
A Fuzzy Logic Tutorial

Michael A. Goodrich

July 10, 2001

Background

As many of you know, there is a strong relationship between set theory and propositional logic. In
this tutorial, we will exploit this relationship. More specifically, we will

• define a set membership function,

• discuss how set theory and logic are related,

• show how operations in logic can be translated into operations on crisp set membership func-
tions,

• define the notions of a fuzzy set and a fuzzy set membership function,

• show how operations in logic can be translated into operations on fuzzy set membership
functions, and

• give examples of how to use fuzzy logic in solving a problem.

A great reference, some of which is paraphrased in this tutorial, on fuzzy logic is [1].

Part 1: Conventional Logic and Set Theory

Concept #1: The Set Membership Function

As most of you know, a set is just a collection of elements. We use sets all of the time; there is the
set of students who will get A’s in this class, the set of NBA players who don’t have tatoos, the set
of cats that I like (the empty set), etc. For any object, call it x, and for any set, call it A, I can
identify whether or not the object x is in the set A. The set membership function (often called the
characteristic function in conventional set theory) returns one if x ∈ A and zero otherwise. If we
let µA represent this function then it is defined as

µA(x) =

{
1 If x ∈ A
0 Otherwise

.

1



For example, consider the set of integers between 3 and seven, A = {4, 5, 6}. The membership
function for this set is

µA(x) =

{
1 If x = 4, x = 5, or x = 6
0 If x equals any other integer.

.

The key concept is that the set membership function is unity if and only if the argument x is in the
set A. Thus, rather than explicitly specifying the set by listing its elements, I can implicitly specify
the set by defining it’s set membership function.

Implicitly describing sets via a set membership function is sometimes helpful if I can translate
operations on sets into corresponding operations on the set membership functions. In other words,
rather than explicitly listing every element that satisfies a relation between two sets, I can instead
implicitly specify this set by giving a function that translates the two set membership functions into
a new set membership function. For example, the intersection of two sets A and B is defined as

A ∩B = {x : x ∈ A ∧ x ∈ B}.

The set membership function for such a set is defined as

µA∩B(x) =

{
1 If x ∈ A ∩B
0 Otherwise

.

Rather than giving the definition of µA∩B in this way, I can instead give a definition using µA and
µB. One way to do this is to use the following operation

µA∩B(x) = min{µA(x), µB(x)}.

Check this for yourself, but µA∩B(x) = 1 if and only if µA(x) = 1 and µB(x) = 1 which means that
x is only in the intersection of A and B if x is in both A and B.

Interestingly, using the minimum operator is not the only way for µA and µB to be combined to
form µA∩B. Alternatively, I could define µA∩B as follows:

µA∩B(x) = µA(x)× µB(x).

Check for yourself, but the product of µA and µB is one if and only if x is in A and x is in B.
Although we will, in general, use the minimum operator (rather than the product operator —

there are often very good reasons for using the product operator), it turns out that there are a lot
of ways that we can combine µA and µB such that they produce a correct set membership function
for µA∩B. To represent any arbitrary combination of µA and µB, we use the (arbitrary) symbol ?
whence we can define the set membership function of µA∩B as

µA∩B(x) = µA(x) ? µB(x).

If might help you remember that the ? is associated with intersection if you note that a ? kind of
looks like an asterisk ∗, the symbol for multiplication in C.

Now that we have defined the set membership function for a crisp set and introduced a char-
acterization of intersection using membership functions, we should also characterize union and

2



complement. We’ll start with union. The set membership function for the set obtained by taking
union of two sets A and B is defined as

µA∪B(x) = µA(x)⊕ µB(x).

The most common form of the ⊕ operator is the maximum operator,

µA∪B(x) = max{µA(x), µB(x)}

which you should verify is unity whenever x is in either A or B or both. Another common form of
the ⊕ operator is bounded sum,

µA∪B(x) = min{1, µA(x) + µB(x)}

which you should again verify produces the correct set membership function for union.
Finally, we can characterize taking the complement of a set Ā = {x : x 6∈ A}. This set

membership function is easily characterized as

µĀ(x) = 1− µA(x).

Concept #2: Set Theory and Logic

At this point in your CS career, you should be an expert at propositional logic. Most of you have
also been exposed to predicate logic, and some of you have been exposed to how logic is related to
set theory. In this section, I’ll try to make the connection more explicit and directly applicable to
fuzzy logic.

The fundamental building blocks of first order logic are objects and predicates, and the funda-
mental building blocks of set theory are sets. Each predicate is a mapping from the set of possible
objects to the set {T, F}. In addition to describing a predicate as a function that returns a boolean
value, I could just as easily describe a predicate as a set. For example, I can be dealing with the
predicate IsTall(people) and describe this as a function that takes people and returns a true or a
false depending on whether they are tall or not. Corresponding to this function is the set IsTall
which is the collection of all people who are tall, IsTall = { people : IsTall(people)=true}.

Now that we’ve made the connection between predicates, objects, and sets, we are in a position
to make the connection between logic and set theory. In general, we can view predicates in two
ways: (a) as a function that returns a true or false, or (b) as the subset of the domain of discourse
for which the predicate function is true. The most basic mathematical equivalences between logic
and set theory can the be stated as

Logic Set Theory
A(·) ∧B(·) A ∩B
(·) ∨ A(·) A ∪B

∼ A(·) (negation) Ā (complement)

where A(·) represents a predicate (with · a placeholder for the variable name) with corresponding
set A. That is, performing an AND between two predicate functions is equivalent to taking the
intersection between two predicate sets.

3



Although these equivalences are important, there are two other very important equivalences
from logic that we want to use. The first of these equivalences is implication, ⇒. In logic, I often
know whether predicate B is true/false when I know the truth/falsehood of predicate A; in other
words, I know that there exists a relation between A and B of the form A(·) ⇒ B(·). How does
implication translate into a set theoretic equivalence? First, I note that (A ⇒ B) ⇔ ((∼ A) ∨ B).
Second, I translate this latter equation into set theoretic notation

Logic Set Theory
A(·) ⇒ B(·) Ā ∪B

The second equivalence of interest involves Modus Ponens. I think that it is best if we postpone
how to do modus ponens until the next section, so you’ll just have to read on.

Concept #3: Translating Conventional Logic Into Operations on Set
Membership Functions

Now that we have mapped logic (done via predicates) into set theory, we can take the next step
and map these set theoretic operations into corresponding operations on set membership function
operations. We will do this mapping for And, Or, Not, Implies, and Modus Ponens. The
first four are easy:

Logic Set Theory Operator
A(·) ∧B(·) A ∩B µA ? µB

A(·) ∨B(·) A ∪B µA ⊕ µB

∼ A(·) Ā (1− µA)
A(·) ⇒ B(·) Ā ∩B (1− µA) ? µB

Note in advance that one way that fuzzy logic differs from conventional logic is that the operator
used for implication is different from that listed above.

To deal with modus ponens, it is necessary to talk about (1) relations and (2) compositions of
relations.

Relations As discussed in Chapter 7 of the textbook, a relation is a property among various
objects; it is a predicate with more than one argument. In terms of sets, a relation represents an
association between elements of two or more sets. Implication can be viewed as a relation. For
example, consider the statement ∀xA(x) ⇒ B(x). We can construct a relation (a two-variable
predicate) from this implication, call it RA⇒B(x, y). Since the implication tells us that B(·) is true
whenever A(·) is, the implication relation is

RA⇒B(x, y) =

{
1 when y = x
0 otherwise

.

The statement ∃xA(x) ⇒ B(x) can be thought of as a predicate that returns true whenever y =
x = G where A(G) ⇒ B(G).

In addition to implications of the form A(x) ⇒ B(x) there are other types of implications. One
type of implication has the form ∀x, yA(x) ⇒ B(x, y) which state that whenever the predicate

4



A(Xi) is in the knowledge base then we can conclude ∀yB(Xi, y). This latter statement is akin
to concluding B(Xi, Y1) ∧ . . . ∧ B(Xi, Yn) where the variable y has a domain of {Y1, . . . , Yn}. In
essence, this type of implication says that whenever A holds then we can conclude something about
x’s relationship to the family y. A particularly useful type of implication in fuzzy logic has the form
∀x, yA(x) ⇒ B(y). This implication encodes a relationship between two predicates on different
domains.

Let’s go over a fairly complete discussion that deals with relations in general rather than just
dealing with implication. Let RAB denote a relation between the sets A = {a1, a2, a3} and B =
{b1, b2}. We can construct a relational matrix as

b1 b2

a1

a2

a3




true
true
false

false
true
false




which translates into a set membership function for this relation as

µRAB
(a, b) =

{
1 if and only if (a, b) ∈ RAB

0 otherwise

where RAB = {(a, b) : RAB(a, b) = true}. This yields an alternative form for the relational matrix

b1 b2

a1

a2

a3




1
1
0

0
1
0




Example:

Earlier, we said that implication was a type of relation. To illustrate this and to introduce
an example that we will use throughout this section, consider the problem of trying to
decide whether or not to turn on the heater in your apartment. Suppose that I have
a thermometer that gives three readings, A = {“T < 30”, “30 ≤ T ≤ 60”, “T > 60”}
where I have used quotation marks to indicate that these statements can be interpreted as
predicates. If you prefer, you can think of these three predicates as A = {IsCold, IsCool,
NotCold}. In addition to these three input predicates, I have two actions available
B = {HeatOn,HeatOff}. Suppose further that I have a rule base that says

Reading (a) ⇒ Action (b)
T < 30 ⇒ HeatOn

30 ≤ T ≤ 60 ⇒ HeatOn
T > 60 ⇒ HeatOff

In this case, the implies in the statement “T < 30” ⇒ HeatOn does not mean ”if T < 30
it follows logically that the heat is on” but rather ”if T < 30 it follows logically from

5



what my goals are that the heat should be turned on.” In this latter case, implication is
nothing more than a relation between readings and actions

HeatOn Heatoff
T < 30

30 ≤ T ≤ 60
T > 60




1
1
0

0
0
1




Compositions Now, let’s explore what happens if I want to relate a relation on one set of domains
to a relation on a different set. I’ll give two examples. Example:

In the first example, suppose that I work for BYU’s employment office and my job is to
help students find jobs. To find a job, I must identify some potential employers. One way
to do this is to identify which faculty members students might know and then identify
which potential employers are known by which faculty members. Let Mentor(x,y) encode
the relationship between students x and faculty members y. Let Friend(y,z) encode the
relationship between faculty members y and potential employers z. My job is to find out
if there is a network between the students and the potential employers. Let Network(x,z)
encode this relationship. The Network relationship is given by the composition of Mentor
and Friend,

Network(x,z) = Mentor(x,y) ◦ Friend(y,z).

Suppose that there are three students, {Curtis, Jacob, Nancy}, three faculty members,
{Mike, Todd, Tony}, and three employers, {Bill, George, Sarah}. The Mentor relation
is given by

Curtis Jacob Nancy
Mike 1 1 0
Todd 0 0 1
Tony 0 1 1

which says that Curtis has been mentored by Mike but no other. The Friend relation is
given by

Mike Todd Tony
Bill 1 0 0

George 0 1 0
Sarah 0 0 1

.

Which students have a network to which employers? We can do this by finding when
mentor relations hold between a faculty member and a student, and when a friendship
holds between that faculty member and an employer. For example, since µMentor(Curtis, Mike) =
1 and µFriend(Mike,Bill) = 1 it is apparent that there is a network between Curtis and

6



Bill, µMentor◦Friend(Curtis, Bill) = 1. The membership functions for this network relation
can be given by

µNetwork(x, z) = µMentor◦Friend(x, z)

= max
y

[µMentor(x, y) ? µFriend(y, z)] .

The ? indicates that for a particular y both predicates must be true for the Network to
pass through faculty member y, and the max indicates that the Network predicate is true
if it is true for any faculty member. The resulting Network predicate is given by

Curtis Jacob Nancy
Bill 1 (through Mike) 1 (through Mike) 0

George 0 0 1 (through Todd)
Sarah 0 1 (through Tony) 1 (through Tony)

Example:

As a second example, let’s return to the temperature/heater example. Suppose that you
bring a date to your (underheated) apartment and she or he has a thermometer that reads
temperature in one degree increments. You don’t want to change your reading/action
rulebase (it was programmed in Fortran in 1978), so you instead write a new program
that translates the temperature on your date’s thermometer into one of the three classes
known to your Fortran program. In other words, you create a new relation QCA, where
C = {0, 1, . . . , 120} is the range of the thermometer. The relation is defined in terms of
the membership function µQCA

(c, a) as

a
c = T “T < 30” “30 < T ≤ 60” “T > 60”
c < 30 1 0 0

30 ≤ c ≤ 60 0 1 0
c > 60 0 0 1

Let PCB denote the new relation between the temperature reading from your date’s ther-
mometer and the decision to turn on your heater. How do I combine QCA with RAB to
find PCB? We do this by the composition operator,

PCB(c, b) = QCA(c, a) ◦RAB(a, b)

which is defined as a relation on C ×B such that (c, b) ∈ PCB if and only if there exists
at least one a ∈ A such that (a, b) ∈ RAB and (c, a) ∈ QCA. In other words, you will turn
the HeatOn whenever your date reports a temperature for which the relation between this
temperature and either one of the categories “T < 30” and “30 ≤ T ≤ 60” is true.

The trick is to come up with a formula on the membership functions of µRAB
and µQCA

that correctly produces µPCB
. The formula is given by

µPCB
(c, b) = µQ◦P (c, b) = max

a∈A
µQCA

(c, a) ? µRAB
(a, b).

7



Basically, this formula says that the truth of the predicate PCB, which was created by
combining the predicates QCA and RAB, is obtained by seeing if both predicates Q and
R are simultaneously true for any object a ∈ A. If I can find at least one object for
which both predicates are true then the composition of these two predicates is also true.
Otherwise, the composition is false.

Let’s check to see that this works for the case when ? is implemented as a minimum,

µQ◦P (c, b) = max
a∈A

min{µQCA
(c, a), µRAB

(a, b)}.

Suppose that your date’s thermometer reads 32. Then c = 32. We want to find out if
HeatOn is true. So, we calculate

µQ◦P (32, HeatOn) = max
a∈{“T<30”,“30≤T≤60”,“T>60”}

min{µQCA
(32, a), µRAB

(a, HeatOn)}

= max





min{µQCA
(32, “T < 30”), µRAB

(“T < 30”, HeatOn)},
min{µQCA

(32, “30 ≤ T ≤ 60”), µRAB
(“30 ≤ T ≤ 60”, HeatOn)},

min{µQCA
(32, “T > 60”), µRAB

(“T > 60”, HeatOn)}





= max





min{0, 1},
min{1, 1},
min{0, 0}





= max{0, 1, 0}
= 1.

So, at least for this temperature reading you should turn the HeatOn.

Now, suppose that your date’s thermometer reads 82. Then c = 82. We want to find
out if HeatOn is true. So, we calculate

µQ◦P (82, HeatOn) = max
a∈{“T<30”,“30≤T≤60”,“T>60”}

min{µQCA
(82, a), µRAB

(a, HeatOn)}

= max





min{µQCA
(82, “T < 30”), µRAB

(“T < 30”, HeatOn)},
min{µQCA

(82, “30 ≤ T ≤ 60”), µRAB
(“30 ≤ T ≤ 60”, HeatOn)},

min{µQCA
(82, “T > 60”), µRAB

(“T > 60”, HeatOn)}





= max





min{0, 1},
min{0, 1},
min{1, 0}





= max{0, 0, 0}
= 1.

So, at least for this temperature reading you should not turn the HeatOn.

Whew! To define all of the relation, I have to do this procedure for every temperature
and every action. When I am done, I have defined a set of temperatures for which the
heat should be turned on. (We’ll use a graphical technique to help us do this in the fuzzy
domain.)

8



The rule for creating the membership function of a new predicate obtained by combining pred-
icates A(x, y) and By,z is given by

µA◦B(x, z) = max
y

[µA(x, y) ? µB(y, z)]

Generalized Modus Ponens

• Review Generalized Modus Ponens

• Introduce the Substitution Predicate

• Review Implication Relation

• Map A(x, y) ◦B(y, z) into Substitution and Implication Predicates

In chapter 9 of the book, the author defines generalized modus ponens (GMP) for first order
logic. This inference rule requires three things: a rule (implication), a list of predicates that are part
of the rule antecedant, and a substitution that binds all variables in such a way that the individual
predicates match the predicates in the antecedant. Thus, there are three steps that must be done
to apply this inference rule: find the substitution, combine this substitution to the implication, and
then conclude the consequent with the substitution in place.

It would be nice if we could use composition to determine how to find the set-membership
function implementation of GMP. To do this, we need to figure out how the three steps in GMP
translate into predicates and composition. Let’s summarize what we know:

GMP Composition

SUBST(θ, P (·)) µA(x, y)
P (x) ⇒ Q(x) µB(y, z)
SUBST(θ, Q(·)) µA◦B(x, z)

The most obvious step is to set µB(y, z) = µP⇒Q(y, z) where this latter relation is the implication
relation that we talked about earlier. What should we do with µA(x, y)? Clearly, y must be treated
as the same variable as the y in µB(y, z). The other variable that we have to play with is our
binding list θ, so somehow we must associate x in µA(x, y) with θ in SUBST(θ, P (·). We will define
a substitution-based predicate as follows:

µP ∗(θ, y) =

{
1 if y = Const where θ = {y/Const}
0 otherwise

.

This predicate returns true whenever my free variable y corresponds to its bound value and false
otherwise. When I compose these two predicates, I get

µQ∗(θ, z) = µP ∗◦[P⇒Q](θ, z).

Let’s summarize what we’ve derived:

GMP Composition

SUBST(θ, P (·)) µP ∗(θ, y)
P (x) ⇒ Q(x) µP⇒Q(y, z)
SUBST(θ, Q(·)) µQ∗(θ, z)

9



Example:

We should now look at an example to help us put these pieces together. Consider a
world with two people in it, {Goodrich,Bradley} where Goodrich is about six feet tall
and Bradley is about seven and a half feet tall. These are our objects. We also have
a rule in our knowledge base that says IsTall(x) ⇒ IsntShort(x). Someone makes the
observation that Bradley is tall, so add the following statement into our knowledge base:
IsTall(Bradley). We want to apply GMP to deduce IsntShort(Bradley).

The first thing that we notice is that observing IsTall(Bradley) corresponds to creating
the substitution list θ = {x/Bradley} and the corresponding predicate IsTall∗(θ, y). Let’s
look at the relational matrices for µIsTall∗(θ, x) and µIsTall⇒IsntShort(y, z) which are given
by, respectively,

y θ = {y/Bradley}
Bradley 1
Goodrich 0

and

y
z Bradley Goodrich

Bradley 1 0
Goodrich 0 1

When I take the composition of these two predicates, I get

µIsntShort∗(θ, z) = max
y

[µIsTall∗(θ, y) ? muIsTall⇒IsntShort(y, z)]

= µIsTall∗(θ, Bradley) ? muIsTall⇒IsntShort(Bradley, z)

=

{
1 z =Bradley
0 z =Goodrich

.

This last equation says that we conclude a predicate that is unity when z is Bradley and
zero otherwise. In other words, we conclude that Bradley isn’t short.

One final comment is in order. Since θ isn’t used in the final predicate, we can implicitly
include this binding list in both µIsTall∗(θ, y) and µIsntShort∗(θ, z) yielding, respectively,
µIsTall∗(y) and µIsntShort∗(z).

Further Simplifying Modus Ponens One more item deserves attention. Consider what hap-
pens when we use the minimum operator to implement the ? function. We’ll leave the world of
concrete examples and use the generic predicates B∗, A∗, and A ⇒ B. When we apply the minimum
operator, the max-star composition applied to GMP becomes

µB∗(b) = max
a∈A

[µA∗(a) ? µA⇒B(a, b)]

= max
a∈A

min [µA∗(a), µA⇒B(a, b)] .

10



In general, it is convenient to use µA and µB to determine µA⇒B rather than figuring out what
this is as we did in the previous example. Using the equivalence (A ⇒ B) ⇔ (6 A∪B), substituting
µA⇒B(a, b) = (1− µA(a))⊕ µB(b), and replacing ⊕ with max we get

µB∗(b) = max
a∈A

min [µA∗(a), max(1− µA(a), µB(b))]

= max
a∈A

max
[
min (µA∗(a), (1− µA(a))), min (µA∗(a), µB(b))].

Since µA∗(a) = 0 except when a equals the specified constant in the binding list (call this constant
X), and since (1− µA(X)) = 0 then min (µA∗(a), (1− µA(a))) = 0. Thus, µB∗(b) becomes

µB∗(b) = max
a∈A

max
[
µA∗(a), (1− µA(a))), min (µA∗(a), µB(b))]

= max
a∈A

max
[
min (0, min (µA∗(a), µB(b))]

= max
a∈A

min (µA∗(a), µB(b)).

Look at this carefully. It should seem strange to you that we are defining µB(b) as a function of
µA∗(a) and µB(b). This is a bit like defining the term redundancy as the quality or state of having
redundancy. The solution to this is to assume that B(·) is true unless told otherwise. Thus, we
will set µB(b) = 1 for all b (we will change this in the fuzzy logic section). When we do this, we
basically say that the truth of B∗ equals the truth of A∗, but since each of these predicates is the
bound-version of the predicate, we are essentially concluding SUBST(θ, B(·)).

One final note is in order. Note that we can save a lot of time if we take µB∗(b) = maxa∈A min (µA∗(a), µB(b))
and generalize it to

µB∗(b) = max
a∈A

µA∗(a) ? µB(b).

This is the form of GMP that we will find most useful.
Now that we have introduced a bunch of terminology and some tools for manipulating the

symbols, it is time to do a fairly complete example. Hopefully, the following example will help
make things more clear.

An Example

We can now play some games with these set membership functions and predicates. I’m going to
use the world of professional basketball and the decision of which players will be drafted. In this
world, the objects of interest are players, and predicates are properties that these players do or do
not possess. The predicates of interest for this world are

Predicate Meaning
IsTall The player is tall by NBA standards
CanDefend The player plays defense well
CanShoot The player can shoot well
CanRebound The player gets lots of rebounds
BePopular The player will be liked by advertisers
CanPass The player is a good passer

11



Given these predicates, I want to construct a rule-base of which players will be drafted. Thus,
I have one additional predicate, the WillBeDrafted consequent predicate. Based on the predicates
above, I will construct a rule base that relates the antecedant predicates to the consequent predi-
cates, each as a function of player p.

Rule #1 IsTall(p) ∧ CanRebound(p) ∧ CanDefend(p) ⇒ WillBeDrafted(p)
Rule #2 IsTall(p) ∧ CanRebound(p) ∧ BePopular(p) ⇒ WillBeDrafted(p)
Rule #3 CanDefend(p) ∧ CanShoot(p) ∧ BePopular(p) ⇒ WillBeDrafted(p)
Rule #4 CanDefend(p) ∧ CanShoot(p) ∧ CanPass(p) ⇒ WillBeDrafted(p)

I have four players that I am considering drafting. These players have the following properties,
presented in set-membership function form.

Membership Mikeli Wesley John Stockton Greg Ostertag Michael Goodrich
µIsTall 1 0 1 0
µCanDefend 0 1 1 0
µCanShoot 1 1 0 0
µCanPass 0 1 0 0
µCanRebound 0 0 1 0
µBePopular 0 0 0 1

I have four rules in my rule base, all of which are made up of a series of antecedants connected by
ANDs. We can apply logic in two steps. The first is to apply the ? operator on the predicates in the
antecedant to determine the truth of the antecedant. Doing so yields the truth of the antecedant
for each rule which is denoted, for example, by µAnt 1(·) as the antecedant for rule 1:

Membership Mikeli Wesley John Stockton Greg Ostertag Michael Goodrich
µAnt 1 0 0 1 0
µAnt 2 0 0 0 0
µAnt 3 0 0 0 0
µAnt 4 0 1 0 0

We can now apply GMP to determine the truth level of the consequent WillBeDrafted. We do
this by using the formula

µWillBeDrafted∗(q) = max
p

{
µAnt i∗(p) ? µAnt i⇒WillBeDrafted(p, q)

}

= max
p

µAnt i∗(p) ? µWillBeDrafted(q)

where this last step was obtained by using the simple form of GMP we derived in the previous
section. We already know that Ant 1∗(·) is the predicate Ant 1 bound to a particular player.
Furthermore, we decided that, by convention, we were going to assume µB(·) was true when used
in the inference rule. Thus, my formula becomes

µWillBeDrafted(q) = max
p

µAnt i∗(p) ? µWillBeDrafted(q)

= µAnt i∗(p)

which returns one if and only if q is the name of the player that was bound to Ant i to create the
predicate Ant i∗.

We now plug in the truth of each rule and make the following conclusions

12



Membership Mikeli Wesley John Stockton Greg Ostertag Michael Goodrich
µWillBeDrafted 0 0 1 0
µWillBeDrafted 0 0 0 0
µWillBeDrafted 0 0 0 0
µWillBeDrafted 0 1 0 0

Thus, only John Stockton and Greg Ostertag will be drafted.

Part 2: Fuzzy Logic

You may have hesitated a little bit when you saw that Mikeli Wesley was listed as tall. For those
of you who don’t know, Wesley was played for the BYU men’s basketball team last year, and he
is around six and a half fee tall. Clearly, Wesley is tall by CS department standards, but by NBA
standards he has a pretty average height. What we need is some mechanism for encoding how much
a person satisfies the IsTall predicate. This is where fuzzy logic applies; it gives a mechanism for
assigning degree of membership other than 0 or 1.

Fuzzy Sets and Linguistic Variables

A linguistic variable is a predicate that can return something other than just true or false. For
example, the predicate IsTall is probably false for someone who is four feet tall, is probably true for
some who is seven and a half feet tall, and is somewhere in between for someone like me (at six feet
and three-quarters inches). Associated with this linguistic variable is a set membership function
that can take on values in the interval [0, 1] rather than just from the set {0, 1}. A fuzzy set is a set
with such a set membership function. For example, the fuzzy set for the IsTall linguistic variable
might have a set membership function as shown in Figure 1.

IsTall
µ (x)

x (height in feet)

1

0 5 6 7 83

Figure 1: Degree of membership of height in the IsTall set.

Given the fuzzy characterization of IsTall, our task is to figure out how to infer some conclusion.
To make this discussion complete, it is helpful to have a concrete example. To this end, let’s return
to the professional basketball players example again. The four players that I am considering drafting
have the following properties, presented in fuzzy set-membership function form.

13



Membership Mikeli Wesley John Stockton Greg Ostertag Michael Goodrich
µIsTall 0.8 0.3 0.95 0.3
µCanDefend 0.2 0.8 0.8 0.1
µCanShoot 0.8 0.9 0.2 0.3
µCanPass 0.2 1.0 0.1 0.2
µCanRebound 0.3 0.2 0.8 0.2
µBePopular 0.3 0.4 0.1 0.9

I pulled these numbers out of the air, but it might help to motivate them a little further. The
IsTall membership function is something like that shown in Figure 1. The CanDefend membership
function can be obtained by figuring out how many steals, taken-charges, or blocked-shots each
player recorded and then rank ordering the results. CanShoot can be obtained from shooting
percentage, CanPass from average assists per game, CanRebound from average rebounds per game,
and BePopular by letting the students in Deseret Towers rank the players on a scale from one to
ten (notice that Mike Goodrich is the most popular).

I can now find the truth value for the antecedants in each rule using the ? operator; I’ll use
minimum yielding,

µAnt1 = min{µIsTall, µCanRebound, µCanDefend}
Plugging in the actual membership functions yields,

Membership Mikeli Wesley John Stockton Greg Ostertag Michael Goodrich
µAnt1 min(0.8, 0.3, 0.2) min(0.3, 0.2, 0.8) min(0.95, 0.8, 0.8) min(0.3, 0.2, 0.1)
µAnt2 min(0.8, 0.3, 0.3) min(0.3, 0.2, 0.4) min(0.95, 0.8, 0.1) min(0.3, 0.2, 0.9)
µAnt3 min(0.2, 0.8, 0.3) min(0.8, 0.9, 0.4) min(0.8, 0.2, 0.1) min(0.1, 0.3, 0.9)
µAnt4 min(0.2, 0.8, 0.2) min(0.8, 1.0, 0.8) min(0.8, 0.1, 0.8) min(0.1, 0.3, 0.2)

which simplifies to

Membership Mikeli Wesley John Stockton Greg Ostertag Michael Goodrich
µAnt1 0.2 0.2 0.8 0.1
µAnt2 0.3 0.2 0.1 0.2
µAnt3 0.2 0.4 0.1 0.1
µAnt4 0.2 0.8 0.1 0.1

Generalized Modus Ponens Revisited

I am now almost in position to use the max-star composition to translate the truth of the antecedant
into the truth value of the consequent WillBeDrafted. First, I need to define how much each
antecedant implies each consequent. Earlier, we computed the equivalences

Logic Set Theory Fuzzy Operator
A ⇒ B Ā ∪B (1− µA)⊕ µB

but this actually yields some counter-intuitive results when applied to fuzzy decision problems
(mostly because of the False⇒True quirk of propositional logic). To fake our way around this
problem, we will use the ? operator for implication, most often either the minimum or the product
operator. Thus, we use

14



Logic Set Theory Fuzzy Operator
A ⇒ B Ā ∩B µA ? µB.

When we do this, we can simplify the fuzzy version of generalized modus ponens as follows:

µB∗(b) = max
a∈A

[
µA∗(a) ? µA(a) ? µB(b)

]
.

Fuzzification

In the previous discussion, A∗(·) was defined as a predicate that was true for one and only one
value of the variable, the value that the variable was bound to. In general, we can think of this
variable-binding process of making an observation (we are evaluating Mikeli Wesley) and doing
inference with this observation (Wesley won’t be drafted). When we are dealing with observations
from sensors, it is often the case that the sensor reading is imprecise. Consequently, a particular
value of a sensor should have a fuzzy set membership value of one, but values near this observation
should also have some degree of truth. The process of taking an observation and creating a fuzzy
set from it is called fuzzification.

There are some nice papers that use sophisticated forms of fuzzification, but in this class we
will restrict attention to singleton fuzzifiers. Such fuzzifiers assign a set membership value of one
to the observation and zero to everything else. The term singleton is suggestive of having only the
variable bound to a single constant, hence the proposition is true of a set with only a single value.

Completing The Basketball Example

We now have the pieces in place to finish the basketball example. We computed the truth value of
each antecedant, which I will include here again for readability

Membership Mikeli Wesley John Stockton Greg Ostertag Michael Goodrich
µAnt1 0.2 0.2 0.8 0.1
µAnt2 0.3 0.2 0.1 0.2
µAnt3 0.2 0.4 0.1 0.1
µAnt4 0.2 0.8 0.1 0.1

.

Each of these membership functions represent the fuzzy sets that were created when the free variable
was bound to the players listed in the table. Applying modus ponens gives

µWillBeDrafted(q) = max
q∈Ant i

{
µAnt i∗(q) ? [µAnt i(q)⊕ µWillBeDrafted(q)]

}

= max
q∈Ant i

{
µAnt i∗(q), µWillBeDrafted(q)

}

which yields the truth of the WillBeDrafted predicate for each player

Membership Mikeli Wesley John Stockton Greg Ostertag Michael Goodrich
µWillBeDrafted 0.2 0.2 0.8 0.1
µWillBeDrafted 0.3 0.2 0.1 0.2
µWillBeDrafted 0.2 0.4 0.1 0.1
µWillBeDrafted 0.3 0.8 0.1 0.1

To decide who will be drafted, we (arbitrarily) choose a threshold and determine whose truth value
is above a threshold. Again, it looks like Stockton and Ostertag will probably be drafted.

15



An Example from Control

Consider the problem diagrammed in Figure 2. The task is to make sure that our telescope points

δ

θ

Figure 2: Controlling the direction the telescope points.

toward to a star and tracks the star’s motion through the night. We want to design a system that
will automatically tell us what δ, the change in elevation of the telescope, should be to make sure
that the value of θ allows for correct viewing of the star (i.e., θ ≈ 0).

Setting Up The Problem To create such a controller, we first need to define some fuzzy sets.
We will define such sets over the two variables that we have, δ and θ. In essence, we will discretize
the domains of these variables. Let’s use five discrete chunks, call them Zero, Small Positive,
Small Negative, Large Positive and Large Negative, and make up set membership func-
tions for each chunk. Note that we have defined the domain of the output predicates prior to
applying any form of reasoning. I like to think of this prior restriction as akin to saying that no
matter what the truth value of the fuzzy antecedant, the fuzzy consequent can never exceed the
values chosen a priori for the output consequent.

The input and output set membership functions are shown in Figures 3 and 4, respectively.
membership functions

Our task is now to construct a rule base. We will follow the simple protocol that if the telescope
is pointed too high then θ is negative. If we want to move the telescope so that it points to a lower
elevation than δ must be positive. Our rules are of the form If θ is large and negative (we are aiming
too high) then δ should be large and positive (we should decrease the elevation of the telescope). We
formalize these as follows:

16



-12 -10 -8 -6 -4 -2 0 2 4 6 8 1210

LN SN Z SP LP

Figure 3: Input fuzzy sets

-3 -2.5 -1.5 -1 -0.5 0

LN SN Z SP LP

-2 0.5 1 1.5 2 2.5 3.0

Figure 4: Output fuzzy sets

17



Antecedant ⇒ Consequent
θ is LN ⇒ δ is LP
θ is SN ⇒ δ is SP
θ is Z ⇒ δ is Z
θ is SP ⇒ δ is SN
θ is LP ⇒ δ is LN

Reasoning Now, suppose that we observe the θ = 0. We look at each of my input fuzzy sets to
determine the truth of each possible antecedant:

Membership Value
Large Negative µLN(θ = 0) = 0
Small Negative µSN(θ = 0) = 0
Zero µZ(θ = 0) = 1.0
Small Positive µSP(θ = 0) = 0
Large Positive µLP(θ = 0) = 0

.

This is diagrammed on the left-hand side of Figure 5. In the diagram, each row on the left-hand

1

delta = 0.0015

2

3

4

5

−10 10

theta = 0

−2 2

Figure 5: Output fuzzy sets for θ = 0.

side represents one of my fuzzy inputs; e.g., the top triangle is a plot of µLN(θ) shown as a function
of θ. The observation θ = 0 is illustrated as a vertical line through each membership function with
each antecedant triggered by this observation shaded.

To further illustrate the process of reasoning, consider θ = 2 as diagrammed in Figure 6. Since

18



1

delta = −0.406

2

3

4

5

−10 10

theta = 2

−2 2

Figure 6: Output fuzzy sets for θ = 2.

θ = 2 corresponds to positive membership for both µZ and µSP, both membership functions are
partially shaded. Note that unlike the case for θ = 0, the triangles are not completely shaded.
Rather, they are shaded only below the value of µZ(2) and µSP(2). Why is this done?

The answer to this question lies in the formula for doing generalized modus ponens:

µB∗(b) = max
a∈A

[
µA∗(a) ? µA(a) ? µB(b)

]
.

Consider the predicate Small Positive and the corresponding singleton fuzzy set specified by

µSP∗(θ) =

{
1 θ = 2
0 otherwise

.

Then maxθ∈[−15:15]

[
µSP∗(θ)?µSP(θ)?µB(b)

]
has to occur at θ = 2. To see this, observe that µSP∗(θ)?

µSP(θ) = 0 except at θ = 2. Since all membership functions are no less than zero, this means that the

maximum over all θ must occur at θ = 2. Thus, we can simplify maxθ∈[−15:15]

[
µSP∗(θ)?µSP(θ)?µB(b)

]

to µSP(θ = 2) ?µB(b). The value, µSP(θ = 2), is illustrated by the horizontal line across the plot for
µSP.

Now, unlike the case for crisp logic, the output predicate has varying degrees of truth as δ varies.
How much merit do we place on concluding that δ should be used? We choose the minimum of the
strength of the antecedent rule (e.g., µSP(θ = 2))) and the degree to which δ is in the consequent set
(e.g., µSN(δ)). In words, we make an observation but conclude an entire fuzzy predicate, a function

19



of δ, that differs from the original consequent predicate. In Figure 5 for θ = 0 we conclude that

µZ∗(δ) = max
θ∈[−15:15]

[
µSP∗(θ) ? µSP(θ) ? µZ(δ)

]

= µSP(θ = 0) ? µZ(δ)

= 1 ? µZ(δ)

= µZ(δ).

In Figure 6 for θ = 2 we conclude that

µZ∗(δ) = max
θ∈[−15:15]

[
µSP∗(θ) ? µSP(θ) ? µZ(δ)

]

= µSP(θ = 2) ? µZ(δ)

= 0.6 ? µZ(δ)

which is illustrated on the right-hand side of Figure 6 as the shaded portion of µZ(δ).

Aggregation Observe that when θ = 2 two antecedants have non-zero membership functions
and, consequently, two consequents can be inferred (the two shaded membership functions on the
right-hand side of Figure 6. The process of combining two consequent membership functions to form
a third, complete consequent is called aggregation. Typically, maximum or some other ⊕ operator is
used to perform aggregation. The bottom membership function on the right-hand side of Figure 6
is the aggregation of the two consequents (SP and Z).

Deffuzification It’s great to have a plot of the aggregated consequent. If I ask this function,
“Given that θ = 2, how much support to I have for setting δ to -1.2?” it can answer “About 0.4.”
Unfortunately, this does not tell me what I should set δ to. Selecting an output from a consequent
membership function is called defuzzification because it is the process by which a fuzzy consequent
is translated into a crisp decision. A standard way to defuzzify is to take the centroid (i.e., center
of mass) of the output consequent membership function. Indeed, the resulting δ is shown by a solid
line on the plot of the consequent membership function of Figure 6. Thus, this reasoning system
observes θ = 2 and concludes that I should set δ = −.41.

One caution is in order to prevent you from blindly applying the centroid operator as a defuzzifier.
Consider the aggregated consequent membership function shown in Figure 7. Where is the centroid
of this figure? At an output value right between the two humps in the membership function.
What does this mean? It means that I have evidence (from observations) that either one of two
sets of outpus are justifiable, but I ignore that evidence and conclude something which has zero
justification.

Testing the System Suppose that you have the job of running the program that makes sure the
telescope is aligned with the star. Unfortunately, the stars come out at night, and you have fallen
asleep. When you awake, you observe that the telescope is eight degrees off center. What does your
fuzzy system say to do? It tells you to lower your end of the telescope by 1.18 milimeters every
tenth of a second.

Let’s check out some of the physics involved. The telescope is essentially a see-saw with one
end shorter than the other. Suppose that the telescope is three feet long with your end being one

20



Figure 7: A consequent membership function that illustrates the problem with blindly applying a
centroid defuzzifier.

foot long. The output of the fuzzy reasoning system we just constructed is called δ and it encodes
the rate at which your end of the see-saw is lowered. If you lower your end at a rate of δ for ∆T
seconds then the other end rises 2δ∆T ; more precisely, the end of the telescope carves out an arc
that is 2δ∆T milimeters long. Since arclength is just the angle that is changed times the length of
the lever, the change in angle that accompanies a 2δ∆T milimeters long arc is

2θ = 2δ∆T

or ∆θ = δ.
So, you read the current angle θ from one computer screen, type this into the terminal of a

second computer, and this second computer spits out the δ that you should input into the first
computer. You type this in, the telescope starts moving and, after a little while, a new observation
θ appears. You then repeat this process. Suppose that you can do this process about ten times a
second (your fuzzy system depends on this). Then, the angle of the telescope gradually approaches
zero. Figure 8 shows how the error decreases from 8 to 0 in about twenty seconds.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

Figure 8: The history of angles as you apply your fuzzy reasoning system. The vertical axis is θ
and the horizontal axis is time. Thus, as time progresses, the error of the telescope angle decreases.

21



One Final Note In the real world, things have momentum and they don’t always respond imme-
diately to our instructions. If the telescope was 3 meters long instead of 3 feet long, it is likely that
a rapid movement by the telescope would build up so much momentum that we would overshoot
our desired setting. One way to counteract this action is to control forces (instead of velocities) and
let the action be a function not only of the current angle but also of the current angular velocity.
This turns the system from one in which the only input is the angle to one which has two inputs:
angle θ and angular velocity θ̇ (notice the · over the θ to indicate θ̇ = dθ

dt
).

When a problem has two inputs, a convenient way to represent the rule base is via a fuzzy
associative memory. This is just a two dimensional array with indices corresponding to the an-
tecendants and entries corresponding to the consequents. For our telescope problem, the fuzzy
associative memory might be

θ
LN SN Z SP LP

N LP SP SP Z SN

θ̇ Z SP SP Z SN SN
P SP Z SN SN LN

.

The cell two from the right and one down has a SN in it. The corresponding rule is read if θ is
SmallPositive and θ̇ is Zero then δ is SmallNegative.

I made up some membership functions for θ̇ and created a corresponding rulebase. For θ = 0
and θ̇ = 0 the corresponding reasoning system can be visualized as in Figure 9.

Figure 10 shows the reasoning process for θ = 2 and θ̇ = −1.

References

[1] J. M. Mendel. Fuzzy logic systems for engineering: A tutorial. Proceedings of the IEEE,
83(3):345–377, March 1995.

[2] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

22



1

delta = 0.0015

2

3

4

5

6

7

8

9

10

11

12

13

14

15

−10 10 −2 2

theta = 0 dtheta = 0

−2 2

Figure 9: Output fuzzy sets for θ = 0 and θ̇ = 0. The top three figures on the left-hand side
correspond to θ is LargeNegative. The top figure in the middle column corresponds to θ̇ is Negative,
the second figurein the middle column corresponds to θ̇ is Zero, and so on.

23



1

delta = −0.487

2

3

4

5

6

7

8

9

Figure 10: Output fuzzy sets for θ = 2 and θ̇ = −1.

24


