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7.  FLOW NETS FOR ANISOTROPIC MATERIALS 

 
7.1  Introduction 
 
Many soils are formed in horizontal layers as a result of sedimentation through water. Because of 
seasonal variations such deposits tend to be horizontally layered and this results in different 
permeabilities in the horizontal and vertical directions. 
 
7.2  Permeability of Layered Deposits 
 
Consider the horizontally layered deposit, shown in Figure 1, which consists of pairs of layers the first 
of which has a permeability of k1 and a thickness of d1 overlaying a second which has permeability k2 
and thickness d2. 
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F i g .  1  L a y e r e d  s o i l  d e p o s i t
First consider horizontal flow in the system and suppose that a head difference of ∆h exists between 
the left and right hand sides as indicated in Fig. 2.  It then follows from Darcy’s law that: 
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Fig. 1  Layered Soil 

Fig. 2 Horizontal flow through layered soil 
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It therefore follows: 
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Next consider vertical flow through the system, shown in Fig.3.  Suppose that the superficial velocity 
in each of the layers is v and that the head loss in layer 1 is ∆h1, while the head loss in layer 2 is ∆h2 
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The total head loss across the system will be ∆h=∆h1+∆h2 and the hydraulic gradient will be given by: 
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For vertical flow Darcy’s Law gives 
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Fig. 3  Vertical flow through layered soil 
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Example 
 
Suppose that that the layers are of equal thickness d1  = d2 = d0 and that k1 = 10-8 m/sec and that  
k2 = 10-10 m/sec, then: 
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Showing that, as is generally the case, the vertical permeability is much less than the horizontal.  
 
7.3 Flow nets for soil with anisotropic permeability 
 
Plane flow in an anisotropic material having a horizontal permeability kH and a vertical permeability 
kv is governed by the equation: 
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The solution of this equation can be reduced to that of flow in an isotropic material by the following 
simple device. Introduce new variables defined as follows: 
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the seepage equation then becomes 
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Thus by choosing: 
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It is found that the equation governing flow in an anisotropic soil reduces to that for an isotropic soil, 
viz.: 
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and so the flow in anisotropic soil can be analysed using the same methods (including sketching flow 
nets) that are used for analysing isotropic soils. 
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Example - Seepage in an anisotropic soil 
 
Suppose we wish to calculate the flow under the dam shown in Figure 4; 
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Fig. 4 Dam on a permeable soil layer over impermeable rock (natural scale) 
 
For the soil shown in Fig. (4) it is found that k kH V= ×4  and therefore 
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In terms of transformed co-ordinates this becomes as shown in Figure 5 
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Fig. 5  Dam on a permeable layer over impermeable rock (transformed scale) 
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The flow net can now be drawn in the transformed co-ordinates and this is shown in Fig.6 

Fig. 6 Flow-net transformed coordinates
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Fig. 6  Flow net for the transformed geometry 

 
It is possible to use the flow net in the transformed space to calculate the flow underneath the dam by 
introducing an equivalent permeability 
 
    k k keq H V=         (7) 
 
A rigorous proof of this result will not be given here, but it can be demonstrated to work for purely 
horizontal flow as follows: 
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Fig. 7  Horizontal flow through anisotropic soil 
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From Equations 7a and b it can be seen that k k keq H V=  
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Example 
 
Suppose that in Figure 6 H1 = 13m and H2 = 2.5m, and that kv = 10-6 m/sec and kH =4 × 10-6 m/sec 
The equivalent permeability is: 
 
 k meq = × × = ×− − −( ) ( ) / sec4 10 10 2 106 6 6       (8a) 
 
The total head drop is 10.5 m and there are 14 head drops and thus: 
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The flow through each flow tube, ∆Q  =  keq ∆h  =   (2×10-6  )×(0.75)  =  1.5 × 10-6 m3/s/m 
 
 There are 6 flow tubes and so the total flow ,       Q =   6 × 1.5 × 10-6 
       =   9.0×10-6       m3/sec/(m width of dam) 
 
For a dam with a width of 50 m            Q =   450 × 10-6   m3/sec  =  41.47 m3/day 
 
7.4  Piping 
 
Many dams on soil foundations have failed because of the sudden formation of a piped shaped 
discharge channel. As the store water rushes out the channel widens and catastrophic failure results. 
This results from erosion of fine particles due to water flow. Another situation where flow can cause 
failure is in producing ‘quicksand’ conditions. This is also often referred to as piping failure. 
 
In order to analyse this situation consider water flowing upwards through the element shown in Figure 
8. 
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Fig. 8  Analysis of Piping 
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The pore pressure can be calculated from the head and so: 
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For piping to occur the Uplift must be greater than the self-weight of the soil 
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or alternatively 
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Example 
 
Suppose the dam shown in Figure 6 is 39 metres wide (this may be determined from the scale 
drawing), the water levels are the same as in the previous example (H1 = 13 m, H2 = 2.5 m), and the 
saturated unit weight of the soil is 18 kN/m3. Piping is most likely to occur at the toe of the dam, the 
hydraulic gradient there can be obtained from the flow net: 
 
  h1  -  h2  =  ∆h  = 0.75 m    (calculated from Fig. 6) 
 
  z2  -  z1  =  1.125 m   (scaled from Fig. 6) 
 
thus 

(9d) 

(9c) 



 8 

    i = =0 75
1125

0 67
.

.
.  

Now 

    i crit = − =18 9 81
9 81
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.

.
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The safety factor against piping failure is thus icrit/i = 0.83/0.67  =  1.25  which is probably not 
adequate given the potentially disastrous consequences of a piping failure. 
 
 


