CI63G Planificación de Sistemas de Transporte Público Urbano

Clase 8
Semestre Otoño 2008

Unidades Temáticas

- 1. La oferta de transporte público urbano (2 semanas)
- 2. La demanda por TPU (1,5 sem.)
- 3. Diseño y optimización de servicios de TPU (2,5 sem.)
- 4. Determinación de tarifas en TPU (2,5 sem.)
- 5. Modelos de planificación de operaciones (2,5 sem.)
- 6. Equilibrio y asignación en redes de TPU (2,5 sem.)
- 7. Formas de organización del TPU (1,5 sem.)

Modelos de asignación de Transporte Público

- Para una oferta y demanda dadas de transporte público, se decide como se asignan los pasajeros a los vehículos en las paradas (equilibrio)
- Básicamente, se distingue dos enfoques:
 - Rutas mínimas
 - Estrategias óptimas (hiper-rutas mínimas)
- Complejidad del problema:
 - Sin restricción de capacidad en paraderos
 - Con restricción de capacidad en paraderos

Modelos de asignación de Transporte Público

Rutas mínimas

Sin restricción de capacidad en paraderos (De Cea y Fernández, 1989)
Con restricción de capacidad en paraderos (De Cea y Fernández, 1993)

Estrategias óptimas (hiper-rutas mínimas)

Sin restricción de capacidad en paraderos

(Spiess, H. y M. Florian, 1989)

Con restricción de capacidad en paraderos

(Cominetti, R. y J. Correa, 2001; Cepeda et al., 2006)

Modelos de asignación de Transporte Público (Referencias)

- Cepeda, M., R. Cominetti y M. Florian (2006). A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria.
 Transportation Research B 40, 437-459.
- Cominetti, R. y J. Correa (2001) Common-Lines and Passenger Assignment in Congested Transit Networks. Transportation Science 35, 250-267.
- De Cea J. y J.E. Fernández (1989) Transit assignment to minimal routes: an efficient new algorithm. Traffic Engineering and Control 30, 491-494.
- De Cea J. y J.E. Fernández (1993) Transit assignment for congested public transport systems: and equilibrium model. Transportation Science 27 (2), 133-147.
- Spiess, H. y M. Florian (1989) Optimal strategies: a new assignment model for transit networks. **Transportation Research 23B**, 83-102.

Características básicas del problema

- La red vial permite definir rutas de vehículos
- Transporte privado: al conocer las rutas de automóviles se conoce asignación de usuarios a la red
- Transporte público: recorridos de vehículos predeterminados, interesa conocer asignación de pasajeros a líneas
- Comportamiento de usuarios para elegir entre alternativas dependerá de: tiempo de espera, tiempo de viaje, tiempo de trasbordo, tarifa, etc.

Características básicas del problema

- Condiciones de operación en las vías se asumen conocidas y pueden verse afectadas por otros vehículos (si se comparte espacio vial)
- Tiempo de viaje podría depender del número de pasajeros que suben a los buses (mayores tiempos de transferencia en paradas)
- Si capacidad de los buses es insuficiente: tiempos de espera se ven afectados (congestión en transporte público)

Características básicas del problema

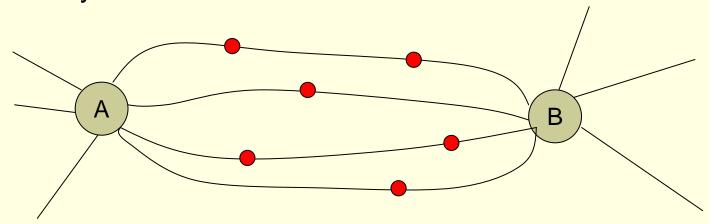
- Línea de transporte público: flota de vehículos que realiza un cierto recorrido físico entre terminales
- Todos los vehículos de una línea tienen igual tamaño, capacidad y características de operación
- Se supone que cada vehículo se detiene en cada uno de los nodos (paraderos) que definen el recorrido, para permitir que los pasajeros suban o bajen
- Cada línea ofrece servicio definidos por:
 - Secuencia de nodos del recorrido
 - Frecuencia
 - Capacidad de vehículos utilizados
- Una sección de línea es una determinada porción de línea entre dos nodos de su recorrido (no necesariamente adyacentes)

Enfoque de rutas mínimas sin restricción de capacidad (REF)

- Ruta: forma de realizar un viaje O-D.
 - Nodo origen, destino y nodos de trasbordo
 - Líneas consideradas en cada tramo (secciones de ruta y líneas comunes)
 - Sección de ruta: nodo inicial, nodo final, líneas comunes
- Consideraremos: tiempo total de viaje (tiempo de espera en paraderos + tiempo de viaje en vehículo)
- Criterio de asignación: usuario espera un conjunto de líneas (o sucesiones de ellas) que minimizan su tiempo total esperado de viaje ASIGNACIÓN A RUTAS MÍNIMAS

Concepto de líneas comunes (problema hiperbólico)

Suponga que usted tiene n líneas de TP que unen dos nodos A y B



Para unir A y B se tiene lo siguiente

- \bullet te_i : tiempo de espera línea i
- \mathbf{v}_i : tiempo de viaje en vehículo línea i
- f: frecuencia línea i
- k: constante de espera

Líneas comunes (problema hiperbólico)

Tiempo de espera
$$\left\{\frac{k}{f_1}, \frac{k}{f_2}, \frac{k}{f_3}, \dots, \frac{k}{f_n}\right\}$$

Tiempo en vehículo $\{tv_1, tv_2, tv_3, \dots, tv_n\}$

Si se considera todas las líneas como posibles, el tiempo de viaje total será:

$$TV(A,B) = \frac{k}{\sum_{i} f_{i}} + \frac{\sum_{i} tv_{i} \cdot f_{i}}{\sum_{i} f_{i}}$$
 Tiempo medio de viaje de espera

Pero los usuarios no consideran todas las líneas disponibles, sino sólo aquellas atractivas (en el sentido que minimizan su tiempo total esperado de viaje)

Líneas comunes (problema hiperbólico)

¿Cómo encontrar el subconjunto L_a de líneas atractivas (comunes) entre A y B?

Def: Sea
$$X = \{x_1, x_2, \dots, x_n\}$$

$$x_i = \begin{cases} 1 & \text{si } \ell_i \in L_a \\ 0 & \text{si } \ell_i \notin L_a \end{cases}$$

Entonces, tenemos que resolver el siguiente problema hiperbólico

$$\underset{x}{Min} \ TVE(A,B) \equiv \underset{x}{Min} \left\{ \frac{k + \sum_{i} tv_{i} \cdot f_{i} \cdot x_{i}}{\sum_{i} f_{i} \cdot x_{i}} \right\}$$

$$x_i:\{0,1\}$$

Líneas comunes (problema hiperbólico) Algoritmo de solución

ETAPA 1: Ordene las líneas en orden creciente de tiempo de viaje en vehículo

$$L = \{\ell_1, \ell_2, \ell_3, \dots, \ell_n\} \quad \text{tal que} \quad tv_1 \le tv_2 \le tv_3 \dots \le tv_n$$

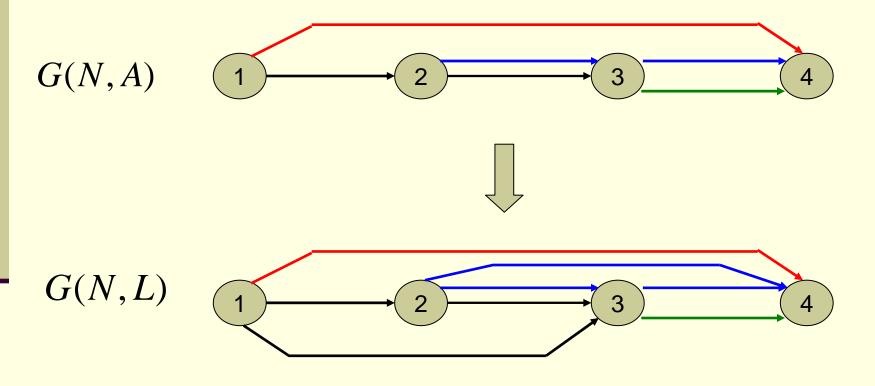
El conjunto atractivo inicial será $L_a = \left\{ \ell_1 \right\}$ con $TVE(A, B) = TV_1$

ETAPA 2: Desde ℓ_2 hasta ℓ_n en L, haga lo siguiente

- Si $tv_j < TVE(A,B)$ entonces agregar ℓ_j al conjunto de líneas comunes $L_a := L_a \cup \left\{\ell_j\right\}$ y recalcular TVE(A,B) considerando la nueva línea
- Si no: PARAR

Formulación problema de asignación a rutas mínimas de TP sin restricción de capacidad (De Cea y Fernández, 1989)

Representación de una red de TP



Nueva red virtual: arcos representan secciones de línea, en lugar de segmentos de línea L>>A

Formulación problema de asignación a rutas mínimas de TP sin restricción de capacidad (De Cea y Fernández, 1989)

Definiciones:

- Sección de línea: determinada porción de línea entre dos nodos no necesariamente consecutivos.
- Sección de ruta: porción de una ruta definida por dos nodos consecutivos de la secuencia de nodos que define la ruta.

Ruta:

nodo origen, nodos intermedios (trasbordo), nodo destino.

Notación

```
G(N,L): N conjunto de nodos, L conjunto de secciones de línea
          : conjunto de pares O-D de nodos, conectados directamente
            por al menos una sección de línea
          : conjunto de secciones de línea que unen directamente los
            nodos i,j
          : conjunto de secciones de línea que salen de nodo i
          : conjunto de secciones de línea que entran a nodo i
          : flujo sobre sección de línea \ell
          : tiempo de viaje en vehículo sobre sección de línea ~\ell
          : frecuencia asociada a línea \ell
          : número de viajes desde el origen hasta el nodo i
          : flujo en sección de ruta i,j
```

Asignación de viajes desde un origen determinado a todos

Tiempo total de

espera esperado

los nodos destino de la red

$$(\text{P1}) \qquad \underbrace{Min}_{x_\ell, v_\ell, V_{ij}} \sum_{\ell \in L} v_\ell \cdot t_\ell + \sum_{(i,j) \in W} \frac{k \cdot V_{ij}}{\sum_{\ell \in S_{ij}} f_\ell \cdot x_\ell}$$
 o total de

Tiempo total de viaje esperado

s.a.

$$\sum_{\ell \in L_i^+} v_\ell + g_i = \sum_{\ell \in L_i^-} v_\ell \qquad \forall i \in \mathbb{N}$$

$$v_{\ell} = \frac{x_{\ell} \cdot f_{\ell} \cdot V_{ij}}{\sum_{\ell \in S_{ij}} x_{\ell} \cdot f_{\ell}} \qquad \forall (i, j) \in W$$

$$v_{\ell} \ge 0$$
$$x_{\ell} = \{0, 1\}$$

•Después de algunas transformaciones de (P1)

$$(\text{P2}) \qquad \underbrace{Min}_{x_{\ell},v_{\ell},V_{ij}} \sum_{(i,j) \in W} V_{ij} \frac{\displaystyle\sum_{\ell \in S_{ij}} f_{\ell} \cdot x_{\ell} \cdot t_{\ell} + k}{\displaystyle\sum_{\ell \in S_{ij}} f_{\ell} \cdot x_{\ell}}$$

$$S.a.$$

$$\sum_{\ell \in L_i^+} v_{\ell} + g_i = \sum_{\ell \in L_i^-} v_{\ell} \qquad \forall i \in \mathbb{N}$$

$$v_{\ell} \ge 0$$

$$x_{\ell} = \{0, 1\}$$

•Dado que no hay congestión (restricción de capacidad), podemos resolver separadamente este problema para cada par (i,j)

(P3)
$$\frac{\sum\limits_{\ell \in S_{ij}} f_{\ell} \cdot x_{\ell} \cdot t_{\ell} + k}{\sum\limits_{x_{\ell}} \sum\limits_{\ell \in S_{ij}} f_{\ell} \cdot x_{\ell}}$$
 Problema hiperbólico (Paso 1)
$$s.a. \quad x_{\ell} = \{0,1\}$$

Asignación a rutas mínimas: Se define una nueva red $G(N, S^*)$ con S^* conjunto de secciones de ruta. Para cada par (i,j) en W, hay una sección de ruta con un tiempo de viaje en vehículo y frecuencia, dados por:

 $Arco\ s \rightarrow t_s, f_s$

Usando los valores de x obtenidos del Paso 1 (solución de P3), se obtiene el siguiente problema de asignación a rutas mínimas:

(Paso 2)
Se resuelve con
algoritmo tradicional
de rutas mínimas
(Dijkstra)

(Paso 3) Asignación a secciones de línea:
$$v_\ell = \frac{f_\ell \cdot v_s}{f_s}$$