Clase Auxiliar # 7 FI2A1-3

Prof. Patricio Aceituno Aux. Gabriel Cuevas Jueves, 3 de Abril de 2008

Dinámica.

Problema 1. (B6 guía P. Aceituno.)

Un cubo de lado a y masa m que se encuentra sumergido en un líquido, emerge a la superficie con una rapidez $v_o = \sqrt{6ag}$, donde g es la aceleración de gravedad. El líquido ejerce hacia arriba una fuerza denominada empuje (E(x)). Cuando la cara superior del cubo sobresale una altura x sobre la superficie del líquido, el empuje está dado por la expresion siguiente:

$$E\left(x\right) = \frac{4mg}{a}\left(a - x\right)$$

Calcule:

- a. La rapidez del bloque en el instante que emerge totalmente del agua.
- b. La altura máxima sobre la superficie del líquido que alcanza la cara superior del bloque.

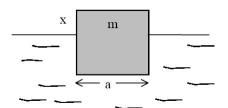


Figura 1: Problema 1

Problema 2. (P1 C1 2005-2)

Una partícula se mueve con roce despreciable entre dos cilindros concéntricos, de modo que su distancia al eje de los cilindros es R. Si la partícula se lanza con velocidad \vec{V}_o formando un ángulo α con la horizaontal, determine:

- a. La reacción que ejerce el cilindro sobre la partícula.
- b. El valor de V_o tal que después de n vueltas completas la partícula llegue justo a la posición inicial.

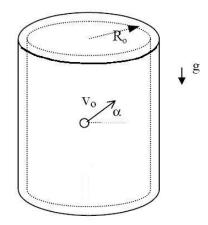


Figura 2: Problema 2

Problema 3. (P3 C1 2004-1.)

Una partícula de masa m se lanza en la superficie interna de un cascarón esférico de radio R, sometida a la acción de la gravedad. Estando en una posición que forma un ángulo θ_o de la vertical, la partícula se lanza horizontalmente con una rapidez inicial V_o , como se indica en la figura.

Mientras la partícula no se despegue del cascarón obtenga:

- a. $\frac{d\phi}{dt}$ en función de θ .
- b. $\frac{d\theta}{dt}$ en función de θ .
- c. Si $\theta_o = \frac{\pi}{4}$, determine el valor de V_o de modo que la partícula suba hasta un ángulo máximo $\theta_o = \frac{2\pi}{3}$. Muestre que en ese punto la partícula no se despega del cascarón.

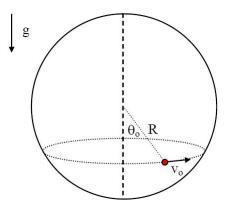


Figura 3: Problema 3