagnetic, paramagnetic, diamagnetic, etc.) is displayed |

by this model system? Justify your conclusion. How would we need to modify the
model in order to describe ferromagnetic behavior?

To think about

What mechanism might we use to lower the temperature below that obtained by the proce- :

dure described in Section 5.6?

Further reading
B.D. Cullity, Introduction to magnetic materials. Addison-Wesley, 1972, Chapter 3.
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Interactions in ferromagnetic materials

“Anyone who is not shocked by quantum theory has not understood it.”
Niels Bohr, 1885-1962

/M Chapter 2 we introduced the concept of ferromagnetism, and looked at‘the hys:
b feresis loop which characterizes the response of a ferromagnetic matena.l to ar
L wpplicd magnetic field. This response is really quite remarkable! Ijoolf at Flgs. P
L and 2.4 again — we see that it is possible to change the magnetization of a fer
] romagnetic material from an initial value of zero, to a saturation value of aroun
L 1000 emu/cm® by the application of a rather small magnetic field — around tens O

b oersteds.

The fact that the initial magnetization of a ferromagnet is zero is explained b

the domain theory of ferromagnetism. The domain theory was postulated in 190
by Weiss'® and has been very successful. We will discuss the details of the domail
theory, and the experimental evidence for the existence of domains, in the nex

F chupter. :

The subject of this chapter is: how can such a small external field cause sucl
W lurge magnetization? In Exercise 6.2(b), you’ll see that a field of 50 Oe ha
almost no effect on a system of weakly interacting elementary magnetic moments
'I'nermal agitations act to oppose the ordering influence of the applied field, a.nd
when the atomic magnetic moments are independent, the thermal agitation wm.b
In ferromagnetic materials there must be a strong interaction between the magneti
moments, and we’ll see later that this interaction is quantum mechanical in natur
We'Il need to learn some more quantum mechanics as we go along, but hopefull
we can make this as painless as possible.

But first let’s start with the phenomenological model of ferromagnetism, whic
was again proposed by Weiss in his classic 1907 paper.'® We won't worry ‘uhnl
the origin of the strong interactions until Section 6.2 - instead we'll Took first |
their effect on observables such as susceptibility.
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