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5.3 TRIDIAGONAL MATRICES

Consider the one-dimensional transient flow equation.
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The implicit or backward finite difference approximation, where the space
derivative is evaluated at the advanced time level (n + 1), is

WL =2t W S hT — hf
(Ax)? T At

(5.5)

Suppose that we have a problem domain with six nodes where the first and
last nodes are boundary nodes of known head. We wish to write the set of
algebraic equations that would be generated by applying Equation 5.5 to these
nodes, and we wish to write it in matrix form. First, we rearrange Equation 5.5
and put unknowns, that is, heads at the (n + 1) time level, on the left-hand side
and put knowns on the right-hand side.
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If the head values h, and hg, which are known from the boundary conditions,
are transferred to the right-hand side, then the matrix form of the set of algebraic
equations for the six-node problem is
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The coeflicient matrix has nonzero entries only along the three center diagonals.
This type of matrix is known as a tridiagonal matrix.

Thomas Algorithm

In general, a matrix equation such as Equation 5.2 can be solved by a technique
known as Gaussian elimination. However, except for special types of coefficient
matrices, Gaussian elimination requires a great deal of computer storage and
computer time. A particularly efficient form of Gaussian elimination can be
used to solve matrix equations which have a tridiagonal coefficient matrix. This
form of Gaussian elimination utilizes the Thomas algorithm. Remson et al.
(1971) present the details of both Gaussian elimination and the Thomas algo-
rithm. We develop the Thomas algorithm for tridiagonal matrices by system-
atically solving the linear equations by row 6perations.

We begin with a set of four equations whose coefficients are in tridiagonal
form.
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5.3 TRIDIAGONAL MATRICES

bix, + ¢;x; = J;

ayxy + byx; + €3X;3 =
(5.8)
asxy + byxy + €3X4 = fy

agXy + byxy = [,

The notation is that a; is a subdiagonal coefficient, b; is a center diagonal
coefficient, and ¢; is a superdiagonal coeflicient. The subscript i indicates row
number. We will perform row operations in a systematic manner to eliminate
the subdiagonal terms and to normalize the coefficients of diagonal terms to 1.
The idea is to transform the original tridiagonal set of equations into an equiva-
lent upper diagonal set.

Xy + Bix; =y

Xy + Baxa =Yy
(5.9)
X3 + Baxq =y,

Xg = Va4

To put Equation 5.8 into the form of Equation 5.9, we need to find expressions
for f; and y,. We do row operations such as one would use in solving the system
of equations by hand. If we compare the first row of Equation 5.9 with that of
Equation 5.8, we see that #;, = ¢,/b, and y, = f,/b,. We can obtain the form
of the second row of Equation 5.9 if we eliminate x; between the first row of
Equation 5.9 and the second row of Equation 5.8. The first row of Equation 5.9
is multiplied by a, and subtracted from the second row of Equation 5.8. This
produces the equation

(b, — axf)xy + €3x5 = [ — @y (5.10)

We define the coefficient of x, in Equation 5.10to be ay = b, — a,f,. Dividing
Equation 5.10 by a, gives

_J2— (5.11)

Equation 5.11 is now in the form of the second row of Equation 5.9. We can
therefore make the identification that f, = c,/a, and y, = (f> — a,y,)/u,. By
continuing down the rows in this fashion, we find the general relations

a = b — a;p;_, (5.12)

Bi = cifo (5.13)
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and
Vi=(fi — ayi- )/ (5.14)

If i, and y, are defined to be equal to zero, the recursive expressions also hold
for i = 1. All the coefficients §; and knowns y; in Equation 5.9 are now defined.
The solution of the original problem, Equation 5.8, is done systematically by
backward substitution from the bottom row x, = y, to the top row. In general,
X, = ¥,, where n is the number of equations, and, for { < n,

X; = Y — BiXisq (5.15)

The recursive relations, Equations 5.12 to 5.13, constitute the Thomas algo-
rithm. The Thomas algorithm is programmed in SUBROUTINE TRIDIA
(Figure 5.1).

Figure 5.1
Subroutine TRIDIA. Subroutine for solving a matrix equation with a tridiagonal
coefficient matrix using the Thomas algorithm.

SUBROUTINE TRIDIA(N)
C THIS SUBROUTINE CONTAINS THE THOMAS ALGORITHM
C THE SOLUTION IS CONTAINED IN THE X ARRAY
COMMON A,B,C,X,F
DIMENSION A(50),B(50),C(50),X(50),F(50)
DIMENSION ALPHA(S59) ,BETA(509),¥Y(50)
ALPHA(1)=B(1)
BETA (1)=C(1)/ALPHA(1l)
Y(1)=F(l)/ALPHA(1)
DO 281 I=2,N
ALPHA(I)=B(I)-A(I)*BETA(I-1)
BETA (I)=C(I)/ALPHA(I)
201 Y(I)=(F(I)-A(I)*Y(I-1))/ALPHA(I)
C BEGIN BACKWARD SUBSTITUTION FROM LAST ROW
X(N)=Y(N)
NU=N-1
DO 203 I=1,NU
J=N-1
203 X{(J)=Y(J)-BETA(J) *X (J+1)
RETURN
END



