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Abstract

This paper presents new models for multiple depot vehicle scheduling problem (MDVS) and multiple
depot vehicle scheduling problem with route time constraints (MDVSRTC). The route time constraints are
added to the MDYVS problem to account for the real world operational restrictions such as fuel con-
sumption. Compared to existing formulations, this formulation decreases the size of the problem by about
40% without eliminating any feasible solution. It also presents an exact and two heuristic solution pro-
cedures for solving the MDVSRTC problem. Although these methods can be used to solve medium size
problems in reasonable time, real world applications in large cities require that the MDVSRTC problem
size be reduced. Two techniques are proposed to decrease the size of the real world problems. For real-
world application, the problem of bus transit vehicle scheduling at the mass transit administration (MTA)
in Baltimore is studied. The final results of model implementation are compared to the MTA’s schedules in
January 1998. The comparison indicates that, the proposed model improves upon the MTA schedules in all
respects. The improvements are 7.9% in the number of vehicles, 4.66% in the operational time and 5.77% in
the total cost. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Scheduling is one of the most important steps in the urban mass transit planning process.
Transit schedules are usually changed three or four times a year. Vehicle scheduling or blocking is
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sequencing series of bus trips into blocks or schedules that can be run by the buses. Each of these
blocks is identified by a pull-out and a pull-in time. The length of these blocks are restricted by
buses’ fuel capacity and other operational constraints set forth by the agency. Designing these
blocks generally takes about 30% of the total time that the schedulers spend during the schedule
changing process. In most agencies the problem is split into several smaller scheduling problems
for individual depots or garages and each of these problems is treated as a separate problem.

The blocking problem can be formulated and solved as a multiple depot vehicle scheduling
(MDYVS) problem. Bodin et al. (1983) and Ball and Bodin (1983) have a clear definition of the
MDYVS problem. Adding the “Route Time Constraints’ restricts the blocks from being longer
than a specific time. In general, the multiple depot vehicle scheduling problem with route time
constraints (MDVSRTC) can be defined as chaining the trips together and constructing one day’s
work for each transit vehicle while satisfying the following conditions:

(a) A specific objective function is minimized. This is usually a combination of capital cost and

operational cost of vehicles;

(b) Each trip is run by just one vehicle;

(c) Each depot has a limited number of vehicles;

(d) Each vehicle returns to the same depot from which it started;

(e) The total time during which a vehicle is away from its depot is limited to a pre-specified time.

The MDVSRTC can be formulated as an integer-programming problem. Due to their large-
scale nature, real-world MDVSRTC problems cannot be solved exactly. Heuristic procedures are
needed to find acceptable solutions for these problems. In general, the objective function of the
MDVSRTC problem can be one of the followings.

(a) Minimizing the total number of vehicles, which is minimizing the capital cost or fixed cost of

vehicles;

(b) Minimizing the total deadhead time or deadhead cost of the operation;

(c) Minimizing a combination of the two;

Experiences with mass transit vehicle scheduling problems have shown that choosing the third
type of objective function, by considering a reasonable relation between the fixed cost and the
operational cost of the vehicles, would also lead to a minimum vehicle solution.

This paper focuses on a new approach to formulating and solving the MDVSRTC problems. In
the following sections, first, a brief review of existing models and formulations is presented; then,
the proposed formulation is described followed by the proposed solution strategies; finally, the
results of the implementations and the comparison of the results with the actual mass transit
administration (MTA) schedules are discussed.

2. Existing models and solution approaches
2.1. MDVS problem

The MDVS problem is an NP hard problem. Two commonly used approaches are based on a
single depot vehicle scheduling (SDVS) problem formulation and are called “Cluster First-Sche-
dule Second” (Carraresi and Gallo, 1984), and ““Schedule First-Cluster Second” (Gavish and
Shifler, 1978).
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The MDVS problem can be formulated as a MIP problem in two different ways: “Trip Based”
formulations, in which the trips are the components to which the variables are related, and “Block
Based” formulations, in which the blocks serve that purpose.

Bertossi et al. (1987) formulated the MDVS problem as a multi-commodity ‘“matching” pro-
blem, and proposed a heuristic for solving this problem. Problems of size 50 trips and three depots
are solved using the above procedure. Lamatsch (1990) proposed another multi-commodity ap-
proach that formulates the problem in a time-space network. Mesquita and Paixao (1990) pre-
sented a solution procedure for the MDYVS problem represented by a multi-commodity
formulation. They solved problems of size 250 trips with two depots, and 200 trips and three
depots.

Forbes et al. (1994) presented a shorter form of the problem formulated as a multi-commodity
problem that seems to be more practical. They solved the problem establishing a quasi assignment
problem (QAP). Then from the QAP, a problem equivalent to the original problem is built, and
the linear relaxation of this problem is solved starting from the QAP solution. A branch and
bound technique is then used for resolving the non-integer variables to integrality. They solved
problems with up to 600 trips and three depots to optimality (with average number of variables
equal to 91556).

Mesquita and Paixao (1997) have reviewed different multi-commodity formulations and studied
the application of the branch and bound algorithm to these formulations.
The MF, formulation presented in this paper is the same model presented by Forbes et al. (1994).

The most successful approach for solving the MDVS problem is the work of Lobel (1997).
He solved large real-world problems using a specific type of column generation called “La-
grangean Pricing”. He solved a problem consisting of 25,000 trips with more than 13 million
variables to optimality and a similar problem with about 70 million variables to a good
feasible solution. ILP-2, the basic model used by him is also equivalent to the model used by
Forbes et al. (1994).

The above formulations are all trip-based. The only block-based formulation found in the
literature is a column generation approach presented by Ribeiro and Soumis (1994). They for-
mulated the problem as a set-partitioning problem with some side constraints.

Fig. 1 shows the network associated with the model presented by Forbes et al. (1994). We also
present the mathematical formulation of this model. In the remainder of this paper, this model,
that is also equivalent to the models used by Lobel (1997) and Mesquita and Paixao (1997), is
referred as the Forbes formulation.

The mathematical form of the Forbes formulation is as follows:

Min Z agida; + Z CijaXija + Z biaBia, (la)
d,i ij,d dii
s.t. ZAd"i <ry Vd, (23_)
J
Adﬂ' + Z)(j’i’d — Wig = 0 VZ, d, (33)
J

Big+ Z)(i,jﬁd —wiqa=0 Vid, (4a)

J
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depots(sink)

Fig. 1. The network corresponding to the Forbes formulation of MDVS problem.

> Bu<rs Vd, (5a)
J

> wia=1 Vi (6a)
d

All variables integer, (7a)

where Fixed Cost is the fixed cost of one vehicle converted into an equivalent operational
cost,

4, 1 if trip i is the first trip run by a vehicle from depot d,
41710 otherwise,

Yo 1 if compatible trips i and j are run consecutively by a vehicle from depot d,
W4 =10 otherwise,

B 1 if trip i is the last trip run by a vehicle from depot d,
710 otherwise,

aq; = travel cost between depot d and the start point of trip i plus (Fixed Cost)/2,

travel cost of trip i plus the time between start time of trip j and end time of trip i
(if travel to the depot d is not feasible in the time between 2 trips),
¢ija = § Min. of the above and the total of the cost of trip i plus the travel cost from trip i
to depot d and from depot d to trip j
(if travel to the depot d is feasible in the time between 2 trips),
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b;4 = travel cost from the ending point of trip 7 to the depot d plus travel time of trip i plus
(Fixed Cost)/2,

1 if trip i is run by a vehicle from depot d,
Wig = .
¢ 0 otherwise,

rs = number of vehicles at depot d.

Considering the fixed cost for vehicles is necessary to force the optimization process to mini-
mize both the costs associated with the number of vehicles and those associated with the deadhead
times. This is done by adding this cost to the objective function through the decision variables that
correspond to either vehicles leaving the depot for the first time or vehicles returning to the depot
for the last time or both. Forbes et al. (1994) chose the latter by associating half of the cost to the
variables indicating vehicles leaving the depot and the other half to the variables indicating ve-
hicles returning to the depot. In the formulation presented in this paper we use the same approach
as Forbes et al. (1994).

2.2. Considering the route time constraints (MDVSRTC problem)

Although schedule makers in transit agencies use manual methods to deal with route time
constraints, there is some recognition of these constraints in the literature in the SDVS
context. Bodin et al. (1983), Branco (1989) and Freling and Paixao (1993) have taken these
considerations into account. All approaches consider the blocks as one continuous chain of
trips that start with a pull-out and end with a pull-in. No consideration is given to the
fact that buses that come back to the depot in the middle of the day, generally do not get re-
fueled and therefore, their afternoon pull-out must be considered as a continuation of the
morning block. These models only consider the time difference between one pull-out and the
corresponding pull-in. This makes the models unsuitable for considering fuel consumption
concerns.

We propose a new way for considering route time restrictions based on the actual time each
vehicle might be away from the depot excluding the time that the vehicle may spend in the depot
between two parts of its duty.

3. A new formulation for the MDVS problem

The following definitions are needed for presenting the new formulation.

(a) Depot compatible trips. Two compatible trips are referred to as “depot compatible” if it is
feasible and less costly for the vehicle to return to the depot during the time between serving the
trips. Lobel (1997) referred to the deadhead associated with this type of compatibility as a pull-
in-pull-out trip.

(b) Street compatible trips. Two compatible trips are referred to as “street compatible” if it is
infeasible or more costly for the vehicle to return to the depot during the time between serving
the trips.
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(c) Morning trips, midday trips and afternoon trips. Trips are grouped into three sets, namely,

“morning trips”’, “midday trips” and ““afternoon trips”’. The basic criterion for such a grouping

is that all trips in the morning trips are depot compatible with all trips in the afternoon trips.

The remaining trips are known as midday trips.

The new-formulation can be represented through a network as shown in Fig. 2. The compo-
nents of this network are as follows. The set of nodes of the network is the same as the set of nodes
in the Forbes formulation, except that there are extra transshipment depot nodes. The set of arcs
of the network are the same as the set of arcs in the Forbes formulation, except that (1) there are
extra arcs from the ending nodes of the morning trips to the depot transshipment nodes, and from
depot transshipment nodes to the starting nodes of the afternoon trips, and (2) there are no links
between the ending nodes of the morning trips and the starting nodes of the afternoon trips,
although all the trips in any of these two sets are compatible with all the trips in the other set.

The lack of links between the above trip node sets is the source of advantage of this model
compared to the Forbes formulation. The compatibility between trips of these sets is then replaced
by different combinations of a very small number of extra links between these trips nodes and the
depot transshipment nodes.

depots(transshipment)

depots(sink)

Fig. 2. Network corresponding to the new-formulation of MDVS problem.
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To justify this replacement we can prove that in the MDVS problem considering the costs
associated with vehicles waiting in the depot is avoidable. Therefore, for depot compatible trips
the compatibility cost would be equal to the cost of the deadhead trip from the end of the first trip
to the depot plus the cost of the deadhead trip from the depot to the start of the second trip.

The proposed formulation for the MDVS problem is as follows.

Min Z aqiAa; + Z eqily; + Z CijaXija + Z biaBiq + Zﬁ,dE,da (1b)
d,i 4

; d,i ij.d di

st Y Aqi<rg Vd, (2b)
Adl,i +Eq; + ZX/‘J‘,d -wiq=0 Vid, (3b)

J
Y Ewi—)» Fa=0 VYd, (4b)
Bil,d +Fiq +IZ)(i,j,d —wiqa =0 Vid, (5b)

J
> Bu<rs Vd, (6b)
w1 v (7b)
Ail variables integer, (8b)

where Fixed Cost,Ay;,B;q,a4;,b:;q and r, are the same as in the Forbes formulation.

1 if trip 7 is in the afternoon trip set and is the first trip
E;i = run by a vehicle from depot d returning to the street,
0 otherwise,

1 if compatible trips i and j are run consecutively by a vehicle from depot d
(not for depot compatible trips i and j, with 7 in the first and j
in the last trip sets),
0 otherwise,

1 if trip i is in the morning trip set and is the last trip
Fa= run by a vehicle from depot d returning to the depot,
0 otherwise,

ey; = travel cost between depot d and the start point of trip i,

travel cost of trip i plus the time between start time of trip j and end time of trip i
(if travel to the depot d is not feasible in the time between 2 trips),
¢ija = { Min. of the above and the total of the travel cost of trip i
plus travel cost from trip i to depot d and from depot d to trip j
(if travel to the depot d is feasible in the time between 2 trips),

fia = travel cost from the ending point of trip i to the depot d plus travel time of trip i.
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There can be four different unit costs associated with the four different operating periods for the
vehicles and crews. These periods are: (a) running the scheduled trips, (b) running the deadhead
trips, (c) waiting on street (layover), (d) parking in the depot.

For defining the costs associated with the decision variables, we assume that the first three unit
costs are the same and the fourth one is zero. We state these costs in terms of time. However, we
can define different costs for the first three and as the following proposition states if the fourth
cost is non-zero, we still can avoid its inclusion in the objective function.

Proposition 0. In the MDVS problem, consideration of the costs associated with parking vehicles in
the depots in the objective function is avoidable.

Proof. The total time associated with the above four periods is the total vehicle availability
time. Therefore, the time that vehicles are parked in the depot is not independent from the
other three time periods and can be stated in terms of the other time periods and the number
of vehicles. The unit cost associated with parking the vehicle in the depots is always equal to,
or less than, the other three unit costs. Therefore, if this unit cost is not zero, we can eliminate
it from the objective function and instead, use revised unit costs for the other periods. These
revised unit costs are the original unit costs minus the unit cost associated with parking in the
depot.

The above proposition justifies the cost definitions in our model. For street compatible trips,
the summation of deadhead and layover costs is considered as the cost of the compatibility. For
depot compatible trips, the summation of the cost of the deadhead from the first trip to the depot
and the cost of the deadhead from the depot to the second trip is considered as the cost of the
compatibility. And for deadhead trips from and to the depots, because there is no layover, the cost
would only be the deadhead cost.

In practice, most transit agencies do not consider any cost for keeping vehicles in the depots
and also consider the same unit cost for deadhead and layover. This is the basis for our as-
sumption regarding the unit costs.

It should also be noted that this model and similar models for this problem all consider de-
terministic trip times and deadhead times. Different trip times or deadhead times for similar trips
of a route can be incorporated for different times of day. However, transit agencies use de-
terministic trip times in setting time tables. In reality, the trip times are all stochastic. Due to the
size of the MDVS problems an attempt to formulate it as a stochastic problem adds another level
of complexity that makes the problem significantly more difficult to solve.

In the following paragraphs, we prove that our new-formulation is equivalent to the Forbes
formulation. We prove that every feasible solution of each of these problems is also feasible for
the other, and the objective function values are also the same.

Before proving the following propositions, it should be noted that the X;;, terms in the
Forbes formulation exist for all compatible pairs of trips, but X;;, terms in the proposed
formulation exist for compatible trips i and j only if trips i and j are not in the morning trip
set and afternoon trip set, respectively. On the other hand, E,; or F;, in the proposed for-
mulation, exist if trip i is in the afternoon trip set or morning trip set, respectively. In the
following propositions, set of X;;, terms in the Forbes formulation would be referred to as X,
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set of X;,;, in the proposed formulation would be referred to as X;, and set X\X; would be
referred to as X,.

Proposition 1. A/l feasible solutions of the new-formulation are feasible for the Forbes formulation.

Proof. Given a feasible solution for the new-formulation, constraint sets (2b)—(8b) hold. We need
to prove that constraint sets (2a)—(7a) also hold as well. Constraint sets (2a), (5a)—(7a) are exactly
the same as constraint sets (2b), (6b)—(8b). If constraint set (3b) holds, then the following pos-
sibilities exist.
Either w;, =0, then, all terms of (3a) would be equal to zero and (3a) will hold.
Or w;, =1, then the following possibilities exist.
Either 4,; =1, E;; =0, ZJ.XJ-,,-,‘, =0 (for X;,, in X;) and because E;; =0, we can conclude
that > i Xjia = 0 (for X;;, in X>) or in general ) i Xjia = 0, and therefore, constraint set (3a)
will hold.
Ord,; =0, E;; =1, Zij,,-,d = 0 (for X;;, in X;) then, the following possibilities exist.
Either ) i Xjia = 0 (for X;; 4 in X,) which results in E;; =0 which is not consistent with the in-
itial assumption.
Or )’ i Xjia = 1 (for X;;, in X>) or in general ) | i Xjia = 1, therefore, constraint set (3a) will hold
(Zij,,;’d for X;,, in X, cannot be more than 1 because then, E;; would be more than 1).
Ord,; =0, E;; =0, Zij,i-,d =1 (for X;;, in X;) then, the following possibilities exist.
Either }_ X;;4 = 0 (for X;;4 in X;) then, constraint set (3a) will hold.
Or >, Xjia > 0 then E;; > 0 which is not consistent with the initial assumption.
Therefore in general, if (3b) holds, then (3a) would also hold. Using similar logic we can prove
that if (5b) holds then (4a) would also hold. Therefore, feasible solutions of the new-formulation
are feasible for the Forbes formulation.

Proposition 2. All feasible solutions of the Forbes formulation are feasible for the new-formulation.

Proof. For a feasible solution of a problem stated by the Forbes formulation, constraint sets (2a)—
(7a) hold. We need to prove that constraint sets (2b)—(8b) also hold. Constraint sets (2b), (6b)—
(8b) are exactly the same as (2a), (5a)—(7a). If constraint set (3a) holds, then following possibilities
exist.
Either w;, = 0, then all terms of (3b) would be equal to zero and (3b) holds.
Or w;, = 1, then the following possibilities exist.
Either 4,; =1, Z;XJ.,i,d =0 (for X;,, in X) therefore, Z;XJ.,i,d =0 (for X;,;, in X,) therefore,
constraint set (3b) hold.
Or4,,=0, Zij,,-_d =1 (for X;;, in X) then the following possibilities exist.
Either 3 i Xjia =1 (for Xj; 4 in X;) and Zij,,-,d = 0 (for X;;, in X) and therefore, E,; = 0 and
constraint set (3b) holds.
Or Zijﬂ-,d = 0 (for X;;, in X;) and Zij,,-,d = 1 (for X;;, in X>) and therefore, E,; =1 and con-
straint set (3b) holds. Using similar logic we can prove that if (4a) holds, then (5b) would also
hold. If we add [(3b) — (5b) — (3a) + (4a)] over d, the result would be equal to zero, which is equal
to (4b), therefore it holds. Therefore, each feasible solution of the Forbes formulation is feasible
for the new-formulation.
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Proposition 3. A solution that is feasible for both models has the same objective function value in
both models.

Proof. We can rewrite the objective function of the Forbes formulation as follows.
Z aqiAa; + Z Ci,_/.dXi,_/.d(fOT Xi) + Z Ci,j,dXi,j,d(fOY X)) + Z biaBia.

d,i ij.d ij.d d.i
Considering the fact that for each nonzero variable X;;, in X5, there is one nonzero variable E,;
and one nonzero variable F;; and considering the equality of ¢;;, with sum of e,; and f;; from
definitions, we can see that the value of objective functions are also the same.

From the above three propositions we can conclude that the Forbes formulation and the new-
formulation are equivalent.

4. Considering route time constraints

To deal with route time restrictions we add the following set of constraints to the problem.
Ad,ll +)(11,t2,d +‘Xv12713,d + e +th(p,1).[pﬁd + Blp,d < p
Vd and V blocks with block time greater than Ty, (9b)

where p is the number of trips of the block, ¢ is the ith trip of the block. Tp. is the maximum
allowed block time.

If we add this set of constraints to the MDVS problem, they would prevent the solutions
containing any infeasible block with respect to illegal block time. However, these constraints must
be written for every possible block that can be constructed. In reality, the number of possible
blocks is extremely large and it is impractical to incorporate all of them in the model. Instead, we
build and add these constraints to a streamlined version of the MDVS problem formulation as
needed to prevent the generation of infeasible blocks.

The new formulation for the MDYVS problem can be streamlined into the following shorter form.

Min Z agila; + Z eqilq; + Z CijaXija + Z biaBia + Z SiaFia, (lc)
. i id i i
st Y Ag<rg Vd, (2¢)

ZBi,d + ZXi,j,d + ZE‘,d =1 Vi, (3¢)
d Jjd d
ZEd,i - ZE,d =0 WVd, (4c)
Adi+Eai+ Y Xjia—Bia—Fa— Y _Xyju=0 Vid, (5¢)
J J

All variables integer. (6¢)

The definitions of variables are as before and one set of variables (w; ;) is eliminated from the
formulation. It can easily be proven that this formulation is equivalent to the formulation of
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Table 1
A comparison of the number of varaibles in the Forbes and the new formulations
Number Average number of Average number of Percentage decrease
of trips variables in the variables in the new in the number
Forbes formulation formulation of variables
300 149,363 91,096 39.0
400 272,688 160,132 39.6
500 417,888 247,252 40.9
600 605,753 358,928 40.8
700 824,540 484,004 42.3
800 1,071,612 619,184 41.4
900 1,350,148 786,360 41.0

MDVS represented by (1b)—(8b). In this formulation, the objective function (I1c) minimizes the
total cost including the capital cost and the operational cost. The cost is stated in terms of
“minutes of operation”. Constraint set (2c) ensures that the total number of the blocks started by
vehicles from each depot is limited to the number of available vehicles in that depot. Constraint
set (3¢) ensures that if trip i is run by a vehicle from depot d, it is either run before another trip run
by a vehicle from that depot, or is the last trip of a block run by a vehicle from that depot, or is the
last trip of a vehicle that returns to the street in the middle of the day. This constraint ensures that
all of the trips are run. Constraint set (4c) ensures that the number of the vehicles that return to
the depots in the middle of the blocks is equal to the number of vehicles that return to the street in
the middle of the blocks. Constraint set (5¢) ensures that the vehicles return to the same depot they
started from. Finally, constraint set (6¢) is the set of integrality constraints.

Constraints that are built based on the limitation stated in the inequality (9b) would be added
as needed to the MDVS problem to ensure that the construction of the blocks with route times
more than the maximum allowed route time is prevented.

A comparison of the number of variables in the new formulation and that of the Forbes for-
mulation as suggested by Forbes et al. (1994) for several test problems is depicted in Table 1. As
Table 1 indicates, the new formulation reduces the number of variables by about 40%.

In the next section, we briefly discuss the test problem generation procedure. For all of the
experiments (except for some of the MDVS problems) a PENTIUM Pro 200 PC is used which is
referred to as the Test Machine.

5. Test problem generation based on the MTA operation

The characteristics of the January 1998 schedule of the MTA operation and the details of the
code that was used to generate test problems base on those characteristics are given in Baniha-
shemi (1998). The MTA operation information is summarized in Table 2 and Fig. 3.

Fig. 3 shows the number of trips starting and also the number of trips operating in one-hour
intervals during a day. For each specific time interval, “Trips Starting” is the number of trips that
start in that time interval, and “Trips Running” is the number of the trips that are operating
during that time interval.
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Table 2
Summary of the January 1998 schedule of MTA operation

Deadhead time for trips from the depots to the starting points (min)
Deadhead time for trips between the compatible trips (min)
Deadhead time for trips from the ending point to the depots (min)
Total layover time (min)

Total vehicle cost in terms of minutes of operation (min)

Total trip time (min)

Total cost in terms of minutes of operation (min)

18530
4131
18111
37805
186000
277666

542243

1000
800
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Trip Startings
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Fig. 3. Starting times and trips running in one-hour intervals for MTA trip data.
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Fig. 4. Starting times and trips running in one-hour intervals for 900-trip problem.



A. Haghani, M. Banihashemi | Transportation Research Part A 36 (2002) 309-333 321

Seven classes of test problems were generated, with 300, 400, 500, 600, 700, 800 and 900 trips.
Five test problems were generated in each of the 300-600 trip categories, and one test problem was
generated in each of the 700-900 trip categories.

Fig. 4 shows the number of the trips starting and the number of trips operating in one-hour
intervals for the 900-trip test problem. Comparing this figure to Fig. 3 we can see that the dis-
tributions of the trips in a day is quite similar to the distribution of the trips in the MTA op-
eration. All test problems have characteristics similar to the 900-trip problem.

6. Solution procedures for the MDVSRTC problem

One exact and two heuristic procedures are proposed for solving the MDVSRTC problem. The
procedures are applied to the test problems and the solutions are all compared to the solutions of
the corresponding MDVS problems whose objective function values can be considered as lower
bounds for the MDVSRTC problems. Table 3 shows the solutions of the MDYVS test problems.

6.1. The exact solution procedure

There is one constraint associated with each block ensuring that the total route time for the
block does not exceed the maximum allowed route time. The number of these constraints is very
high and all of these constraints cannot be generated and added to the problem. Instead, a
constraint generation approach is proposed to solve the MDVSRTC problem. The procedure is
summarized as below.

Step 1. Solve the MDVS problem to optimality.

Step 2. Construct the established blocks and identify those violating the route time constraint.

If there is no such block, the solution is optimal for the MDVSRTC problem as well, STOP.

Step 3. Corresponding to each violated block with p trips, there are p + 1 variables in the solu-

tion equal to 1. For each violated block add a constraint to the current problem which insures

that the summation of the p + 1 variables corresponding to the violated block is less than or

equal to p.

Step 4. Solve the newly created problem in Step 3 and go to Step 2.

Based on our experience, the time required for solving the problem with the addition of these
constraints usually increases with each iteration and there is no guarantee to obtain the optimum
solution in a reasonable time. In our test problems, the number of additional iterations due to the
generated route time constraints varied from 0 to 60, and in some cases at each additional
iteration more non-integer variables resulted that had to be added to the problem as integer
variables. The test problems were solved using the exact solution procedure. Table 4 shows the
results of the solutions.

As we can see the gap between the MDYVS solution and MDVSRTC solution is almost zero in
all cases. Our experience shows that the gap between the LP solution of MDVS and the IP so-
lution of the MDVS is also almost zero.



Table 3
Test result for the MDVS problem

Number of trips Number of LP solution Integer IP solution Integer

(Problem number) variables Value Time (min) Value Time (min)

300 ) 99556 38092 14 Yes 38092 - -
?2) 88204 31529 10 Yes 31529 - -
3) 88212 40278.1 15 No 40283 4 Yes
“) 85436 38798 14 Yes 38798 - -
®) 94072 37394.5 12 No 37396 3 Yes

400 (@)) 168632 49691 54 No 46964 6 Yes
?2) 160132 45493.4 34 No 45503 200 Yes
3) 158356 50488.5 38 No 50496 67 Yes
4 158700 43141 46 Yes 43141 - -
%) 169360 46543.7 32 No 46549 15 Yes

500 ) 233220 60228 89 Yes 60228 - -
2) 267616 50795 108 Yes 50795 - -
3) 249444 59544.5 95 No 59547 47 Yes
(@) 252856 58998.9 93 No 59000 201* Yes
%) 233124 56315 103 No 56317 2032 Yes

600 N 371180 55999 319° No 55999 350° Yes
2 363088 59346 3352 Yes 59346 - -
3) 337388 69537.7 268 No 69541 317* Yes
“ 378076 61030 4942 Yes 61030 - -
®) 344908 77947 3122 No 77947 4972 Yes

700 1 484004 75413.2 965* No 75415 60° Yes

800 0 628256 83720.2 1750* No 83722 60? Yes

900 (e 786360 98015.3 2510° No Not solved

?These were solved on a SUN SPARCS5 machine. The solution time cannot be compared to the solution times on the PC.
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Table 4
Test results of the exact solution procedure for the MDVSRTC problem
Number of trips MDVS Additional Total Number of Optimum  Gap with
(Problem number)  problem iterations due to  solution constraints solution MDVS
solution RT constraints time (min) added (%)
300 (1) 38092 - 14 - 38092 0.0
2) 31529 1 37 1 31529 0.0
3) 40283 - 19 - 40283 0.0
4) 38798 - 14 - 38798 0.0
®) 37396 13 282 20 37399 0.0
400 (1)? 46961 60 4230 90 46970 a
2) 45503 1 336 2 45504 0.0
3) 50496 - 105 - 50496 0.0
4) 43141 7 463 6 43141 0.0
(5) 46549 - 47 - 46549 0.0

# After 60 iterations the optimum solution was not found and the procedure was stopped. The current value is the last
solution with two violated blocks. The 500 trip problems and larger problems could not be solved using the “exact
solution procedure” on the test machine.

6.2. Heuristic procedure 1 (HI)

This heuristic is a constraint generation approach. Its major steps are similar to the steps of the
exact solution procedure, except that at each iteration, a legal block (with block time equal to, or
less than, the maximum allowed time) is generated from each violated block. The variables as-
sociated with these blocks are set to 1, and these equalities are added to the problem as generated
constraints. The added constraints are fixed in the solution by saving the problem at each
iteration, after adding the constraints. The legal blocks are built by eliminating the latest trip(s)
from the list of trips one after another until the block time becomes legal. Using this procedure,
first the legal blocks are added to the schedule and are fixed, and second, the potential of violated
blocks being built in the solution is decreased.

The steps of this solution procedure are summarized as follows.

Step 1. Solve the MDVS problem to optimality.

Step 2. Construct the established blocks and identify the blocks with route time violation. If

there is no such block, the solution is the optimal solution for the MDVSRTC problem as well,

STOP.

Step 3. Corresponding to each violated block with p trips, there are p + 1 variables equal to 1

in the solution. For each violated block containing p trips (p + 1 variables), decrease the num-

ber of trips one by one until the block time becomes legal. This would be a legal block built

from a violated block. Build a constraint set containing the equality constraints (variable = 1)

for all of the variables associated with all of the legal blocks and add these constraints to the

problem.

Step 4. Solve the newly created problem in Step 3 and go to Step 2.

Table 5 shows the results of applying the heuristic solution H1 on the 300 and 400 trip pro-
blems.
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Table 5
Test results for the heuristic procedure 1
Number of trips Additional Hl Total Total # of MDVS Gap with
(Problem number) iterations due  solution solution constraints solution MDVS
to RTCs time (min) added solution (%)
300 (1) - 38092 14 - 38092 0.00
2 1 31529 27 1 31529 0.00
3) - 40283 19 - 40283 0.00
4) - 38798 15 - 38798 0.00
®) 3 37504 30 3 37396 0.28
400 0] 3 47184 190 6 46961 0.51
2) 1 45561 322 1 45503 0.13
3) - 50496 105 - 50496 0.00
4) 2 43167 102 2 43141 0.06
(5) - 46549 47 - 46549 0.00

As the results show, this procedure reaches an acceptable solution within a reasonable time.
Similar to the exact solution procedure, the 500 trip problems could not be solved using this
procedure on the test machine.

6.3. Heuristic procedure 2 (H2)

This heuristic relies on the possibility of getting integer feasible solutions without using the
integer-programming module of the optimization software. From both integer and non-
integer solutions of the MDVS problem we can always build a complete set of blocks, with
each block represented by p+ 1 nonzero variables, where p is the number of trips in that
block.

The following definitions are necessary for describing the heuristic procedure 2.

Integer block. A block is called an integer block if all of the variables associated with that block
are integer (are equal to 1). In this case, the block has a weight of 1.

Non-integer blocks. A block is called a non-integer block if at least one of the variables asso-
ciated with that block is non-integer. In this case the weight of the block is equal to the value of
the smallest variable constructing that block.

If the solution were integer, all of the blocks would be integer. If the solution were non-integer,
some of the blocks would be non-integer.

Similar to the procedure H1, this heuristic is also takes an iterative constraint generation ap-
proach, but there are two sets of constraints added to the original problem at each iteration, as
follows.

1. Besides the maximum block time, a minimum route time is also determined. Variables involved
in the construction of integer blocks are set to one based on the following rules:
(a) For the integer blocks with route times between the minimum route time and the max-
imum route time, all variables are fixed to 1.
(b) For the integer blocks with route times more than the maximum route time, a legal block
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is built by eliminating as many trips as needed from the end of the blocks. Then the variables
corresponding to this legal block are fixed to 1.

(¢) For the integer blocks with route times less than the minimum route time, all variables
except those corresponding to the return of vehicles to the depots are fixed to 1.

(d) At each iteration the number of integer blocks is compared to the number of
integer blocks of the previous iteration. If it were equal or less, then the variables corre-
sponding to one of the non-integer blocks would also be set to 1 following the above
rules.

2. If the solution is non-integer, an inequality constraint is added to the problem to prevent the
construction of the same set of non-integer variables with the same values in the next iteration.
This constraint is built from the list of the variables included in the non-integer blocks. There is
an exception if rule 4 from the above rules is used. In this case, the values of the non-integer
variables included in the non-integer block, which were set to 1 would be considered 1 and
not the original value.

Table 6 shows the results corresponding to the test problems that are quite satisfactory especially

regarding the gap.

This approach relies strictly on the LP module of the optimization software and its advantages
over the first heuristic are that the solution time at each iteration is less, and at each iteration we
can use the previous solution using the dual simplex algorithm. This procedure also has a dis-
advantage over the first heuristic. There might be some occasions that the problem becomes in-
feasible while the original problem is feasible. For these occasions, we can eliminate the
constraints that were added in the last iteration and set the variable(s) that make the problem
infeasible, to 0. This happened once in all of our test runs.

Table 6
Test results for the heuristic procedure 2
Number of trips Additional H3 Total MDVS Gap with
(Problem number) iterations solution solution solution the MDVS
time (min) solution (%)
300 (1 - 38902 14 38092 0.00
?2) - 31529 10 31529 0.00
3) 6 40279 30 40823 0.00
(€)) - 38798 14 38798 0.00
®) 12 37401 26 37396 0.00
400 (1 15 47172 104 46961 0.42
2) 19 45516 134 45503 0.03
3) - 50496 105 50496 0.00
(€)) 10 43176 81 43141 0.08
%) - 46549 47 46549 0.00
500 (1) - 60228 89 60228 0.00
2) - 50795 108 50795 0.00
3) 17 59727 245 59547 0.30
(€)) 20 59019 893 59000 0.03

®) 13 56347 183 56317 0.05




326 A. Haghani, M. Banihashemi | Transportation Research Part A 36 (2002) 309-333

7. Reducing the size of large-scale problems

The real-world MDVSRTC problems are much larger than the problems that can be solved
optimally using existing computer capabilities. The number of trips in a medium-size city may be
6000 or even more. A problem with this number of trips may have more than 20 million variables.
We may be able to solve the corresponding MDVS problem using existing approaches such as the
one used by Lobel (1997). But adding the route time constraints to the problem and building the
MDVSRTC problem changes the nature of the problem. The results of the exact solution pro-
cedure show that adding even a few route time constraints to the problem makes the problem
much more complicated and increases the solution time significantly. This complexity makes the
large MDVSRTC problems practically unmanageable.

In this section, two techniques for decreasing the size of very large problems are presented.
These techniques are: (1) decreasing the number of trips by joining trips to make one trip from
two or more trips, and (2) decreasing the number of variables by eliminating the ones that have
little chance of being in an acceptable solution.

7.1. Decreasing the number of trips by joining trips

The number of trips in a problem can be decreased by using some criteria to join two or more
trips a priori and considering them as a single trip. Considering a “maximum layover time”, two
or more trips can be considered as one trip if the following conditions exist:

1. All trips are pair-wise compatible;

2. In all compatible pairs of trips, the ending point of the first trip matches the starting point of
the second;

3. The total time from starting the first trip to ending the last one, including the time required for
deadhead trips from and to depots (for all depots), should be no more than the maximum al-
lowed time;

4. For all compatible pairs of trips, the time difference between the starting time of the second trip
in the trip-pair and the ending time of the first trip in the trip-pair is not greater than the max-
imum layover time.

We applied this method to four sample problems, a 300-trip, a 400-trip, a 500-trip, and a 600-
trip problem, with the maximum layover time of 15 min. Table 7 shows the results.

Each new trip created from joining several trips has the following characteristics:

(a) its starting point and time would be the starting point and time of the first trip;

(b) its ending point and time would be the ending point and time of the last trip;

Table 7
Maximum layover method for joining the trips
Number of trips New number Maximum layover Gap with the MDVS
(Problem number) of trips solution solution (%)
300 nH 260 38167 0.2
400 (0] 350 47015 0.1
500 D 428 60395 0.3

600 (1) 507 56154 0.3
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(c) its duration would be the period between the starting time of the first trip and the ending
time of the last one.

7.2. Decreasing the number of variables

The number of variables can be reduced in a preprocessing step. The compatibility variables
X, a are the best candidates for this variable reduction because more than 90% of the variables are
compatibility variables and the percentage increases with the increase in the size of the problem.
There is a cost associated with each compatibility variable. This cost is the summation of two
costs, the cost of the deadhead travel between the two compatible trips, and the cost of the first
trip. Based on analysis of the test problems, we concluded that the 95th percentile of the costs

Table 8
Decreasing the number of variables
Number of trips (%) Decrease in Solution Solution Gap with the MDVS solution
(Problem number) the no. of variabless tque Total Vehicle Operating
(min)
gap cost cost
300 e 81.0 38980 12 2.3 1.6 0.7
2) 76.6 32546 12 3.2 29 0.3
3) 76.9 42645 11 5.9 5.2 0.7
4 77.0 39424 13 1.6 1.6 0.0
%) 76.7 37424 15 0.1 0.0 0.1
400 e 77.7 48837 36 4.0 3.8 0.2
2) 77.2 47157 25 43 2.0 2.3
3) 77.0 50919 27 0.8 0.6 0.2
4 77.8 43542 35 0.9 0.7 0.2
&) 77.4 48813 28 4.9 3.9 1.0
500 (1) 77.9 60986 28 1.3 1.0 0.3
2) 78.3 51837 32 2.1 1.2 0.9
3) 78.0 60074 73 0.9 0.5 0.4
(€)) 80.0 59029 88 0.1 0.0 0.1
%) 77.9 56366 45 0.1 0.0 0.1
600 0] 78.7 57776 67 3.2 1.6 1.6
2) 78.7 61419 83 3.5 3.0 0.5
3) 78.4 70083 63 0.8 0.4 0.4
4 78.2 63802 88 4.5 3.9 0.6
5) 78.9 78392 144 0.6 0.4 0.2
700 0 78.2 79142 140 4.9 44 0.5
800 1 78.7 86256 209 3.0 22 0.8
900 ) 78.2 107082 207 9.3 8.0 1.3

Average 2.7 2.1 0.6
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associated with the deadhead travel of compatibility variables chosen in the optimal solution of
the MDVS problem is at about the 20th percentile of the cost of the deadhead travel of all
compatibility variables of the problem. This means that eliminating 80% of the compatibility
variables with higher deadhead travel costs only affects 5% of the compatibility variables in the
optimal solution.

For all test problems the new problems were constructed by eliminating the compatibility
variables with the deadhead travel costs higher than the 20th percentile of the deadhead travel
costs of all compatibility variables. The average reduction in problem size was 78%. The solution
results are shown in Table 8. We can choose some other percentiles for this reduction depending
on the problem size. The solution times in the table include the time required for preparing the
new problem, but not the time required for preparing the original problem and finding the 20th
percentiles.

8. Sensitivity analysis

The most important factors affecting the solutions of the MDVS and MDVSRTC problems are
the fixed cost of one vehicle, the number of vehicles assigned to each depot, and the maximum
allowed route time. The results of the analysis of the sensitivity of the model with respect to these
parameters and some other parameters are presented in detail in Banihashemi (1998). In this
paper, we provide a summary of this analysis.

The first parameter tested was the fixed cost for the vehicles. Starting with the fixed cost equal
to zero, we experimented by increasing the fixed cost. Increasing the fixed cost causes a dramatic
decrease in the number of vehicles. When the fixed cost equals 50, the number of vehicles reaches
the minimum number needed for servicing the trips. Fig. 5 shows the variation of total cost,
vehicle cost and operational cost versus fixed cost and Fig. 6 shows the variation of the number of
vehicles versus fixed cost for one of the test problems.

The next parameter tested was the vehicle allocation. In an MDVS problem an
appropriate vehicle allocation (the number of vehicles available in different depots) may de-
crease the total cost significantly, but it does not change the vehicle cost or the total number
of vehicles used in the solution. The change in the total cost is due to the change in the
operational cost. Assuming that all depots have sufficient vehicles to serve all trips, we found
the best allocation for the vehicles for some test problems. We then varied the vehicle allo-
cations among the depots and made some test runs. The results show that properly allocating
vehicles among depots can result in significant savings for a transit agency. In our test pro-
blems, on average, there was a 12.6% difference in total cost between the best and worst
vehicle allocation.

The third parameter tested was the basic parameter distinguishing the MDVSRTC problem
from the MDVS problem. This is the “maximum allowed block-time”, namely, Tp... We
tested the problems for 7., equal to 960, 1020, 1080, 1200, 1320 and 1440. As the results
indicate as the T, increases fewer block violations are found in the MDVS solution and as a
result, fewer iterations are needed to obtain the MDVSRTC solution. Of course the total cost
decreases as T, increases. Fig. 7 shows the total cost as a function of T, for one of the test
problems.
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In this section, we apply a solution strategy to the real-world large-scale MDVSRTC problem
of the MTA in Baltimore City. As discussed before, this problem has 5650 trips running from four

depots.
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9.1. Solution strategy

In this solution strategy, we use the new formulation of the MDVSRTC problem and heuristic
procedure 1. We also use the two methods presented for decreasing the size of the original pro-
blem. The solution strategy has the following steps.

Step 1. Choose 15 min as the maximum layover time to combine the trips in the original trip set.

Build the MDVS problem from this new trip set by relaxing the route time constraints. Name

this problem “Revision 17 problem.

Step 2. Apply the method for decreasing the number of variables using the 7th percentile of the

deadhead costs of the compatibility variables. This percentile is chosen to make the size of the

problem more manageable and solvable, considering our computer capability. Name the new
problem ‘““Revision 2" problem.

Step 3. Solve the Revision 2 MDVSRTC problem using the heuristic procedure number 1.

Step 4. Partition the Revision 1 problem into 4 SDVSRTC sub-problems, one for each depot,

using the solution found in Szep 3. Solve each of the sub-problems separately using the heuristic

procedure number 1. Combine the solutions. This is the solution to the Revision 1 problem and
also to the original MDVSRTC problem.

Applying this procedure to the problem has the following results. By applying Step 1 to the
original trip set, a trip set containing 2218 trips is built. This Revision 1 problem has 5,168,108
variables and 11,098 constraints. The required time for the preparation process is about 720 min
(12 h) but the trip combination process is very fast taking no more than 5 min.

Applying Step 2 we build the Revision 2 problem with 276,265 variables and 11,098 constraints.
This step takes about 60 min. The solution of the Revision 2 MDVSRTC problem requires
524,446 min of operation and includes the fixed cost of 605 buses used in the solution. The total
solution time for this step is about 520 min.

The Revision 2 problem is partitioned into four SDVSRTC sub-problems with 585, 450, 757
and 426 trips at depots 1, 2, 3 and 4, respectively. By applying the heuristic procedure 1 to these
four problems, we find the final solution that is 510,939 min of operation with 571 buses used in
the solution. This step takes about 120 min.

9.2. Comparing the solution to the MTA solution

The comparison of our solution to the solution of the MTA, Baltimore is shown in Table 9. The
total times required for applying this strategy to the problem of the MTA, Baltimore is 1425 min.
As this table indicates significant savings in terms of number of vehicles used and the total op-
erational costs can be realized using the model proposed in this research. These results were
presented to the MTA managers and currently they are in the process of a more detailed eva-
luation and possible test implementation of the model.

9.3. Comparison of single depot problem solutions with the MTA solution

The previous solution of the MTA problem was based on the multiple depot formulation. This
solution produced a different assignment of trips to depots compared to the MTA allocation. We
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Table 9
Comparing the solution to the MTA solution
Solution Vehicle Operating Total cost # of Solution Saving over MTA solution (%)
cost (min) cost (min) (min) vehicles tlme Vehicle Operating  Total
used (min)
cost cost cost
MTA 186000 356243 542243 620
Proposed 171300 339639 510939 571 1425 7.90 4.66 5.77
strategy
Table 10
Comparing the single depot solutions to the MTA solution
Solution Vehicle Operating Total # of Saving over the solution of MTA (%)
‘(:r(I)lsiil) ((;I(r)lsl;) ((:r(:l;) E:Sédes Vehicle Operating Total
cost cost cost
MTA 186000 356243 542243 620
Proposed 174300 344865 519165 581 6.29 3.19 4.26

strategy

also solved the MTA single depot problems with the exact trip sets as in the MTA problem. In
other words, we solved the problem using our approach for individual MTA depots based on the
MTA trip allocations for those depots. As was expected, the solution times for these experiments
were much less than the time required for the multiple depot case. The results indicate that the
single depot approach also provides significant savings in all respects over the MTA solutions.
Table 10 shows a summary of the results.

10. Conclusion, and future research directions

New formulations for the MDVS and MDVSRTC problems were presented. An exact solution
procedure and two heuristic procedures for solving the MDVSRTC problem were proposed. Two
methods were proposed to decrease the size of very large problems. These techniques can be
applied to the same problem in a sequence.

The MTA operation was analyzed and the required data for constructing a case study was
extracted from the existing MTA data. Any missing data were generated using other sources. A
solution strategy was used to solve the real-world MDVSRTC problem of the MTA. The solu-
tions obtained using this strategy were presented and compared with the MTA operation sta-
tistics. The existing solution of the problem was improved by 5.77%.

From the results on the test problems and especially from the results achieved by solving the
MTA operation problem, we can conclude that the model, the heuristic procedures, and the re-
duction techniques are quite successful in solving the MDVSRTC problems for medium to large
cities.



332 A. Haghani, M. Banihashemi | Transportation Research Part A 36 (2002) 309-333

The existing MTA operation is based on the single depot vehicle scheduling analysis, and the
pre-assigning of the lines to the depots similar to most transit agencies. In most agencies drivers
are used to operate on specific routes. Multiple depot scheduling may result in construction of
blocks containing trips from several lines and is more efficient than the single depot scheduling,
but there are some costs associated with issues such as driver training that should be compared to
the savings achieved by MDYVS.

The number of route time constraints can be very high and all of these constraints cannot be
generated and added to the problem. As our experience on the test problems and also on the real-
world problem shows, during a scheduling process, the number of block violations that result are
not large. We can conclude that the constraint generation approach that builds the constraints
only if they are needed, is a very practical approach to solving the MDVSRTC problem.

A long-term research opportunity is to look into the modeling of other steps in the transit
planning process. One of the more important steps in this process is crew scheduling or run
cutting. Since most of the transit operational costs are attributed to labor, efficient run cutting can
result in significant cost saving for transit agencies.

The new formulation, the heuristic solution procedures, the techniques for decreasing the size
of the MDVSRTC problems, and the strategies for solving the large problems can be used as tools
to develop a decision support system to help solve real-world MDVSRTC problems. The ad-
justment factors built into these procedures let us adjust any problem to fit the existing computer
capabilities. These factors make these procedures useful not only for today but also for the future,
as long as the new formulation can be used to describe the problem.
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