Condiciones de borde

 $\left(\begin{array}{c} \epsilon_1 \end{array}\right)$

 $\left(2\right)$ ϵ_{2}

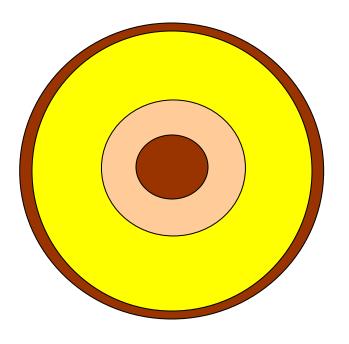
 $D_{1n} = D_{2n}$ $\Rightarrow \Rightarrow$ $\varepsilon_1 E_{1n} = \varepsilon_2 E_{2n}$

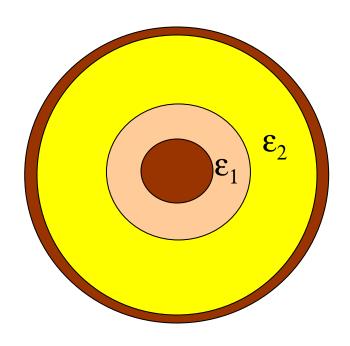
 $E_{1t} = E_{2t}$

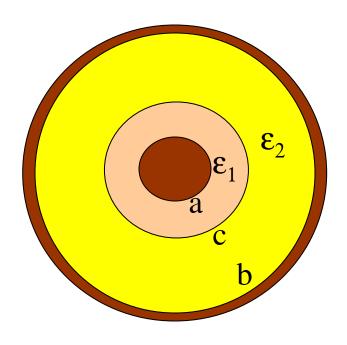
Ejemplo: Condensador plano con dieléctrico $\varepsilon = K\varepsilon_0$

Ejemplo: Condensador plano con dieléctrico de 3 capas

Condensadores en memorias digitales







Energía electrostática en dieléctricos

$$\mathbf{W} = \frac{1}{2} \int_{\mathbf{V}} \mathbf{V}(\vec{\mathbf{r}}) \cdot \rho(\vec{\mathbf{r}}) \cdot \mathbf{d}^{3} \mathbf{r}$$

Reemplazando: $\rho = \nabla \cdot \vec{D}$ (Ley de Gauss):

$$W = \frac{1}{2} \int_{V} V(\vec{r}) \nabla \cdot \vec{D} \, d^{3}r$$
 Identidad: $\nabla \cdot (V\vec{D}) = V\nabla \cdot \vec{D} + \vec{D} \cdot \nabla V$

$$W = \frac{1}{2} \int_{V} \nabla \cdot (V\vec{D}) d^{3}r - \frac{1}{2} \int_{V} \vec{D} \cdot \nabla V d^{3}r$$

Aplicar teorema de Gauss:
$$\int_{V} \nabla \cdot (V\vec{D}) d^{3}r = \oint_{S} V\vec{D} \cdot d\vec{S}$$

$$W = \frac{1}{2} \oint_{S} V \vec{D} \cdot d\vec{S} + \frac{1}{2} \int_{V} \vec{D} \cdot \vec{E} d^{3}r$$

Si
$$R \to \infty$$
, $V \sim \frac{1}{R}$, $|\vec{D}| \sim \frac{1}{R^2}$, $S \sim R^2$

$$W = \frac{1}{2} \int_{V} \vec{D} \cdot \vec{E} \, d^{3}r$$
 Densidad de energía = $\frac{1}{2} \vec{D} \cdot \vec{E}$

Dieléctricos lineales: $D = \varepsilon E = K \varepsilon_0 E$

Densidad de energía =
$$\frac{1}{2} \vec{D} \cdot \vec{E} = \frac{K \varepsilon_0}{2} |\vec{E}|^2$$

Si K = 1 (en el vacío),
$$D = \varepsilon_0 E$$

Densidad de energía en el vacío
$$=\frac{\varepsilon_0}{2} |\vec{E}|^2$$