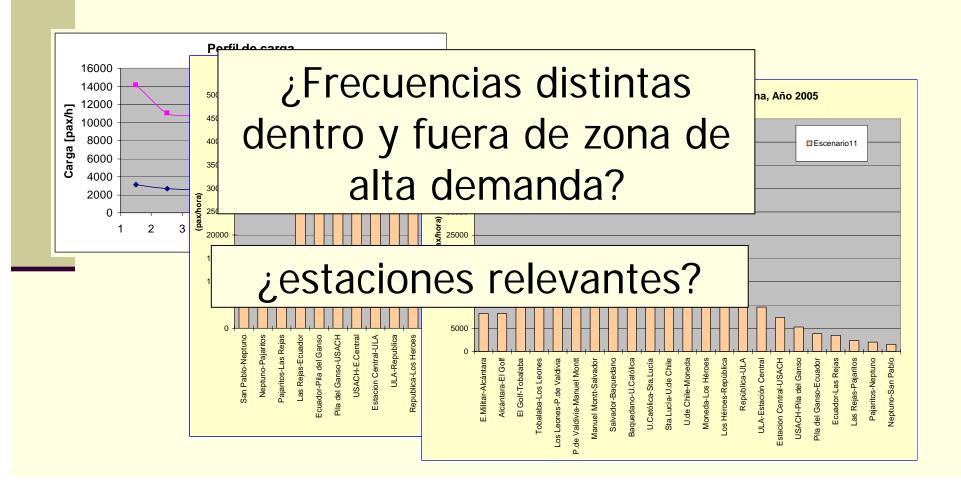
CI63G Planificación de Sistemas de Transporte Público Urbano

Clase 17 Semestre Otoño 2008

Unidades Temáticas

- 1. La oferta de transporte público urbano (2 semanas)
- 2. La demanda por TPU (1,5 sem.)
- 3. Diseño y optimización de servicios de TPU (2,5 sem.)
- 4. Determinación de tarifas en TPU (2,5 sem.)
- 5. Modelos de planificación de operaciones (2,5 sem.)
- 6. Equilibrio y asignación en redes de TPU (2,5 sem.)
- 7. Formas de organización del TPU (1,5 sem.)

Estrategias de Asignación de Flota en un Corredor de Transporte Público


(Tesis Alejandro Tirachini)

Estructura de la clase:

- Motivación
- Objetivos
- Descripción de las Estrategias
- Modelación
- Aplicaciones
- Conclusiones

1. Motivación

Operación diaria de STP: desbalances temporales y espaciales en la demanda > ineficiencia de mantener oferta a lo largo del día y en toda la red.

2. Objetivos

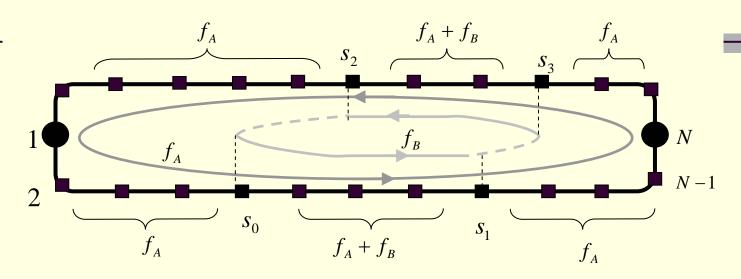
General

Estudiar estrategias con distintas frecuencias: deadheading, bucles, integrada.

Específicos

- Determinar óptimos de frecuencias, tamaño de vehículos y estaciones límite, bajo minimización del costo total (usuarios+operadores).
- Explorar las condiciones bajo las cuales estrategias son beneficiosas.

3. Descripción de las estrategias


- Estrategias de asignación de flota: frecuencia única, servicios expresos, inyección de vehículos, bucles, *deadheading*, etc.
- Deadheading: Concentración de demanda en un sentido. Algunos vehículos, al llegar al terminal del sentido de mayor afluencia de pasajeros, regresan rápidamente a su inicio, sin realizar servicio.
- Bucles: Concentración de demanda en un segmento. Parte de la flota sirve sólo tramo más cargado.
- Estrategia Integrada: Bucles más deadheading.
 - Estrategias D, B e / modifican:
 - Costo del operador, si el tamaño de flota puede ser ajustado.
 - Tiempo de espera (frecuencia).
 - Tiempo en vehículo (frecuencia → tiempo en paradero).

3. Descripción de las estrategias

Literatura

- Tres grupos de trabajos relevantes
 - Ceder (1989, 2003a, 2003b) → deadheading, bucles, combinación
 - Furth (1985, 1987) → deadheading y bucles
 - Delle Site y Philippi (1995) → bucles
- Objetivos de las estrategias
 - Ceder: Reducir el tamaño de flota necesario para cumplir con una programación dada
 - Furth
 - Minimizar el tamaño de flota, dado intervalo máximo admisible
 - Minimizar suma de costos del operador y usuarios (no se reportan resultados)
 - Delle Site y Philippi: Maximización del beneficio social

4. Modelación: Estrategia integrada

- Modelo **desagregado** en la demanda
- Una línea de buses.
 - N estaciones por dirección. Llegada de buses Poisson
- Flota A: vehículos sirven corredor completo (frec. f_A).
- Flota B: vehículos sirven sólo zona alta demanda (frec. f_B).
- \mathbf{s}_0 , \mathbf{s}_1 , \mathbf{s}_2 y \mathbf{s}_3 : Estaciones límite de estrategia.

$$egin{bmatrix} 0 & \lambda_{12} & \cdots & \lambda_{1N} \ \lambda_{21} & \ddots & & dots \ dots & & \lambda_{N-1N} \ \lambda_{N1} & \cdots & \lambda_{NN-1} & 0 \end{bmatrix}$$

Definición de variables

- R_k: Tiempo en movimiento en servicio normal entre las estaciones k y k+1 [min]
- b: tiempo marginal de subida de pasajeros [seg/pax]
- λ_{kl} : Tasa de viajes entre estaciones k y l [pax/h].
- $\lambda_k^+(l_1, l_2) = \sum_{l=l_1}^{l_2} \lambda_{kl}$: Tasa de subida de pasajeros en estación k [pax/h], cuyo viaje tiene destino entre las estaciones l_1 y l_2 inclusive.
- $\lambda_k^{-}(l_1,l_2) = \sum_{l=l_1}^{l_2} \lambda_{lk}$: Tasa de bajada de pasajeros en estación k [pax/h], cuyo viaje tiene origen entre las estaciones l_1 y l_2 inclusive.

Definición de variables

Tasa de subida de pasajeros en estación k, sentido 1

$$\lambda_k^{1+} \equiv \lambda_k^+ (k+1, N) = \sum_{l=k+1}^N \lambda_{kl}$$

Tasa de bajada de pasajeros en estación k, sentido 1

$$\lambda_k^{1-} \equiv \lambda_k^- (1, k-1) = \sum_{l=1}^{k-1} \lambda_{lk}$$

Tasa de subida de pasajeros en estación k, sentido 2

$$\lambda_k^{2+} \equiv \lambda_k^+ \left(1, k - 1 \right) = \sum_{l=1}^{k-1} \lambda_{kl}$$

Tasa de bajada de pasajeros en estación *k*, sentido 2

$$\lambda_k^{2-} = \lambda_k^-(k+1,N) = \sum_{l=k+1}^N \lambda_{lk}$$

Costo total

Operación Normal

$$C_{t}(f,K) = f\left\{c(K)\left[\sum_{k=1}^{N-1}\left(R_{k} + b\frac{\lambda_{k}^{1+}}{f}\right) + \sum_{k=2}^{N}\left(R_{k-1} + b\frac{\lambda_{k}^{2+}}{f}\right)\right] + 2c'(K)L\right\} + P_{e}\left[\sum_{k=1}^{N}\frac{\lambda_{k}^{1+}}{f} + \sum_{k=1}^{N}\frac{\lambda_{k}^{2+}}{f}\right] + P_{e}\left\{\sum_{k=1}^{N}\sum_{l=k+1}^{N}\left[\sum_{i=k}^{N}\left(R_{i} + b\frac{\lambda_{i}^{1+}}{f}\right)\right]\lambda_{kl} + \sum_{k=1}^{N}\sum_{l=1}^{N-1}\left[\sum_{i=l+1}^{k}\left(R_{i-1} + b\frac{\lambda_{i}^{2+}}{f}\right)\right]\lambda_{kl}\right\}\right\}$$

Estrategia integrada

$$C_{t}^{db}\left(f_{A}, f_{B}, K, \vec{s}\right) = f_{A}\left\{c\left(K\right)\left(g_{0}^{db} + b\frac{g_{1}^{db}\left(\vec{s}\right)}{f_{A} + f_{B}} + b\frac{g_{2}^{db}\left(\vec{s}\right)}{f_{A}}\right) + 2c^{*}\left(K\right)L\right\} + \\ + f_{B}\left\{c\left(K\right)\left(g_{3}^{db}\left(\vec{s}\right) + b\frac{g_{1}^{db}\left(\vec{s}\right)}{f_{A} + f_{B}}\right) + \left[c^{*}\left(K\right)\frac{s_{1} - s_{0} + s_{3} - s_{2}}{N - 1} + c^{*}_{dh}\left(K\right)\frac{\left|s_{2} - s_{0}\right| + \left|s_{3} - s_{1}\right|}{N - 1}\right]L\right\} \\ + P_{e}\left(\frac{g_{1}^{db}\left(\vec{s}\right)}{f_{A} + f_{B}} + \frac{g_{2}^{db}\left(\vec{s}\right)}{f_{A}}\right) + P_{v}\left(g_{4}^{db} + b\frac{g_{5}^{db}\left(\vec{s}\right)}{f_{A} + f_{B}} + b\frac{g_{6}^{db}\left(\vec{s}\right)}{f_{A}}\right)$$
ejemplo

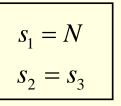
Solución

Operación Normal

$$f^* = \sqrt{\frac{P_e \bigg(\sum\limits_{k=1}^{N} \lambda_k^{1+} + \sum\limits_{k=1}^{N} \lambda_k^{2+} \bigg) + P_v \, b \bigg(\sum\limits_{k=1}^{N} \sum\limits_{l=k+1}^{N} \lambda_{kl} \sum\limits_{i=k}^{l-1} \lambda_i^{1+} + \sum\limits_{k=1}^{N} \sum\limits_{l=1}^{k-1} \lambda_{kl} \sum\limits_{i=l+1}^{k} \lambda_i^{2+} \bigg) + c_1 \frac{q_{\max}}{\eta} \, b \bigg(\sum\limits_{k=1}^{N} \lambda_k^{1+} + \sum\limits_{k=1}^{N} \lambda_k^{2+} \bigg) }{2 \bigg(c_0 \sum\limits_{k=1}^{N-1} R_k + c_0^* L \bigg)}$$
 "Fórmula de la raíz cuadrada"

Estrategia integrada: 2 etapas

1. Variables continuas, solución condicional en elección de estaciones (c(K)=c)

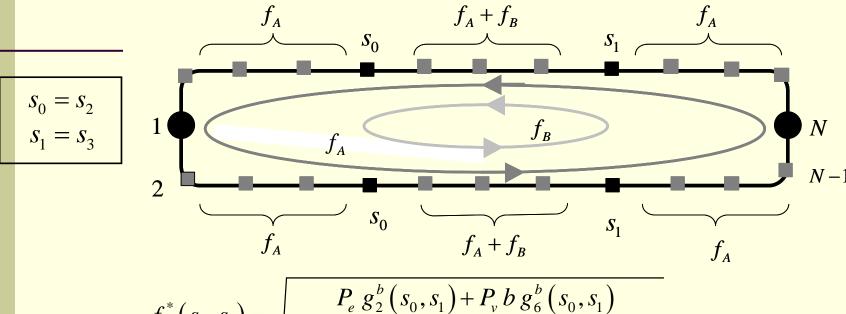

$$f_{A}^{*}(\vec{s}) = \sqrt{\frac{P_{e} g_{2}^{db}(\vec{s}) + P_{v} b g_{6}^{db}(\vec{s})}{c(g_{0}^{db} - g_{3}^{db}(\vec{s})) + c'(2 - \frac{s_{1} - s_{0} + s_{3} - s_{2}}{N - 1})L - c'_{dh} \frac{|s_{2} - s_{0}| + |s_{3} - s_{1}|}{N - 1}L}}$$

$$f_{B}^{*}(\vec{s}) = \sqrt{\frac{P_{e} g_{1}^{db}(\vec{s}) + P_{v} b g_{5}^{db}(\vec{s})}{c g_{3}^{db}(\vec{s}) + c' \frac{s_{1} - s_{0} + s_{3} - s_{2}}{N - 1} L + c'_{dh} \frac{|s_{2} - s_{0}| + |s_{3} - s_{1}|}{N - 1} L} - f_{A}^{*}(\vec{s})$$

2. Variables discretas, solución final $C_t^{db}\left(f_A^*\left(\vec{s}\right), f_B^*\left(\vec{s}\right), \vec{s}\right) \equiv \overline{C}_t^{db}\left(\vec{s}\right)$

4. Modelación

Caso particular: Deadheading



$$f_{A}^{*}(s_{0}) = \sqrt{\frac{P_{e} g_{2}^{dh}(s_{0}) + P_{v} b g_{6}^{dh}(s_{0})}{c(g_{0}^{dh} - g_{3}^{dh}(s_{0})) + c'(1 - \frac{s_{0} - 1}{N - 1})L - c'_{dh} \frac{N - s_{0}}{N - 1}L}}$$

$$f_{B}^{*}(s_{0}) = \sqrt{\frac{P_{e} g_{1}^{dh}(s_{0}) + P_{v} b g_{5}^{dh}(s_{0})}{c g_{3}^{dh}(s_{0}) + c'\left(\frac{s_{0} - 1}{N - 1} + 1\right)L + c'_{dh}\frac{N - s_{0}}{N - 1}L}} - f_{A}^{*}(s_{0})$$

¿Desbalance en la demanda? S_0 ?

Caso particular: Bucle

$$f_{A}^{*}(s_{0}, s_{1}) = \sqrt{\frac{P_{e} g_{2}^{b}(s_{0}, s_{1}) + P_{v} b g_{6}^{b}(s_{0}, s_{1})}{c(g_{0}^{b} - g_{3}^{b}(s_{0}, s_{1})) + 2c'(1 - \frac{s_{1} - s_{0}}{N - 1})L}}$$

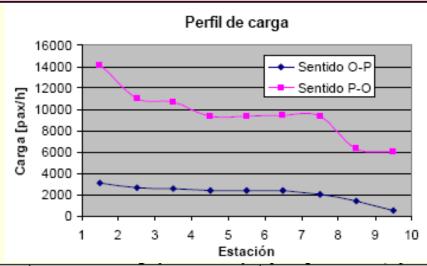
$$f_{B}^{*}(s_{0}, s_{1}) = \sqrt{\frac{P_{e} g_{1}^{b}(s_{0}, s_{1}) + P_{v} b g_{5}^{b}(s_{0}, s_{1})}{c g_{3}^{b}(s_{0}, s_{1}) + 2c^{*} \frac{s_{1} - s_{0}}{N - 1} L}} - f_{A}^{*}(s_{0}, s_{1})$$

¿Desbalance en la demanda? ¿Largo del bucle?

4. Modelación

Régimen programado: $f_B = nf_A$

 Cambio en el problema: desaparece una variable continua (f_B) y se agrega una variable discreta (n)


$$f_{A}^{*}(n,s_{0}) = \sqrt{\frac{P_{e}\left(\frac{g_{1}(s_{0})}{2(n+1)} + \frac{g_{2}(s_{0})}{2}\right) + P_{v}b\left(\frac{g_{5}(s_{0})}{n+1} + g_{6}(s_{0})\right) + c_{1}b\frac{\varphi_{\max}(n,s_{0})}{\eta}\left[g_{1}(s_{0}) + g_{2}(s_{0})\right]}}{c_{0}\left[g_{0} + ng_{3}\right] + 2c_{0}L + nL\left[c_{0}\left(\frac{N - s_{0}}{N - 1} + 1\right) + c_{0dh}\frac{s_{0} - 1}{N - 1}\right]}$$
Deadheading

$$f_{A}^{*}(n, s_{0}, s_{1}) = \sqrt{\frac{P_{e} \left[\frac{g_{1}^{b}(s_{0}, s_{1})}{2(n+1)} + \frac{g_{2}^{b}(s_{0}, s_{1})}{2}\right] + P_{v}b \left[\frac{g_{5}^{b}(s_{0}, s_{1})}{n+1} + g_{6}^{b}(s_{0}, s_{1})\right] + c_{1}b\frac{g_{\max}}{\eta} \left[g_{1}^{b}(s_{0}, s_{1}) + g_{2}^{b}(s_{0}, s_{1})\right]}{c_{0} \left[g_{0}^{b} + n g_{3}^{b}(s_{0}, s_{1})\right] + 2c_{0}^{*}L \left(1 + n\frac{s_{1} - s_{0}}{N - 1}\right)}$$
Bucle

$$f_{A}^{*}(n,\vec{s}) = \sqrt{\frac{P_{e}\left[\frac{g_{1}^{db}\left(\vec{s}\right)}{2\left(n+1\right)} + \frac{g_{2}^{db}\left(\vec{s}\right)}{2}\right] + P_{v}b\left[\frac{g_{5}^{db}\left(\vec{s}\right)}{n+1} + g_{6}^{db}\left(\vec{s}\right)\right] + c_{1}b\frac{\sigma_{\max}\left(n,\vec{s}\right)}{\eta}\left[g_{1}^{db}\left(\vec{s}\right) + g_{2}^{db}\left(\vec{s}\right)\right]}{c_{0}\left[g_{0}^{db}\left(\vec{s}\right) + ng_{3}^{db}\left(\vec{s}\right)\right] + 2c_{0}^{*}L + nL\left[c_{0}^{*}\frac{s_{1} - s_{0} + s_{3} - s_{2}}{N - 1} + c_{0dh}^{*}\frac{\left|s_{2} - s_{0}\right| + \left|s_{3} - s_{1}\right|}{N - 1}\right]}{\left(n^{*}, \vec{s}^{*}\right) = \underset{n, \vec{s}}{\min} \overline{C}_{t}^{db}\left(n, \vec{s}\right)}$$
Integrada

5. Aplicaciones. Deadheading

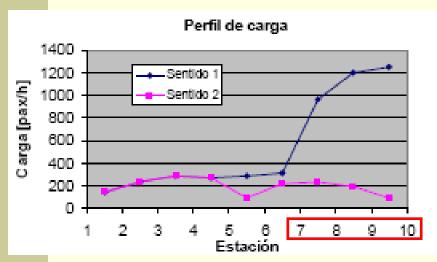
Los Pajaritos

		La	ido 1			Lac	do 2	
Paradero	g .:1	Carga	λ_1^+	λ_1^-	c .:1	Carga	λ_1^+	λ_1^-
	Sentido	[pax/h]	[pax/h]	[pax/h]	Sentido	[pax/h]	[pax/h]	[pax/h]
1		3131	3131	0		0	0	14119
2		2678	147	600		14119	3620	500
3		2548	70	200		10999	828	500
4		2383	15	180		10671	1742	400
5		2396	83	70		9329	323	350
6		2422	76	50		9356	222	250
7		2055	33	400		9384	323	300
8	<u> </u>	1390	55	720		9361	3331	250
9	•	557	67	900	ı	6280	444	200
10		0	0	557		6036	6036	0
Tota1			3677	3677			16869	16869

Parámetro	Valor
n	10
R [min]	1.6
R' [min]	0.9
L [km]	6.6
P_e [\$/h]	2700
P_{ν} [\$/h]	900
c ₀ [\$/h]	1800
c ₁ [\$/h-cupo]	30
c ₀ [\$/km]	400
c ₁ [\$/km-cupo]	1
c _{0dh} [\$/km]	300
c _{1dh} [\$/km-cupo]	0.5
b [s/pax]	5
η	0.9

Deadheading

Resultados


Operación	-	C _v [\$/min]	C _o [\$/min]	C _t [\$/min]		ΔC_e	ΔC_{v}	ΔC_o	ΔC_t
Normal	4337	58480	30951	93768		3.5%	-0.1%	-2.2%	-0.6%
Estrategia	4487	58441	30261	93189					

Operación]	Frecuenc	ias	Ta	de flota	Capacidad			
		[veh/h]		h]	[pax/veh]			
Normal		f			F	T .	K		
		214			13	1		74	
Estrategia	f_A	f_B	f_A+f_B	F_A	F_{B}	F_A+F_B		K	
J	164	55	219	102	27	129		72	

- Usuarios favorecidos: 82%
- Beneficios muy modestos
- Análisis de sensibilidad sobre variables relevantes: Beneficio total no supera el 2%, aún en las condiciones más favorables para la estrategia (costo extra casi compensa beneficio)
- Menos vehículos y de menor tamaño

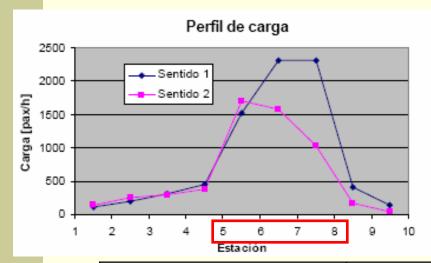
5. Aplicaciones

Bucle 1

	29	14	64	4	3	3	1	1	25
14		15	70	4	4	3	1	1	27
5	5		49	3	3	2	1	0	19
8	7	4		18	15	12	4	3	111
74	63	35	0		5	4	1	1	37
4	4	2	0	0		5	2	1	50
1	1	0	0	0	3		20	16	636
8	6	3	0	0	26	5		7	262
16	14	7	0	0	58	11	0		77
13	11	6	0	0	47	9	0	10	

Operación	C_e	C_{ν}	C_o	C_t	ΔC_e	ΔC_{v}	ΔC_o	ΔC_t
	[\$/min]	[\$/min]	[\$/min]	[\$/min]				
Normal	3064	5081	5048	13193	0.9%	-3.9%	-3.5%	-2.6%
Estrategia	3093	4885	4873	12851				

Operación		Frecuer [veh/		-	Γamañ [ˈ	C [j	Capacidad [pax/veh]			
Normal		<i>f</i> 31		F 27					45	
Estrategia	f_A 23	f _B 26	f_A+f_B 49	F_A 20	F_B 7	F_A+F_B			<i>K</i> 36	

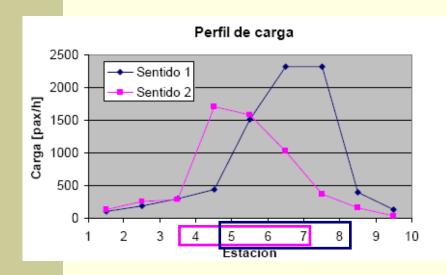

Usuarios

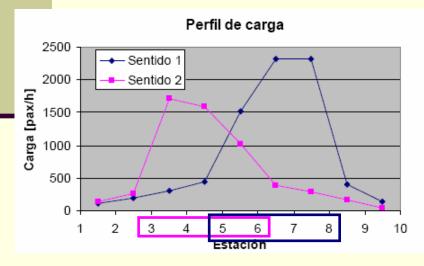
favorecidos: 49.8%

Flota, capacidad

5. Aplicaciones

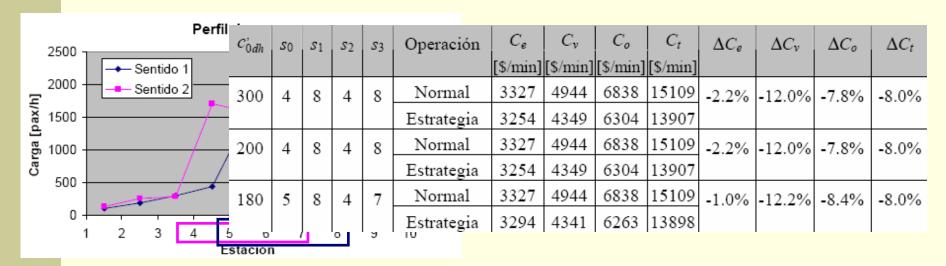
Bucle 2


					_				
	5	8	9	13	10	17	41	4	2
7		7	8	11	8	15	35	4	2
40	35		13	17	13	23	55	6	3
20	18	22		24	19	33	77	8	4
17	15	19	34		150	265	624	67	35
15	13	16	29	348		267	630	67	36
20	18	23	40	484	131		529	56	30
21	18	23	40	494	134	130		52	28
3	3	3	6	72	19	19	5		5
1	1	1	2	23	6	6	2	3	


Operación	C_{e}	C_v	C_o	C_t	ΔC_e	ΔC_{v}	ΔC_o	ΔC_t
	[\$/min]	[\$/min]	[\$/min]	[\$/min]				
Normal	3324	4953	6844	15121	-3.1%	-14.5%	-11.1%	-10.5%
Estrategia	3222	4237	6081	13539				

Operación		Frecuer [veh/		,	Tamaño [v	Capacidad [pax/veh]			
Normal		<i>f</i> 78				<i>F</i> 27		<i>K</i> 34	
Estrategia	f_A 40	<i>f</i> _B 89	f_A+f_B 129	F_A 14	F _B	F_A+F_B		<i>K</i> 31	

- Usuarios favorecidos: 73%
- Menos flota
- Menor capacidad


Estrategia Integrada

5. Aplicaciones

Estrategia Integrada

		$C_{0dh}^{'}$	20	s_1	s ₂	S3	Operación	C _e	C_{ν}	Co	C_t	ΔC_e	ΔC_{ν}	ΔC_o	ΔC_t
	2500							[\$/min]	[\$/min]	[\$/min]	[\$/mm]				
	→ Sentido 1 2000 → Sentido 2	300	4	8	3	8	Normal	3333	4968	6860	15161	-0.8%	-9.5%	-4.6%	-5.4%
Ē							Estrategia	3308	4498	6543	14349				
[pax/h]	1500	250	4	8	3	6	Normal	3333	4968	6860	15161	0.4%	-9.8%	-5.7%	-5.7%
Carga	/ · · · · · · · · · · · · · · · · · · ·						Estrategia	3346	4483	6469	14298				
ပိ	500	200	4	8	3	6	Normal	3333	4968	6860	15161	-0.1%	-10.3%	-6.2%	-6.2%
							Estrategia	3331	4454	1	14219				
	1 2 3 4	180	5	8	3	6	Normal	3333	4968	6860	15161	-0.1%	-10.6%	-6.6%	-6.5%
							Estrategia	3331	4440		14181				

(bucle óptimo entre estaciones 3 y 8, -5.2%)

6. Conclusiones

Deadheading en su versión pura es intuitivamente interesante, sin embargo, su utilidad es limitada por su naturaleza misma: pérdida de frecuencia efectiva.

Bucles:

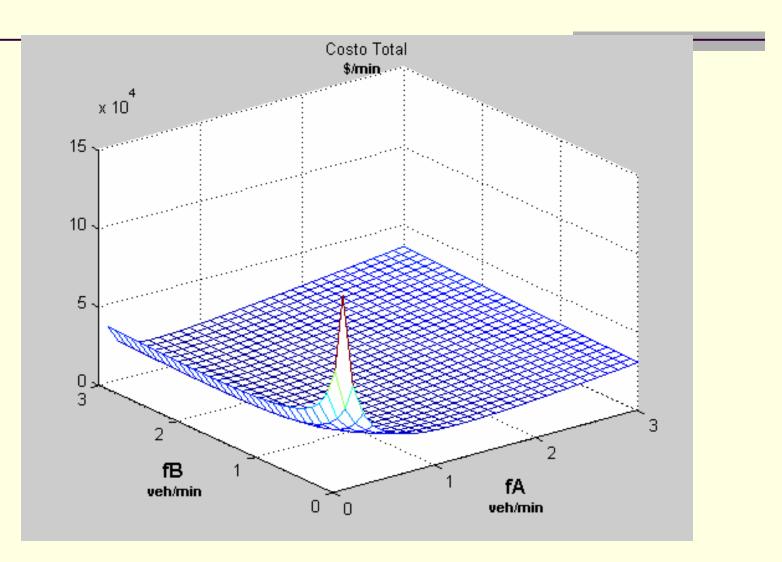
- Beneficios tanto en extremo como al interior de la línea.
- El desbalance en la demanda es determinante.
- Más beneficiosa que deadheading.

Integrada:

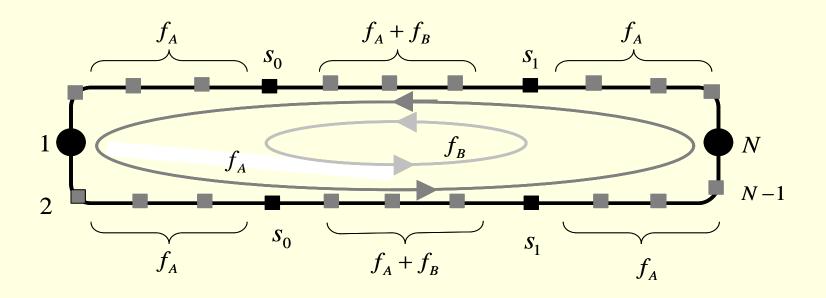
- Configuración depende de diferencia relativa entre parámetros en operación normal y deadheading (bucle puro o estrategia integrada), pérdida de efectividad ante separación de puntas.
- Beneficios totales, por cambios en la configuración de las estaciones límite, no varían mayormente (efectos contrapuestos).

Beneficios: Bucles, Integrada, deadheading

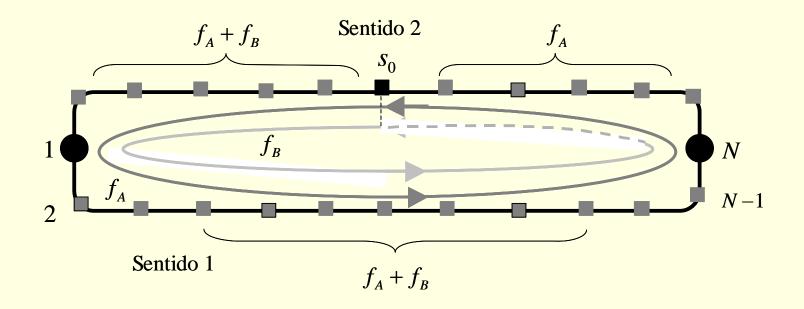
Conclusiones

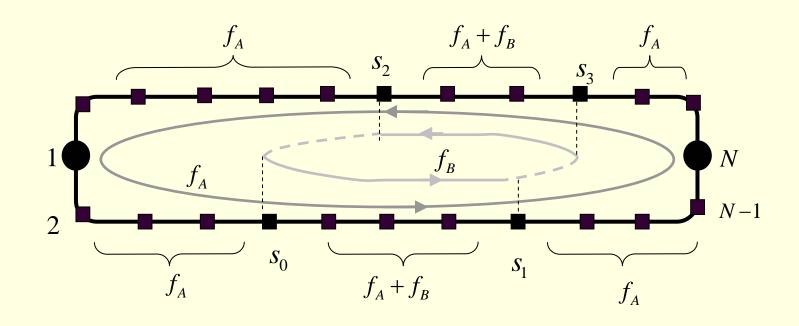

- Soluciones algebraicas > Siempre raíz cuadrada (solución condicional: n,s)
- Reacomodo inteligente de la flota > beneficios para todos (operadores y usuarios).
- Estrategias necesitan capacidad vehicular menor (aumento de frecuencia en zona de mayor carga). Corolario: Modelo con costos de operación constantes subestima beneficio de estrategias.
- Requerimientos de información de la demanda: en la práctica, tasas de subida y bajada bastan en situación beneficiosa
- Extensiones:
 - Demanda elástica
 - Multiperíodo
 - Restricción de capacidad
 - Red de transporte público (líneas paralelas, T-A, interlineado)
 - Hacinamiento (tiempos de espera y en vehículo)
 - Simulación

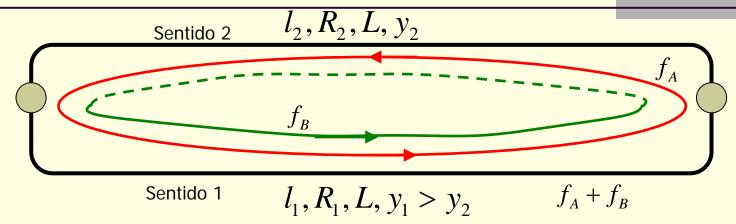
Referencias


- Ceder, A.(1989) Optimal Design of Transit Short-Turn Trips. Transportation Research Record 1221,8-22.
- Ceder, A. (2003a) Public Transport Timetabling and Vehicle Scheduling. En Lam, W.H.K. y Bell, G.H. (Eds.) *Advanced Modeling for Transit Operations and Service Planning*. Elsevier Science Ltd. 31-57.
- Ceder, A. (2003b) Designing Public Transport Network and Route. En Lam, W.H.K. y Bell, G.H. (Eds.) *Advanced Modeling for Transit Operations and Service Planning*. Elsevier Science Ltd. 59-91.
- Delle Site, P.D. y F. Filippi (1998). Service Optimization for Bus Corridors with Short-Turn Strategies and Variable Vehicle Size. *Transportation Research A* 32(1),19-28.
- Furth, P.G. (1985) Alternating Deadheading in Bus Route Operations. *Transportation Science* 19(1), 13–28.
- Furth, P.G. (1987) Short Turning on Transit Routes. *Transportation Research Record* 1108, 42–52.
 - Tirachini, A., C.E. Cortés, S. Jara-Díaz (2007). Estrategia integrada de asignación de flota en un corredor de transporte público, *Actas del XIII Congreso Chileno de Ingeniería de Transporte*, Santiago, Chile, Octubre 2007.
- Tirachini, A., C.E. Cortés (2007). Disaggregate Modeling of pre-planned short-turning strategies in transit corridors, *Proceedings of the 86th Transportation Research Board Annual Meeting*, Washington D.C, January 2007.
- Tirachini A., C.E. Cortés (2006). La estrategia Deadheading en Corredores de Transporte Público, Actas del XIV Congreso Panamericano de Ingeniería de Tránsito y Transporte, Las Palmas de Gran Canaria, España, 20-23 Septiembre 2006.

MATERIAL ADICIONAL

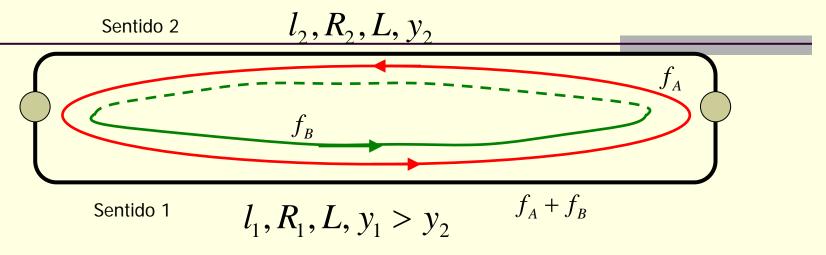

Ejemplo (dados s_0 , s_1 , s_2 , s_3)


Bucle


Deadheading

Integrada

Demanda agregada: Deadheading



- ◆ Flota A: vehículos sirven corredor completo (frec. f_A).
- Flota B: vehículos sirven sólo sentido 1 (frec. f_B).

$$C_{t}^{dh}(K, f_{A}, f_{B}) = f_{A} \left\{ c(K) \left[\left(\frac{y_{1}}{f_{A} + f_{B}} + \frac{y_{2}}{f_{A}} \right) \beta + R_{1} + R_{2} \right] + 2c'(K)L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{2} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{2} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{2} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{2} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{2} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{2} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{2} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + f_{B} \left\{ c(K) \left(\frac{y_{1}}{f_{A} + f_{B}} + R_{1} + R_{2} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} \right\} + f_{B} \left\{ c(K) \left(\frac$$

$$+ f_B \left\{ c(K) \left(\frac{y_1}{f_A + f_B} \beta + R_1 + R_{dh} \right) + \left[c'(K) + c'_{dh}(K) \right] L \right\} + P_e \frac{1+x}{2} \left[\frac{y_1}{f_A + f_B} + \frac{y_2}{f_A} \right] + P_v \left[\frac{l_1}{L} \left(\frac{y_1}{f_A + f_B} \beta + R_1 \right) y_1 + \frac{l_2}{L} \left(\frac{y_2}{f_A} \beta + R_2 \right) y_2 \right]$$

Demanda agregada: Deadheading

Solución (Caso c(K)=c)

$$f_{A}^{*} = \sqrt{\frac{P_{e} y_{2} + P_{v} \beta \frac{l_{2}}{L} y_{2}^{2}}{c(R_{2} - R_{dh}) + (c' - c'_{dh}) L}} \quad f_{B}^{*} = \sqrt{\frac{P_{e} y_{1} + P_{v} \beta \frac{l_{1}}{L} y_{1}^{2}}{c(R_{1} + R_{dh}) + (c' + c'_{dh}) L}} - \sqrt{\frac{P_{e} y_{2} + P_{v} \beta \frac{l_{2}}{L} y_{2}^{2}}{c(R_{2} - R_{dh}) + (c' - c'_{dh}) L}}$$

$$f_B^* > 0 \iff \frac{P_e \ y_1 + P_v \ \beta \frac{l_1}{L} \ y_1^2}{P_e \ y_2 + P_v \ \beta \frac{l_2}{L} \ y_2^2} > \frac{c \left(R_1 + R_{dh}\right) + \left(c^{\cdot} + c_{dh}^{\cdot}\right) L}{c \left(R_2 - R_{dh}\right) + \left(c^{\cdot} - c_{dh}^{\cdot}\right) L}$$
 ¿Largo de los viajes? ¿Costos deadheading

¿Desbalance demanda? ¿Costos deadheading?

Funciones g_i

$$g_0^{db} = 2\sum_{k=1}^{N-1} R_k$$

tiempo de viaje total en movimiento

$$g_1^{db}(\vec{s}) = \sum_{k=s_0}^{s_1-1} \lambda_k^+(k+1, s_1) + \sum_{k=s_2+1}^{s_3} \lambda_k^+(s_2, k-1)$$

Demandas favorecida y desfavorecida

$$g_{2}^{db}\left(\vec{s}\right) = \sum_{k=1}^{s_{0}-1} \lambda_{k}^{1+} + \sum_{k=s_{0}}^{s_{1}-1} \lambda_{k}^{+}\left(s_{1}+1,N\right) + \sum_{k=s_{1}}^{N} \lambda_{k}^{1+} + \sum_{k=s_{3}+1}^{N} \lambda_{k}^{2+} + \sum_{k=s_{2}+1}^{s_{3}} \lambda_{k}^{+}\left(1,s_{2}-1\right) + \sum_{k=1}^{s_{2}} \lambda_{k}^{2+}$$

$$g_{3}^{db}(\vec{s}) = \sum_{k=\min(s_{0},s_{2})}^{\max(s_{0},s_{2})-1} R_{k}^{'} + \sum_{k=s_{0}}^{s_{1}-1} R_{k} + \sum_{k=\min(s_{1},s_{3})}^{\max(s_{1},s_{3})-1} R_{k}^{'} + \sum_{k=s_{2}}^{s_{3}-1} R_{k}$$
 tiempo en movimiento veh. B

$$g_4^{db} = \sum_{k=1}^{N} \sum_{l=1}^{N} \lambda_{kl} \sum_{i=k}^{l-1} R_i$$

tiempo en movimiento pasajeros

Funciones g_i

 g_5^{db} g_6^{db} factores cálculo tiempo total de transferencia de pasajeros para la demanda favorecida y desfavorecida, respectivamente.

$$\begin{split} g_5^{db}\left(\vec{s}\right) &= g_5^{db1}\left(s_1, s_2\right) + g_5^{db2}\left(s_2, s_3\right) & g_6^{db}\left(\vec{s}\right) = g_6^{db1}\left(s_1, s_2\right) + g_6^{db2}\left(s_2, s_3\right) \\ g_5^{db1}\left(s_1, s_2\right) &= \sum_{k=1}^{s_0-1} \sum_{l=s_0+1}^{s_1} \lambda_{kl} \sum_{i=s_0}^{l-1} \lambda_i^+ \left(i+1, s_1\right) + \sum_{k=1}^{s_0-1} \sum_{l=s_1+1}^{N} \lambda_{kl} \sum_{i=s_0}^{s_1-1} \lambda_i^+ \left(i+1, s_1\right) + \\ &+ \sum_{k=s_0}^{s_1-1} \sum_{l=k+1}^{s_1} \lambda_{kl} \sum_{i=k}^{l-1} \lambda_i^{1+} + \sum_{k=s_0}^{s_1-1} \sum_{l=s_1+1}^{N} \lambda_{kl} \sum_{i=k}^{s_1-1} \lambda_i^+ \left(i+1, s_1\right) \\ g_6^{db1}\left(s_1, s_2\right) &= \sum_{k=1}^{s_0-1} \sum_{l=k+1}^{s_0} \lambda_{kl} \sum_{i=k}^{l-1} \lambda_i^{1+} + \sum_{k=1}^{s_0-1} \sum_{l=s_0+1}^{s_1} \lambda_{kl} \left[\sum_{i=k}^{s_0-1} \lambda_i^{1+} + \sum_{i=s_0}^{l-1} \lambda_i^{1+} + \sum_{i=s_0}^{s_0-1} \lambda_i^{1+} + \sum_{i=s_0}^{l-1} \lambda_i^{1+} + \sum_{i=s_0}^{l$$