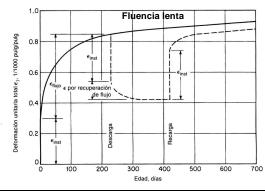
Unidades

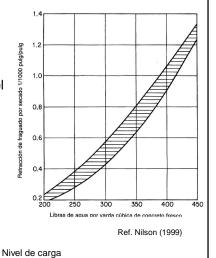
	SI	MKS	Inglés	
Longitud	m	М	ft	
Masa	kg	Kgf*s²/m	lbf*s2/ft	
Tiempo	s	S	S	
Fuerza	N=kg*m/s ²	kgf	lbf	

• Fuerza

$$kN = 1000 N = 100 kgf$$

 $kN = 0.225 kips = 225 lbf$


• Tensión/Esfuerzo


MPa =
$$10^6$$
 Pa = 10^6 N/m² = 1 N/mm² = 10 kgf/cm²
MPa = 0.145 ksi = 145 psi (lbf/in²)

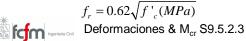
Hormigón – Propiedades

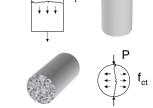
- Propiedades de deformación
 - Retracción de fraguado
 - Aumento con relación agua/cemento
 - Creep = Deformación unitaria en el tiempo (cargas de larga duración)

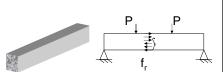
Hormigón – Propiedades

- Resistencia a tracción
 - Tracción directa

$$f'_{t} = (0.25 \text{ a } 0.42) \sqrt{f'_{c}(MPa)}$$

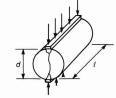

- Tracción indirecta

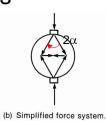

$$f_{ct} = (0.5 \text{ a } 0.66) \sqrt{f'_{c}(MPa)}$$


- Módulo de rotura

$$f_r = (0.66 \text{ a } 1.0)\sqrt{f'_c(MPa)} = \frac{6M}{bh^2}$$

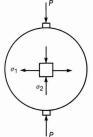
- ACI 318-05

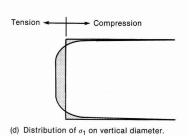




Hormigón - Propiedades

- Resistencia a tracción
 - Tracción indirecta

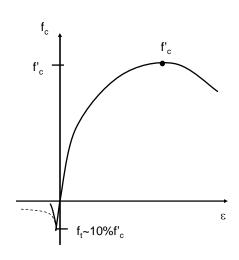




(a) Test procedure.

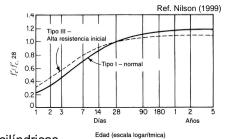
 $f_{ct} = (0.5 \text{ a } 0.66) \sqrt{f'_{c}(MPa)}$

$$f_{ct} = \frac{2P}{\pi l d} \approx \frac{P \tan(\alpha)}{l d}$$
$$(\alpha = 32.5^{\circ})$$



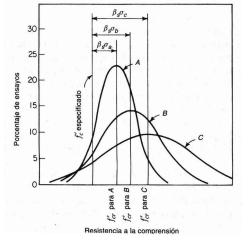
(c) Stresses on element.

Hormigón – Propiedades

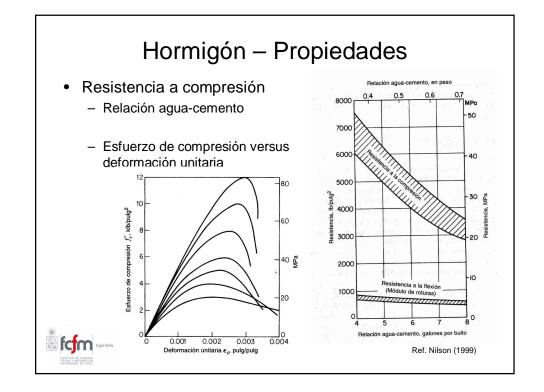

- Resistencia a tracción
 - Baja capacidad en tracción
 - Compensación con uso de acero
 - Módulo elástico similar al de compresión
 - Gran rigidez con baja capacidad → falla frágil

Hormigón - Propiedades

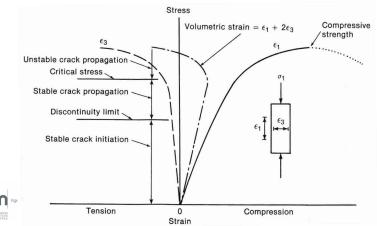
- · Resistencia a compresión
 - Basada usualmente a 28 días (f'_c)
 - f'_c @ 28 días ~90% capacidad última (años)


- Ensayo de probetas cúbicas/cilíndricas
 - Denominación: basada en probeta cúbica (20x20cm), ej., H-30 (fc^{cub} = 30 MPa)
 - Ecuaciones de diseño (ACI 318-05) basado en probeta cilíndrica (15x30cm)

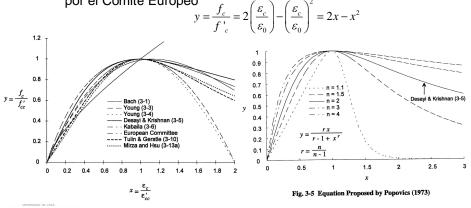
				Resistencia de Diseño		
	Probeta cúbica	fc ^{cub}	MPa	5 - 25	30, 35, 40, 45, 50, 55, 60	
	correlación			f'c=fc ^{cub} *0.8	f'c = fc ^{cub} - 5 (MPa)	
	Probeta cilíndrica	f'c	MPa	4 - 20	25, 30, 35, 40, 45, 50, 55	


Hormigón - Propiedades

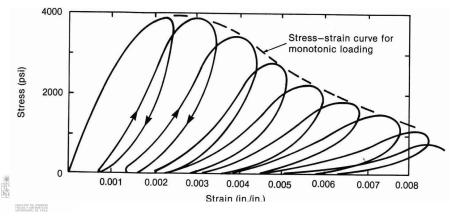
- Resistencia a compresión
 - Resistencia a compresión de diseño versus resistencia media requerida para la obra
 - Requerimiento de nivel de confianza (~90%)
 - Importancia de dispersión para el fabricante

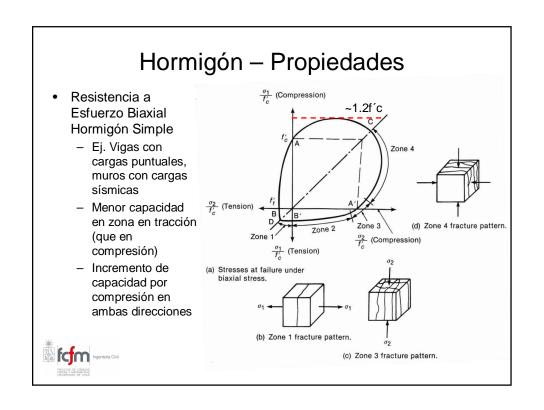

Ref. Nilson (1999)

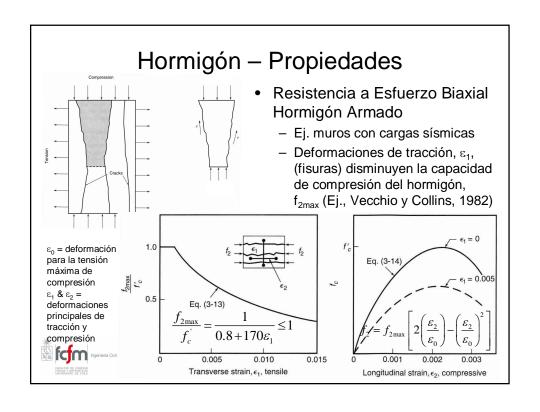
Hormigón — Propiedades • Resistencia a compresión - Módulo elástico: • Modulo secante a 0.5f'c $E_c = 4700\sqrt{f'_c(MPa)}$ \$\text{S.8.5.1} \text{ H. peso normal } \forall c \text{55 MPa} \\ • Módulo de Poisson $v = 0.15 \text{ a } 0.2, \text{ para } fc < 0.7f'_c$ $v = \frac{\mathcal{E}_{transv}}{\mathcal{E}_{axial}}$


Hormigón - Propiedades

- Resistencia a compresión
 - Efecto de Poisson para pequeñas (0.15-0.2) y grandes deformaciones
 - $-\,$ Inestabilidad a 0.75 $-\,$ 0.8f $_{\rm c}$ que genera falla axial (bajo f $_{\rm c})$ para cargas de larga duración (creep deformaciones de largo plazo)

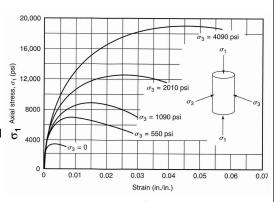

Hormigón – Propiedades


- Esfuerzo de compresión versus deformación unitaria
 - Características: tangente inicial, rama ascendente, peak, rama descendente
 - Varios modelos, Ej. Saenz (1964): modelo parabólico adoptado por el Comité Europeo



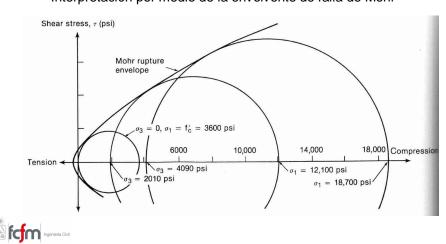
Hormigón - Propiedades

- Resistencia cíclica a compresión
 - Envolvente "similar" a comportamiento monotónico del hormigón en compresión
 - Deformaciones residuales a tensión cero representan deformaciones plásticas (daño o deterioro)



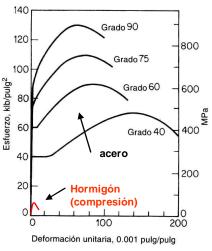
Hormigón - Propiedades

- Resistencia a Esfuerzo Triaxial
 - Ej. Confinamiento en columnas, nudos
 - Tensiones de confinamiento, σ₃ (compresión):
 - Aumentan de capacidad δ en compresión (σ₁)
 - Aumento de ductilidad en compresión
- La expansión (por efecto de Poisson) lateral en columnas puede ser resistida por estribos que formamiento



$$\sigma_1 = f_c^{'} + 4.1\sigma_3$$

Nota: En hormigones de alta resistencia y hormigones livianos el efecto de confinamiento disminuye (coeficiente baja de 4.1 a 2.0)


- Resistencia a Esfuerzo Triaxial
 - Interpretación por medio de la envolvente de falla de Mohr

Acero - Propiedades

- Resistencia tracción/compresión
 - Mayor resistencia que hormigón
 - f_v = 280, 420 MPa (acero)
 - $f'_c = 10 60 \text{ MPa (hormigón)}$
 - Mayor rigidez que hormigón
 - E_s = 200.000 MPa (acero)
 - E_c ~ 25.000 MPa (hormigón)
 - Mayor ductilidad que hormigón
 - \square $\epsilon_{\text{fracture}}$ ~ 10 a 20% (acero)
 - \square ϵ_{rotura} ~ 0.6 a 1% (hormigón)

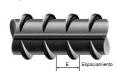
Ref. Nilson (1999)

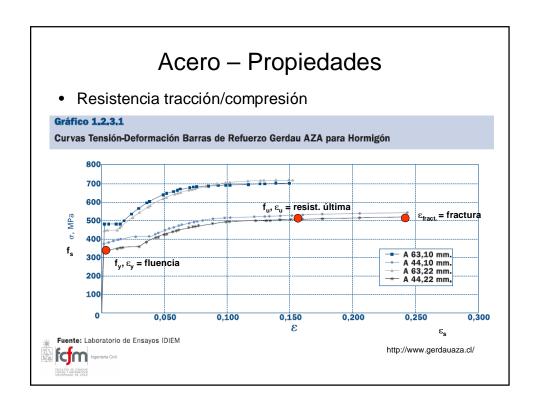
Acero - Propiedades

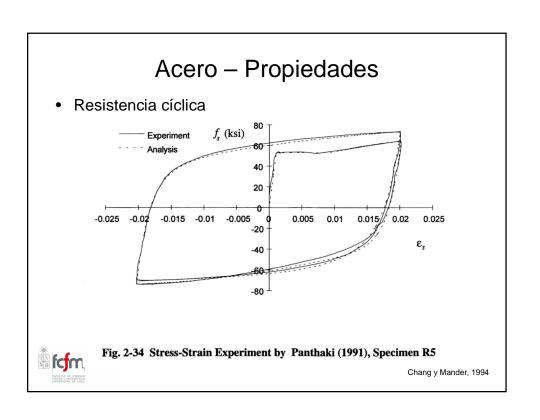
• Resistencia tracción/compresión

Propiedades mecánicas mínimas del acero de refuerzo para hormigón

Grado del acero	Resistencia a tracción f _u [MPa]	Límite de fluencia f_y [MPa]	Alargamiento mínimo %	
A44-28H	440	280	18	
A63-42H	630	420 ⁽¹⁾	≥8%	


(1) f_v≤580 Mpa


• Diámetro de barra


 $\phi = 6, 8, 10, 12, 16, 18, 22, 25, 28, 32, 36 (mm)$

 ϕ = 6 mm, no tiene resalte

Diseño en Flexión

• Criterio de diseño

$$\phi M_n \ge M_u$$

momento nominal minorado ≥ momento aplicado mayorado capacidad nominal minorada ≥ demanda mayorada

- Falla Dúctil

• ACI 318-95

 $\rho \le 0.75 \rho_b \quad \text{\'o} \quad A_s \le 0.75 A_{s,b}$

ACI 318-05

 $\varepsilon_{\rm s} \ge 0.004$

S.10.3.5

Para refuerzo más cercano a cara en tracción

- Cuantía mínima

 $\rho\!\ge\!\rho_{\min}$

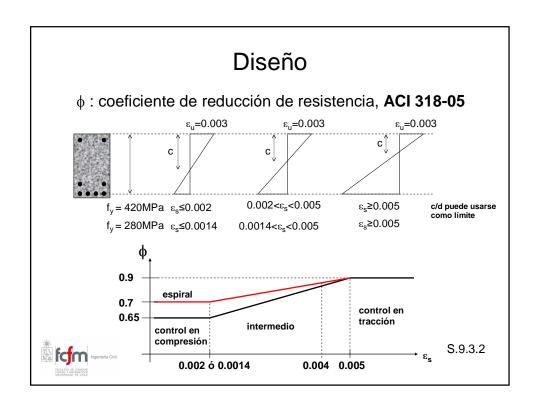
Para garantizar que el refuerzo es capaz de resistir el momento luego de fisuración del hormigón

S.10.5.1

 $M_{\rm n} \ge M_{\rm cr}$

Diseño

• Criterio de diseño


 $\phi S_n \ge S_u$, S = flexión, corte, etc. capacidad nominal minorada \ge demanda mayorada

□ • : coeficiente de reducción de resistencia

ACI 318-95		ACI 318-05	
1. Tracción axial	0.9	0.9	controlada en
2. Flexión	0.9	0.9	tracción
3. Compresión (columnas)	3. Compresión (columnas)		
- con estribos	0.7	0.65	controlada en
- zunchadas (espiral)	0.75	0.7	compresión
 cargas axiales pequ 			
4. Corte y torsión	0.85	0.75	
Aplastamiento hormigón	0.7	0.65	
_			

S.9.3.2

Diseño

• Combinaciones de carga

 $\phi S_n \ge S_u$, S = flexion, corte, etc. capacidad nominal minorada \ge demanda mayorada

$$\phi S_n \geq S_u = \sum_i \gamma_i Q_i - \text{Carga de diseño}$$
 Factor de mayoración

Q_i, D = carga muerta o peso propio

L = carga viva o sobrecarga

W = viento

E = sismo

H = presión de tierra

F = fluidos

I = impacto

T = asentamiento, creep, retracción, temperatura (combinado)

S.9.3.2

Diseño – Combinaciones de Carga

- **ACI 318-95**
 - Básica

$$S_{u} = 1.4D + 1.7L$$

Viento

$$S_u = 0.75(1.4D + 1.7L + 1.7W), L=0&L \neq 0$$

 $S_{u} = 0.9D + 1.3W$

Sismo

$$S_u = 1.4(D+L+E)$$

 $S_u = 0.9D+1.4E$ NCh433

Combinaciones con carga sísmicas del ACI 318 no han sido incluidas en este resumen

- Presión de tierra
$$S_{\scriptscriptstyle u} = 1.4D + 1.7L + 1.7H$$

$$S_u = 0.9D + 1.7H$$

- Fluidos: reemplaza 1.7H por 1.4F
- Impacto: reemplaza L por L+I
- Asentamiento, creep, retracción, temperatura (combinado)

$$S_u = 0.75(1.4D + 1.7L + 1.4T)$$

 $S_{u} = 1.4(D+T)$

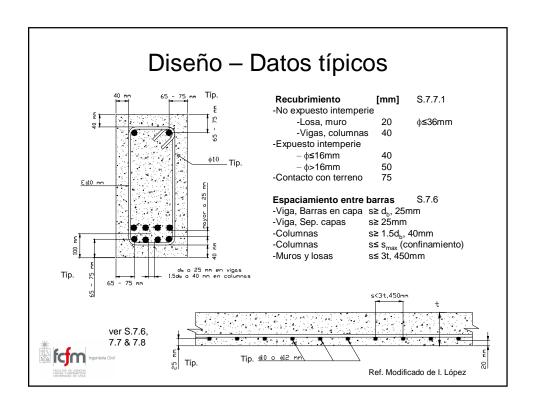
Diseño - Combinaciones de Carga

ACI 318-05

$$S_u = 1.4(D+F)$$

$$S_u = 1.2(D+F+T)+1.6(L+H)+0.5P$$

P, carga de techo: viva ó nieve ó Iluvia


$$S_u = 1.2D + 1.6P + (1.0L \text{ } 6.8W)$$

$$S_u = 1.2D + 1.6W + 1.0L + 0.5P$$

$$S_u = 0.9D + 1.6W + 1.6H$$

Combinaciones con carga sísmicas no han sido incluidas en este resumen

