
ar
X

iv
:h

ep
-t

h/
04

05
16

0v
1 

 1
9 

M
ay

 2
00

4

CU-TP-1114

A Secret Tunnel Through The Horizon

Maulik Parikh
1

Department of Physics, Columbia University, New York, NY 10027

Abstract

Hawking radiation is often intuitively visualized as particles that have tunneled

across the horizon. Yet, at first sight, it is not apparent where the barrier is.

Here I show that the barrier depends on the tunneling particle itself. The key is

to implement energy conservation, so that the black hole contracts during the

process of radiation. A direct consequence is that the radiation spectrum cannot

be strictly thermal. The correction to the thermal spectrum is of precisely the

form that one would expect from an underlying unitary quantum theory. This

may have profound implications for the black hole information puzzle.
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Classically, a black hole is the ultimate prison: anything that enters is doomed;

there is no escape. Moreover, since nothing can ever come out, a classical black

hole can only grow bigger with time. Thus it came as a huge shock to physicists

when Stephen Hawking demonstrated that, quantum mechanically, black holes

could actually radiate particles. With the emission of Hawking radiation, black

holes could lose energy, shrink, and eventually evaporate completely.

How does this happen? When an object that is classically stable becomes

quantum-mechanically unstable, it is natural to suspect tunneling. Indeed, when

Hawking first proved the existence of black hole radiation [1], he described it

as tunneling triggered by vacuum fluctations near the horizon. The idea is

that when a virtual particle pair is created just inside the horizon, the positive

energy virtual particle can tunnel out – no classical escape route exists – where

it materializes as a real particle. Alternatively, for a pair created just outside

the horizon, the negative energy virtual particle, which is forbidden outside,

can tunnel inwards. In either case, the negative energy particle is absorbed by

the black hole, resulting in a decrease in the mass of the black hole, while the

positive energy particle escapes to infinity, appearing as Hawking radiation.

This heuristic picture has obvious visual and intuitive appeal. But, oddly,

actual derivations of Hawking radiation did not proceed in this way at all [1, 2].

There were two apparent hurdles. The first was technical: in order to do a

tunneling computation one needed to have a coordinate system that was well-

behaved at the horizon; none of the well-known coordinate systems were suit-

able. The second hurdle was conceptual: there didn’t seem to be any barrier!
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Typically, whenever a tunneling event takes place, there are two separated clas-

sical turning points which are joined by a trajectory in imaginary or complex

time. In the WKB or geometrical optics limit, the probability of tunneling is re-

lated to the imaginary part of the action for the classically forbidden trajectory

via

Γ ∼ exp(−2 Im I) , (1)

where I is the action for the trajectory. So, for example, in Schwinger pair pro-

duction in an electric field, the action for the trajectory that takes the electron-

positron pair to their required separation yields the rate of production. Now,

the problem with black hole radiation is that if a particle is even infinitesimally

outside the horizon, it can escape classically. The turning points therefore seem

to have zero separation, and so it’s not immediately clear what joining trajectory

is to be considered. What sets the scale for tunneling? Where is the barrier?

In this essay, I will show that the intuitive picture is more than a picture:

particles do tunnel out of a black hole, much as Hawking had first imagined.

But they do this in a rather subtle way since, as just argued, there is no pre-

existing barrier. Instead, what happens is that the barrier is created by the

outgoing particle itself. The crucial point is that energy must be conserved

[3]. As the black hole radiates, it loses energy. For black holes, the energy and

radius are related, and this means that the black hole has to shrink. It is this

contraction that sets the scale: the horizon recedes from its original radius to

a new, smaller radius. Moreover, the amount of contraction depends on the

energy of the outgoing particle so, in a sense, it is the tunneling particle itself

2



that secretly defines the barrier.

Now, one might fear that a calculation of Hawking radiation in which energy

conservation is critical would require a quantum theory of gravity because the

metric must fluctuate to account for the contraction of the hole. This is true

but, fortunately, there is at least one regime in which gravitational back-reaction

can be accounted for reliably and that is the truncation to spherical symme-

try. Intuitively, in a transition from one spherically symmetric configuration to

another, no graviton is emitted because the graviton has spin two and each of

the spherically symmetric configurations has spin zero. So quantizing a spher-

ically symmetric matter-gravity system is possible because no quantization of

gravitons is required. Indeed, the only degree of freedom is the position of the

particle (which, being spherically symmetric, is actually a shell).

Armed with these insights, we can compute the imaginary part of the action

for a particle to go from inside the black hole to outside. A convenient line

element for this purpose is

ds2 = −

(

1 −
2M

r

)

dt2 + 2

√

2M

r
dt dr + dr2 + r2dΩ2

2
. (2)

This line element was first written down by Painlevé and Gullstrand long ago

[4, 5], but they apparently missed the significance of their discovery. What they

had unwittingly found was a coordinate system that was well-behaved at the

horizon. Other nice features of their coordinate system are that there is no

explicit time dependence, and constant-time slices are just flat Euclidean space.

Working in these coordinates within the spherically symmetric truncation,
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one calculates the imaginary part of the action,

Im I = Im

∫ rout

rin

p dr , (3)

where p is the momentum, rin = 2M is the initial radius of the black hole, and

rout = 2(M − E) is the final radius of the hole. Here E is the energy of the

outgoing particle. Notice that this fixes the scale: the classical turning points,

2M and 2(M − E) are separated by an amount that depends on the energy of

the particle. It is the forbidden region from r = 2M to r = 2(M − E) that the

tunneling particle must traverse. That’s the barrier.

One would then expect that, in the WKB limit, the probability of tunneling

would take the form

Γ ∼ exp(−2 Im I) ≈ exp(−βE) , (4)

where e−βE is the Boltzmann factor appropriate for an object with inverse

temperature β. Indeed, this is almost what is found. But, remarkably, an exact

calculation [3, 6] of the action for a tunneling spherically symmetric particle

yields

Γ ∼ exp

(

−8πME

(

1 −
E

2M

))

. (5)

If one neglects the E/2M term in the expression, it does take the form e−βE

with precisely the inverse of the temperature that Hawking found. So at this

level we have confirmed that Hawking radiation can be viewed as tunneling

particles and, furthermore, we have verified Hawking’s thermal formula. But,

unlike traditional derivations, we have also taken into account the conservation
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of energy and this yields a correction, the additional term E/2M . Thus the

spectrum is not precisely thermal!

This is exciting news because arguments that information is lost during

black hole evaporation rely in part on the assumption of strict thermality of the

spectrum [7]. That the spectrum is not precisely thermal may open the way

to looking for information-carrying correlations in the spectrum – work on this

continues. Indeed, the exact expression including the E/2M term can be cast

rather intriguingly in the form

Γ ∼ exp(∆S) , (6)

where ∆S is the change in the Bekenstein-Hawking entropy of the hole. This is

a very interesting form for the answer to take for a number of reasons, including

the fact that it is consistent with unitarity. Put another way, our result agrees

exactly with what we would expect from a quantum-mechanical microscopic

theory of black holes in which there is no information loss! For quantum theory

teaches us that the rate for a process is expressible as the square of the amplitude

multiplied by the phase space factor. In turn, the phase space factor is obtained

by summing over final states and averaging over initial states. But, for a black

hole, the number of such states is just given by the exponent of the final and

initial Bekenstein-Hawking entropy:

Γ = |amplitude|2 × (phase space factor) ∼
eSfinal

eSinitial

= exp(∆S) . (7)

Quantum mechanics, we observe, is in perfect agreement with our answer.
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