
ARTICLE IN PRESS
1071-5819/$ - se

doi:10.1016/j.ijh

�Correspond
E-mail addr

till.schuemmer@
Int. J. Human-Computer Studies 64 (2006) 599–610

www.elsevier.com/locate/ijhcs
Groupware development support with technology patterns

Stephan Lukosch�, Till Schümmer

Department for Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany

Available online 20 March 2006
Abstract

Groupware development support should educate developers on how to design groupware applications and foster the reuse of

proven solutions. Additionally, it should foster communication between developers and end-users, since they need a common language

and understanding of the problem space. Groupware frameworks provide solutions for the development of groupware applications by

means of building blocks. They have become a prominent means to support developers, but from our experience frameworks have

properties that complicate their usage and do not sufficiently support groupware developers. We argue for a pattern approach to support

the technical aspects of groupware development. Patterns describe solutions to recurring issues in groupware development. They serve as

educational and communicative vehicle for reaching the above goals. In this article, we provide a pattern language focusing on technical

issues during groupware development. Experiences when using the language in an educational setting and a product development setting

have shown that the patterns are a supportive means for the proposed goals.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Groupware development; Design patterns; Education of groupware developers; Oregon Software Development Process (OSDP)
1. Introduction

The development of groupware applications is still a
challenging task. Apart from the actual task of the
application, e.g. editing texts or spreadsheets, developers
have to consider various aspects ranging from low-level
technical issues up to high-level application usage. Among
others,
�
 Network connections between the collaborating users
have to be established to enable communication.

�
 Parallel input from the collaborating users has to be
handled.

�
 Specific group functions have to be included to provide
group awareness.

�
 The data of a groupware application has to be shared
and kept consistent to allow users to work on common
task at all (Ellis et al., 1991).
These issues are often not part of the professional
training of software engineers. Instead, software engineers
e front matter r 2006 Elsevier Ltd. All rights reserved.

cs.2006.02.006

ing author. Tel.:+49 2331 987 4117; fax:+49 2331 987 313.

esses: stephan.lukosch@fernuni-hagen.de (S. Lukosch),

fernuni-hagen.de (T. Schümmer).
learn the basic principles that empower them to create any
kind of software. These include modeling techniques like
the unified modeling language or programming techniques
like object-oriented programming and programming lan-
guages like Java or C#. These principles and techniques
theoretically empower developers to create groupware
applications. However, developers first have to understand
the groupware specific issues discussed above. Then, they
have to learn how to deal with these issues before they
finally can implement their first groupware application.
Currently, groupware frameworks are the most promi-

nent means to support developers. They offer solutions for
the development of groupware applications as pre-fabri-
cated building blocks. But frameworks in general have
properties that complicate their usage and thus do not
sufficiently support groupware developers. Groupware frame-
works, e.g. prescribe the group process, the programming
language, and the distribution architecture. From our
point of view, groupware development support should
�
 Educate developers on how to design and implement
groupware applications.

�
 Ease the communication between developers, clients, and
end-users for a better understanding of the requirements.

www.elsevier.com/locater/ijhcs


ARTICLE IN PRESS
S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610600
�
 Structure the gathering of end-user requirements.

�
 Foster reuse of proven solutions.

We propose to achieve these goals by providing
developers with a pattern language that can be used in a
development process involving end-users. The idea of
patterns originates from Alexander’s work (Alexander
et al., 1977; Alexander, 1979) in urban architecture.
According to Alexander, ‘‘patterns describe a problem
which occurs over and over again and the core of the
solution to that problem’’. An interconnected set of
patterns is called a pattern language. Patterns of a pattern
language are intended to be used together in a specific
problem domain.

Gamma et al. (1995) applied the idea of design patterns
to the application domain of software design. These
patterns capture frequently used software practices found
in object-oriented design. While the first patterns of the
gang of four where focusing on designers only, later pattern
publications, e.g. concerning human–computer interaction
(Borchers, 2001), hypermedia design (Rossi et al., 1995), or
pedagogy (Eckstein, 1999), stated patterns in a way so that
they are understandable by developers and end-users.
These patterns can serve as a Lingua Franca for design
(Erickson, 2000) that helps end-users and developers in
communication. Johnson (1997) and Brugali et al. (1997)
pointed out that the power of pattern languages lies in its
potential for serving as an educational and communicative
vehicle.

Pattern languages can teach well-known solutions,
improve the design and finally increase the software
quality. To elaborate on these arguments, we first discuss
current groupware development support before we present
our approach, provide an extract of a pattern language for
groupware development, and finally discuss usage experi-
ences with this pattern language.
2. Current groupware development support

Currently, groupware frameworks are the most promi-
nent means to support groupware developers. Well-known
examples for groupware frameworks are Suite (Dewan and
Choudhary, 1992), GINA (Berlage and Genau, 1993),
Rendezvous (Hill et al., 1994), DistView (Prakash and Shim,
1994), NSTP (Patterson et al., 1996), GroupKit (Roseman
and Greenberg, 1996), COAST (Schuckmann et al., 1996),
Sync (Munson and Dewan, 1997), Habanero (Chabert
et al., 1998), DOORS (Preguica et al., 2000), DyCE (Tietze,
2001), or DreamObjects (Lukosch, 2003).

Groupware frameworks help during the development
process by providing components that hide most of the
dirty and difficult work such as instance network connec-
tion management, process scheduling, data sharing, or data
consistency. They also impose a specific way of shaping the
group process by, e.g. providing means for starting a
collaborative session. If the framework perfectly matches
the requirements of the project, it will simplify the
development. Unfortunately, this is often not the case.
We experienced and identified several properties that

complicate the use of frameworks, i.e. the chosen
programming language, the supported distribution archi-
tecture, the dominance of frameworks in the application,
the use of black-box components, the lack of documenta-
tion, and communication problems between end-users and
developers.
Framework developers often chose the programming

language that is currently en-vogue or that has been used in
other projects before. Reuse is thus limited by the chosen
programming language. Two examples of frameworks
where the programming languages are a critical issue are
COAST and GroupKit. Both used programming languages
that provide a very high level of abstraction and make the
process of implementation very easy. But the languages, i.e.
Smalltalk for COAST and Tcl/Tk in the case of GroupKit,
are not part of the standard curricula for software
developers, which implies that users of the framework
would have to learn the programming language before they
can use the framework.
As with the programming languages, framework devel-

opers often limit the applicability of the framework by
choosing one distribution architecture that fits the first
intended applications best. This may mean that the
framework for instance requires a client-server architecture
or that it uses peer-to-peer mechanisms.
Framework developers often assume that the application

can be created on top of exactly one framework. They
design the framework as center around which the applica-
tion should be built. The framework in this case dominates

the application structure. This gets complicated when the
application under development could benefit from more
than one framework (Fayad and Schmidt, 1997). The
components of the framework define the context in which
the framework has to be used, e.g. available network
connections. Components from different frameworks
usually make different assumptions regarding their context,
which makes it hard to use them together (Johnson, 1997).
Frameworks often only provide black-box components.

These components are designed for a specific context like a
specific structure of the underlying data model or specific
mechanisms for processing user input. Some frameworks
allow developers to exchange components of the frame-
work with application specific components that implement
the same interface. Unfortunately, the access points for
exchanging these components are limited and depend
on the configuration needs foreseen by the framework
developers.
Most groupware frameworks have emerged from re-

search projects. Thus, the main focus has been on the
functional aspects of the framework rather than the
documentation of the framework for novices. Johnson
(1997) noted that frameworks describe the application
domain by means of a programming language. But just by
using the framework or even taking a look at source code



ARTICLE IN PRESS
S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610 601
of the framework it is difficult to ‘‘learn the collaborative
patterns of a framework by reading it’’ (Johnson, 1997).
However, a didactically sound description of the frame-
work’s dynamic aspects is crucial for training developers in
using the framework. Nowadays, many projects are carried
out as open source projects. Though this allows to adapt
the functionality of the framework, it is still hard as open
source projects as well often lack of documentation.

Finally, groupware frameworks often address the
problem space from a technical perspective rather than
approaching the problem space from a human–computer
interaction view. The interaction design thus often becomes
technology driven. Developers continue to use their
technical language while clients and end-users express their
requirements with terms used in the specific interaction
setting. The problem of communication between clients,
end-users, and developers stays an open issue in these
cases.

From these observations, we conclude that the frame-
work approach is not sufficient for supporting groupware
development. In the next section, we will propose a
different approach that introduces developers in the
complex interdisciplinary field of groupware design,
educates developers on how to design and implement
groupware applications, and at the same time enables
communication between clients, end-users, and developers.

3. Approach

As other authors pointed out for general software
development (e.g. Biggerstaff and Richter, 1987; Johnson,
1997; Brugali and Sycara, 2000), we argue that groupware
reuse should focus on design reuse rather than code reuse.
The developers should be trained in a way so that they can
understand and reproduce the framework developer’s
design decisions. Capturing and reusing design insights is
the most crucial part to reach this goal. For a successful
groupware application it is also crucial to involve end-users
in the development process. Therefore, developers and end-
users should be able to communicate with each other for a
better understanding of the requirements. In our opinion,
these goals can be reached by using patterns in a
development process involving end-users.

The idea of patterns originates from Christopher
Alexander’s work (Alexander et al., 1977; Alexander,
1979) in urban architecture. According to Alexander,
‘‘patterns describe a problem which occurs over and over
again and the core of the solution to that problem’’. Each
pattern includes a problem description, which highlights a
set of conflicting forces and a proven solution, which helps
to resolve the forces. An interconnected set of patterns is
called a pattern language. Patterns of a pattern language
are intended to be used together in a specific problem
domain for which the pattern language guides the design
decisions in the specific problem domain.

Beck and Johnson (1994) argued ‘‘that existing design
notations focus on communicating the what of designs, but
almost completely ignore the why. However, the why of a
design is crucial for customizing it to a particular
problem.’’ Compared to traditional design notations, e.g.
UML diagrams (Fowler, 2000), patterns do not only focus
on the result but also discuss the design rationale. This
makes patterns independent from an implementation in a
specific context or programming language. Developers do
not have to look at the source code of the framework to try
to understand the design decisions taken by the framework
developers. From that perspective, patterns are a comple-
mentary approach to the documentation of frameworks.
We consider patterns on two levels, each with a different

target group (Schümmer and Slagter, 2004):
�
 High-level patterns describe issues and solutions typi-
cally targeted at end-users.

�
 Low-level patterns describe issues and solutions typi-
cally targeted at software developers on a more technical
level.

High-level patterns focus on the system behavior, as it is
perceived by the end-user. They empower the end-users to
shape their groupware application in order to meet the
group’s demands. Thus, high-level patterns need to be
more descriptive and prosaic than low-level patterns that
focus on how to implement that behavior. Low-level
patterns focus on the implementation of the system and
thus include more technical details.
Both low-level and high-level patterns can be positioned

on a seamless abstraction scale. The more a pattern
discusses technical issues, the lower is its level. Groupware
technology patterns that deal with class structures, control
flow, or network communication form the lower bound on
the abstraction scale of patterns. Groupware usability
patterns that focus on human interaction and address
computer systems just as tools to support the human
interaction would be placed near the upper bound on the
abstraction scale. In the extreme, high-level patterns would
describe how the end-user can compose off-the-shelf
components and embed them in his work process. This
would then mean that the software developer would no
longer need to assist the end-user in implementing the
pattern.
Note that the different levels of scale are focusing on

differently sized modules within the system. Compared to
construction, low-level patterns discuss, how nuts and bolts
should be arranged or how door knobs should combine
with a door, while high-level patterns focus on positioning
or shaping a whole building or a city to make it a place for
social interaction. When two patterns are on the same
abstraction level, all forces addressed by the patterns
should be roughly comparable in their scope and sig-
nificance (Alexander, 1964). This is comparable to the
analysis method proposed by Cockburn (2000) where
requirements are split up or combined to create a set
of equally sized requirements. As Cockburn (2000)
argued, the different abstraction levels address different



ARTICLE IN PRESS
S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610602
stakeholders’ needs. In case of groupware patterns, this
means that technicians would more focus on low-level
patterns, while end-users focus primarily on high-level
patterns.

The main reason for us to require patterns on different
levels of abstraction lies in the intended use of the patterns
in the Oregon Software Development Process (OSDP)
(Schümmer and Slagter, 2004). This process fosters end-
user involvement by means of end-user centered patterns.
End-users should interact with developers in different
iteration types.

In requirements iterations, the end-users outline scenar-
ios of use. This is informed by the use of high-level patterns
that describe how group interaction can be supported with
groupware. The scenarios are implemented during devel-
opment iterations. Here, the software developers are the
main actors. They translate the scenarios to working
groupware solutions using low-level groupware patterns
as a development guideline. End-users closely interact with
the developers by proposing the application of patterns
from the pattern language and identifying conflicting
forces in the current prototype. When the groupware
is used by the group, end-users reflect on the support
offered by the groupware. Whenever the support can be
improved, they either tailor the groupware using high-
level patterns or escalate the problem to the developers
who then start a development iteration. In all iteration
types, the patterns primarily communicate design knowl-
edge to the developers and the users. Compared to
frameworks, the participants of the OSDP learn how
conflicting forces should be resolved instead of just
using pre-fabricated building-blocks. This will empower
them to create customized solutions that better suit their
requirements.

Another important criteria for organizing a pattern
language are links between patterns. Alexander (1964,
p. 106) noted that forces of a pattern or ‘‘requirements
interact (and are therefore linked), if what you do about
one of them in a design necessarily makes it more difficult
or easier to do anything about the other’’. Thus, ‘‘each
pattern sits at the center of a network of connections which
connect it to certain other patterns that help to complete it.
½. . .� And it is the network of these connections between
patterns which creates the language’’ (Alexander, 1979,
p. 313). In case of patterns in the same problem domain,
this results in a densely connected graph of patterns with
links of different relevance.

The application of a pattern language brings up
additional relations between patterns, called sequences.
A sequence describes the order in which patterns can be or
were applied in the context of a specific use case. Since the
pattern approach demands that developers focus on one
pattern at a time and thus improve the system incremen-
tally in piecemeal growth (Alexander et al., 1980;
Schümmer and Slagter, 2004), we can create a linear
sequence by ordering the patterns according to the point in
time when they were used. A sequence is then a sentence
spoken in the pattern language that changes all forces
addressed by the patterns used as words in the sentence.
Summarizing, patterns are independent from program-

ming languages. They help educating developers by
providing well-known design insights and thereby foster
design reuse. Links between the patterns point to other
relevant issues and thereby support a piecemeal growth of
the application under development. Finally, they improve
the communication between clients, end-users, and devel-
opers, when used in a iterative development process like
OSDP.
Within this paper, we will present a pattern language

that covers high-level as well as low-level issues of
groupware design. After providing a brief overview over
the pattern language, we will illustrate its use by a pattern
sequence that was applied in a product development
setting, i.e. the development of a collaborative learning
environment for our university.

4. A pattern language

The patterns, discussed in this article, concentrate on
more technical issues concerning groupware applications.
They were mined from experiences with the development of
the COAST groupware framework (Schuckmann et al.,
1996) and the DreamObjects platform (Lukosch, 2003). We
used the pattern language in an educational and in a
product development context. The experiences, we have
made, are described later in this paper (see Section 5).

4.1. Pattern structure

Our patterns follow the pattern structure outlined in the
OSDP (Schümmer et al., 2004). It is shaped to meet both
end-user’s and developer’s needs for detail and illustration.
The pattern name is followed by the intent, and the

context of the pattern. All these sections help the reader to
decide whether or not the following pattern may fit into his
current situation.
Then follows the core of the pattern composed of the

problem and the solution statement separated by a scenario

and a symptoms section. The scenario is a concrete
description of a situation where the pattern could be used,
which makes the tension of the problem statement tangible.
The symptoms section helps to identify the need for the
pattern by describing aspects of the situation more abstract
again.
After the solution section, the solution is explained in

more detail and indications for further improvement after
applying the pattern are provided. The collaborations

section explains the main components or actors that
interact in the pattern and explains how they relate to
each other. The rationale section explains why the forces
are resolved by the pattern. Unfortunately, the application
of a pattern can in some cases raise new unbalanced forces.
These counter forces are described in the section labeled
danger spots.



ARTICLE IN PRESS
S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610 603
4.2. Language overview

The pattern map in Fig. 1 shows the patterns of this
language and the relations between the patterns. If a
pattern A points to another pattern B, pattern A is
important as context for the referred pattern B. The
pattern map is split up into several domains. The following
list discusses these domains and presents a problem/
solution pair for one pattern in each of these domains:
�
 Data distribution: The patterns in this domain are
concerned about how to distribute and share data. For
example, consider the problem/solution pair of the
CENTRALIZED OBJECTS pattern:
To enable collaboration users must be able to share the
data. Therefore, manage the data necessary for colla-
boration on a server that is known to all users. Allow
these users to access the data on the server.

�
 Data consistency: The patterns in this domain focus on
keeping shared data consistent. An example is the
IMMUTABLE VERSIONS pattern:
Users want to be able to work independently and make
their results accessible to other users—regardless the
state of the artefact they started their work with. If two
users change the same artefact, this results in conflicting
changes and one change is often lost. Therefore, store
copies of all artefacts in a version tree. Make sure that
Fig. 1. Pattern m
the versions stored in the version tree cannot be changed
afterwards. Instead, allow users to store modifications of
the version as new versions.

�
 Session management: The patterns in this domain focus
on how to organize a collaborative session. The patterns
range from low-level issues concerning latecomer sup-
port in WHAT HAS HAPPENED HERE? or high-level issues
in the LOGIN pattern:
You are developing an application that requires non-
anonymous interaction. Therefore, provide a LOGIN

screen that requests users to identify themselves by
entering a login name and a password before they can
start to use the application.

�
 Awareness: This domain provides patterns on the user
interface level of the collaborative application. An
example pattern for this domain is the USER LIST

pattern:
If users only share common data, they have no mutual
awareness, who will perceive the activities that each user
performs. Users do not like to perform activities, if they
do not know, who observes them. Thus, they will not act
freely with the shared artefacts. Therefore, show the
names of all users who are in the same session in a user
list and ensure that the list is always valid.

The next section shows a full pattern from our pattern
language. The selected pattern is one of the patterns that
ap.



ARTICLE IN PRESS
S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610604
were used in our experience report about the product
development setting.
a
b

4.3. An example pattern: LOVELY BAGS

Intent. Use bags for storing shared objects in a container
because they provide the best concurrency behavior.

Context. You are using mechanisms to DETECT A
CONFLICTING CHANGE. Now you are thinking about
reducing the number of conflicting changes.

Problem. Access operations to shared container objects
change the content of the container by adding or removing
elements. Most of these operations are very bad regarding
concurrency. Thus, synchronous collaboration on contain-
er objects often seems impossible.

Scenario. Imagine a chat system that was implemented
on the basis of replicated objects. The easiest way of
modeling a chat would be to have one long string to which
the users append their contributions.

Now imagine that two users send a contribution at the
same time. While the first client has appended its
contribution (and sent out his update message to the
second client), the second client already added its own
contribution to its representation of the chat log. Thus, it
will add the first client’s contribution after its own
contribution. And the first client will add the second
client’s contribution after its own contribution. Thus, both
clients will see a different value for the chat log (which
implies that one of the changes has to be undone to ensure
consistency).

Would it be better if the clients used a list where they
stored the individual contributions? No, because again
both clients would try to access the same position in the
object (the end) at the same time. This would be true for all
ordered objects such as Lists, Vectors, Arrays. Whenever
two clients try to modify an ordered collection in a way
that affects the positions of newly added elements, these
accesses cannot be performed concurrently.

Symptoms. You should consider to apply the pattern when

. . .

ca cb
�

a
b

c
d

a
b c

e

a
b

c
d

e a
b c

e
d

a c d e

a c d a c e

a c de

bb

b b

Fig. 2. Concurrent accesses to lists and bags.
Access operations to container objects are often rejected
since two concurrent changes cannot be executed in
different orders.

Solution. Therefore, wherever a high level of concurrency
is needed model your container objects by means of a bag.
If the container’s entries need to be ordered equip the data
entries with an order criterium that can be uniquely
assigned by each client (e.g. the current time stamp
together with a unique client ID) but still store the entries
in the bag.

Collaborations. The main participant is the bag. The bag
is a shared container object that can hold references to
other objects. It allows duplicates and does not care about
the order of the contained elements (from a mathematical
point of view, bags are often called multisets). Clients
perform operations on the bag concurrently. These
operations are in most cases commutative (because of the
ignored order and allowed duplicates). In cases, where the
bag may only grow, one does no longer have to check for
consistency since clients will never perform operations that
are not commutative. In cases where the clients also
remove elements from the bag ensure that the clients
DETECT A CONFLICTING CHANGE.
When order is needed while iterating over the collection

locally, it will be converted to an ordered collection before
iterating it. This conversion requires that the contained
elements provide one or more attributes that can be used as
a sorting criteria.

Rationale. The simple explanation why this pattern
works lies in the ‘‘lovely’’ nature of bags: a bag does not
care about order and contained elements in the same way
as other container classes do.
Compared to an ordered container object where the add

operations are related to an insertion position (e.g. arrays
or lists), bags produce the same result if two elements are
added in different order.
Compared to container objects where the add operations

depend on the current set of included objects (e.g. sets or
dictionaries), bags produce the same results if an element
was already present in the bag and two clients perform an
add and a remove of this object concurrently.
This is illustrated in Fig. 2. In the left part, two users

collaborate on a list. The list has the initial state abc. Then
User1 adds d while User2 adds e at the same time. After
both clients have performed their operation, they find time
to UPDATE THEIR FRIENDS. But since the User1’s state
differs from User2’s state, they will get different states if
they perform the updates. Thus, one operation has to be
undone.
Now consider the right part of Fig. 2: again, the users

performed changes and UPDATED THEIR FRIENDS. But now,



ARTICLE IN PRESS
S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610 605
the add-operations can be performed since adds do not
depend on the object’s state or the (non-existent) order of
its elements. Both users will reach a consistent state after
the updates.

In cases where order is needed, one can often restore this
order. Consider for instance a sorted collection: this class
ensures that the elements stored in instances of sorted
collections will be stored according to the sorting order (or
iterated according to the sorting order). The main reason
for using such a sorted data structure is to speed up the
process of iterating over the elements in a sorted way.

If a bag should be iterated in a sorted way, one can first
convert it to a (local) sorted collection and then iterate over
the local copy. The order (which drastically decreases
possible concurrent operations on the data structure) is
thus restored locally where needed. This makes the access
to the ordered collection slower (and requires that each
client sorts the elements) but it makes the data structure
more robust for concurrent manipulations.

Another reason for storing objects in an ordered
collection is the desire to access it by an index. The reason
for this is often to speed up iteration again (by using a
counter for the index when, e.g. iterating over an array
in Java). As with the sorted access order, the iteration
speed is less critical than the reduced concurrency. If the
container object needs to be iterated frequently, you can
perform the iterations on local copies of the replicated
object, which are valid until the replicated object is changed
again.

Danger spots. Unfortunately, even the lovely bag is still
vulnerable regarding remove operations. If the same
element is removed and added at the same time and the
bag did not include the element before, this will result in
different states of the bag depending on the order of the
operations. Thus, prohibiting removes could be an option.

In some cases, arrays can be as attractive (or even more
attractive) as bags: when the number of elements in the bag
does not change often and an entry of the array is accessed
by its index without relating to the other elements, this
change is concurrent to all changes at other array positions.
But if the array should change its size (or have a shared
index as a current index), these attributes will reduce the
concurrency of the array.

Known uses. Chat in FUB (Haake and Schümmer, 2003):
FUB is a system built on top of COAST for supporting
brainstorming in the context of distributed collaborative
learning. Thus, the users are provided with two different
kinds of chats: a brainstorming chat and a discussion chat,
where concepts are discussed. While the brainstorming chat
does not require any order (and can thus be directly modeled
using a bag), the discussion chat needs to ensure that all chat
entries are shown in the same order for all users.

Thus, the chat is modeled as a set of chat entries. Each
entry has a time stamp that represents the (synchronized)
time when the entry was added at the client. For displaying
the chat log, all entries are sorted with the time stamp as a
primary and the contained text as a secondary key. This
ensures that all entries are shown in the same order at each
client.

Arrangement of messages in Usenet (Horton and Adams,
1987): Usenet newsgroups are semantically represented as
trees of messages (modeling the reply-relations between
messages). While these relations could have been explicitly
modeled at the news server, the designers rather decided to
hide the relations within the news entries.
Each entry has a unique id, which is determined by the

client that generated the entry. The entry can relate to a
parent message, while the parent message is not changed at
all (it does not know about the child messages). All entries
are then stored in an unspecified collection by the server.
The important issue here is that the protocol does not
demand for any order of the entries. When clients request
entries they can ask for a sorted version (by time), which
will then be generated (by inspecting the date fields of the
messages).
The client is responsible for ordering the entries when

displaying the message threads.

Related patterns. DON’T TRUST YOUR FRIENDS: When the
bag has to be reordered before the client can process it, an
additional computation overhead is added. This may slow
down the responsiveness of the application. If the reorder-
ing process takes more time than obtaining a lock as
proposed in DON’T TRUST YOUR FRIENDS, you should prefer
the locking mechanism.
DETECT A CONFLICTING CHANGE: Even when using

LOVELY BAGS inconsistencies can occur. DETECT A CON-

FLICTING CHANGE allows to detect these inconsistencies.
5. Experiences

We applied the patterns both in an educational and in a
product development context. While a former publication
(Lukosch and Schümmer, 2004a) focused on the benefits of
patterns in an educational context, we now focus on the
experiences in the product development setting after briefly
summarizing the experiences from the educational use of
the patterns.
5.1. Educational setting

Computer science students at the FernUniversität in
Hagen have to take part in a software development lab
course to get their degree. The computer science depart-
ment offers different lab courses each focusing on a
different application domain. All lab courses last half a
year. Each year our group offers a lab course on groupware
development. In the observed course, students had to
develop a groupware application for collaborative gaming.
As the FernUniversität in Hagen is a distance teaching
university, we run these courses in a blended setting. At the
beginning of the course, students meet co-located for 3–4



ARTICLE IN PRESS
S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610606
days to form groups, discuss the problem, define work
units, assign roles, etc. After the co-located phase, the
groups work distributed to solve their task.

In the observed lab course, six groups consisting of up to
six students were asked to create a collaborative game.
Apart from the lab course the students also attended other
lectures. All groups were introduced orally to the patterns
of our pattern language at the beginning of the lab course.
The students performed well using the patterns as an
educative means for learning how to write collaborative
applications. They read the problem and scenario section
to identify if the pattern fits to their problem space.
Relevant patterns affected the design of the application
under development. Throughout the lab course, the
students used the patterns to communicate necessary
design decisions. As the patterns were available to the
groups, group members could quickly understand ongoing
discussions, even if these discussions were out of their
specific work scope.

Compared to groups that focused more on using
frameworks, the pattern groups produced better applica-
tions and proved a better domain knowledge in the final
presentations of their approaches. Due to these results, we
are currently using the pattern language in a similar lab
course. As this lab course is still running, we do not have
final results, but first impressions confirm that the pattern
language highly supports the students in solving their tasks.

5.2. Product development setting

The product development setting was a two year project
with the goal of creating a collaborative learning environ-
ment for our university. The project team consisted out of
four senior employees and three students who contributed
to the development. The resulting learning environment
CURE (Haake et al., 2004) is in use since the end of the
first year of the project. Since the project followed an
iterative development approach—namely the OSDP
(Schümmer and Slagter, 2004)—the software evolved in
an organic way and was continuously used by end-users
since the first prototype was available after the first weeks.
In the second year, the user population grew from 30 initial
users to more than 850 users who are currently active in the
environment.

In a retrospective view, we could observe that the
patterns were applied in the project in a specific sequence
Lovely Bags

Don't Trust Your Friends

Login Centralized Objects

Believe in Y

Immutable Versions

Fig. 3. Sequence of patterns u
(see Fig. 3). The remaining part of this section will illustrate
the sequence by elaborating on how the patterns were used
in the concrete design problem of creating a web-based
collaborative learning environment. Note that the sequence
shown on the next pages is one application specific
sequence in the pattern language. Other applications
naturally have other sequences since the user requirements
are different in different projects.
A precondition of the project was that it should utilize a

web frontend for the users. The team started discussing
whether or not anonymous interaction was appropriate for
a collaborative learning environment. Very soon, it became
obvious that users should interact with a distinguishable
identity. Thus, a first requirement was that users should
LOGIN before they were allowed to see any content in the
environment.
Reading the LOGIN pattern, it became obvious that user

information like a user’s name and password need to be
stored at a place where users could access it from different
sites. The CENTRALIZED OBJECT pattern discusses issues for
providing clients access to shared data from different sites.
Thus, it was selected for the application. When users enter
their login and password, the system can check the
password by comparing it to a centralized object and in
case of a successful login provide users access to centralized
objects.
Without any information about the identity of the client,

the corresponding server would have to request the LOGIN

for each request. WHO’S THAT GIRL discusses this problem
and suggests that the server maintains a session informa-
tion that associates a client with its technical address
revealed in its request. In CURE, this resulted in a
dictionary that maps session keys of a web session to user
IDs. The server can thereby determine the identity of the
requesting user within each request.
Up to this point in time, the application was a standard

web application with access control. The patterns helped to
identify those aspects of the web application that must be
present in the concrete context of the learning environ-
ment. Thus, the patterns were used as a means for selecting
the required components from a servlet framework.
While the above patterns were focusing on the technical

infrastructure, other patterns helped to organize the
content managed in the environment. The first content-
focused design decision was to organize learning material
in a ROOM. ROOM provides the group with a place, where
Heartbeat

Detect A Conflicting

Change

RoomWho's that girl

User List

our Group

Timeout

sed in the CURE project.



ARTICLE IN PRESS
S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610 607
they can meet for collaboration. The pattern seemed
appropriate since it eases the process of relating content
with discussions on and collaboration with the content.
CURE uses the ROOM pattern to cluster related learning
material and bring together learners who are interested in
the same topic (Haake et al., 2003). If, for instance, learners
want to study linear algebra, they join the room for linear
algebra, where they can find pages describing the topic,
exercise pages that can be solved together with other room
members and discussion channels for talking about the
problems linear algebra.

After the system was at a state where a user could login
and interact with content in a room, the next design step
was to structure content modifications in the platform.
Unlike in other web-based learning environments, where
teachers provide static content for learners, CURE should
allow students to actively provide content. Learners should
be able to edit content in a room. But what happens if two
users decided to change the content at the same time? The
DON’T TRUST YOUR FRIENDS pattern suggests to solve this
issue by using locks on a object when a user starts his
operation and releasing the lock after the user has finished
the operation. But as mentioned in the pattern, there are
several drawbacks for such a solution:
�
 The response time would increase since a lock is
required before a user could begin his change.

�
 Since clients could perform long changes (e.g. author a
chapter of a seminal work), the rest of the group could
not work in parallel.

�
 If clients intentionally or by accident forget to release a
lock, the pages could be locked forever for the whole
group.

Thus, the development team decided to follow an
optimistic approach using the BELIEVE IN YOUR GROUP

pattern. Every user was allowed to change the pages at
each point in time. Most conflicts should be avoided using
a social protocol. An important part of the pattern is to
DETECT A CONFLICTING CHANGE or to resolve conflicting
changes. How to resolve conflicts is often specific to the
group process and the kind of artefacts used in the group.
For CURE, the IMMUTABLE VERSIONS pattern provided the
solution on how to store the pages in a room. CURE stores
a page as a version tree holding all different versions of the
page. When different users edit the same page at the same
time, the resulting versions are stored as different leafs of
the initial version. CURE then can DETECT A CONFLICTING

CHANGE by scanning the version tree for multiple leafs.
The third major design step that we want to report on in

this section was the introduction of highly synchronous
interaction forms. End-users asked for synchronous
communication channels and means for spontaneously
meeting other learners.

The team first implemented a chat. One problem in this
context was the high concurrency requirement of a chat
communication. Chat contributions are often posted at
close points in time which means that clients can perform
conflicting changes. The first naive implementation of the
chat that stored all chat entries as a linked list led to many
conflicts. To resolve this, the developers decided to store
chat entries in a set and sort them according to their
timestamps. As described in the LOVELY BAGS pattern, this
improved the concurrency behavior by eliminating all
possible conflicts.
The implementation of the USER LIST followed the

pattern quite closely. All users, who entered a room were
stored on the server together with the room’s data model.
The user list was modeled as a page that subscribes to
changes in the data model of a specific room. Whenever a
user moves to another room, the data model is updated and
remote subscribers are informed. An open problem was that
users could simply close their browsers without notifying
the server. The server would thus keep the users as room
members in the USER LIST forever. The TIMEOUT pattern
provides a solution for this problem. When users did not
interact within the room for a specific amount of time, they
are removed from the user list. A HEARTBEAT was added to
prevent an accidental removal of a user from the user list
when the user was just reading a page without requesting
additional information from the server. The HEARTBEAT is
sent as long as the page is displayed on the user’s screen.
Fig. 4 shows the resulting application CURE. Three

users are interacting in the room Linear Algebra. They are
collaborating on a page with the most recent assignments.
The active users are shown in a user list on the top left
corner of Fig. 4. The communication channel is visible on
the bottom of the page whenever a page from the room is
shown. The examples mentioned above provide an excerpt
of how patterns were used by the development team.

5.3. Results

Combined with the experiences of the student groups in
the lab courses, we can observe that the patterns
�
 Served as an educative means both for novice students
and more experienced developers.

�
 Helped to select required technology from larger
frameworks for groupware applications by pointing to
known uses of the pattern.

�
 Provided the teams with a common language and
metaphors that ease the communication within the team
and between the team and the end-users.

�
 Pointed the developers to related problems and solution,
which they could have ignored otherwise.

�
 Helped to focus development activities on small
problems and thus encourage iterative development
and piecemeal growth of groupware applications.

6. Conclusions

Groupware developers have to consider various issues
on a technical level. These issues are often not part of the



ARTICLE IN PRESS

Fig. 4. A room in CURE.

S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610608
professional training of software engineers. To relieve
developers from recurring issues groupware platforms offer
programming abstractions. In this article, we have shown
that frameworks have properties that complicate their
usage, i.e. the chosen programming language, the sup-
ported distribution architecture, the dominance of frame-
works in the application, the use of black-box components,
the lack of documentation, and communication problems
between end-users and developers.

In our opinion, frameworks alone do not sufficiently
support groupware developers. We argue that developers
should be supported in developing groupware by teaching
them on how to design and develop groupware applica-
tions and reuse proven solutions. When designing inter-
active applications, end-user involvement is a crucial issue.
To foster communication between developers and end-
users, they need a common language and understanding of
the problem space. Pattern languages are an educational
and communicative vehicle for reaching this goal.

This paper presented parts of a novel pattern language
for groupware development. The discussed patterns
focused on technical issues during groupware development.
These technical issues are among the main obstacles during
groupware development. The pattern language allows
developers to use these solutions in their intended context.
Experiences during software labs at our faculty and the
development of a collaborative learning platform have
shown that the patterns are a supportive means to instruct
developers on how to implement groupware applications in
a educational as well as a project setting.
The patterns in this paper are only a part of a bigger

pattern collection that focuses on various issues in group-
ware development, e.g. virtual communities (Schümmer,
2004b), privacy (Schümmer, 2004c), group formation
(Schümmer, 2004a), or shared object management (Lukosch
and Schümmer, 2004b). Besides our pattern collection
other collections have evolved in the area of groupware
design. These collections are complementary to our’s and
can be combined to provide a greater understanding of all
issues related to groupware development. On our scale
some of them can be regarded as low-level patterns for
distributed systems, e.g. POSA2 (Schmidt et al., 2000) or
the collection of Guerrero and Fuller (1999) that focuses on
technical infrastructures for groupware applications. Other
collections have focused on specific groupware domains
like knowledge management (Herrmann et al., 2003) or
group support systems (Kolfschoten et al., 2004). As
Erickson (2000) pointed out, pattern languages can serve as
a Lingua Franca for human–computer interaction design.
This motivated the collection of high-level human–compu-
ter interaction patterns, e.g. Borchers (2000).
Still, all these collections cover only a part of all issues

concerning groupware development. Future work is needed
to develop a more complete pattern collection and combine
them in a coherent pattern language for supporting
groupware development. We thus invite the community



ARTICLE IN PRESS
S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610 609
to share their expertise by means of patterns and to
evaluate the groupware patterns collection in diverse
projects.
References

Alexander, C., 1964. Notes on the Synthesis of Form, 7th ed. Harvard

University Press, Cambridge, MA.

Alexander, C., 1979. The Timeless Way of Building. Oxford University

Press, New York.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King,

I., Angel, S., 1977. A Pattern Language. Oxford University Press,

New York.

Alexander, C., Silverstein, M., Angel, S., Ishikawa, S., Abrams, D., 1980.

The Oregon Experiment. Oxford University Press, New York.

Beck, K., Johnson, R., 1994. Patterns generate architectures. In:

Proceedings of the ECOOP’94, vol. 821. Springer, Berlin, pp. 139–149.

Berlage, T., Genau, A., 1993. A framework for shared applications with a

replicated architecture. In: Proceedings of the Sixth Annual ACM

Symposium on User Interface Software and Technology. ACM Press,

New York, pp. 249–257.

Biggerstaff, T., Richter, C., 1987. Reusability framework, assessment, and

directions. IEEE Software (March), 41–49.

Borchers, J., 2001. A Pattern Approach to Interaction Design. Wiley,

New York.

Borchers, J.O., 2000. A pattern approach to interaction design. In:

Conference Proceedings on Designing Interactive Systems: Processes,

Practices, Methods, and Techniques. ACM Press, New York City,

NY, pp. 369–378.

Brugali, D., Sycara, K., 2000. Frameworks and pattern languages: an

intriguing relationship. ACM Computing Surveys 32 (1es), 2.

Brugali, D., Menga, G., Aarsten, A., 1997. The framework life span.

Communications of the ACM 40 (10), 65–68.

Chabert, A., Grossman, E., Jackson, L., Pietrovicz, S., Seguin, C., 1998.

Java object-sharing in Habanero. Communications of the ACM 41 (6),

69–76.

Cockburn, A., 2000. Writing Effective Use Cases. Addison-Wesley,

Boston.

Dewan, P., Choudhary, R., 1992. A high-level and flexible framework for

implementing multiuser interfaces. ACM Transactions on Information

Systems 10 (4), 345–380.

Eckstein, J., 1999. Workshop report on the pedagogical patterns project:

successes in teaching object technology. In: Proceedings of OOP-

SLA’99 Educator’s Symposium, Denver.

Ellis, C., Gibbs, S., Rein, G., 1991. Groupware—some issues and

experiences. Communications of the ACM 34 (1), 38–58.

Erickson, T., 2000. Lingua francas for design: sacred places and pattern

languages. In: Proceedings of the Conference on Designing Interactive

Systems. ACM Press, New York, pp. 357–368.

Fayad, M.E., Schmidt, D.C., 1997. Object-oriented application frame-

works. Communications of the ACM 40 (10), 32–38.

Fowler, M., 2000. UML Distilled, 2nd edn.—A Brief Guide to the

Standard Object Modeling Language. No. ISBN: 020165783X.

Addison-Wesley, Reading, MA.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley,

Reading, MA.

Guerrero, L., Fuller, D., 1999. Design patterns for collaborative systems.

In: Proceedings of the Fifth International Workshop on Groupware

(CRIWG).

Haake, J., Schümmer, T., Haake, A., Bourimi, M., Landgraf, B., 2004.

Supporting flexible collaborative distance learning in the cure plat-

form. In: Proceedings of HICSS-37. IEEE Press, New York.

Haake, J.M., Schümmer, T., 2003. Some experiences with collaborative

exercises. In: Proceedings of CSCL’03. Kluwer Academic Publishers,

Bergen, Norway.
Haake, J.M., Schümmer, T., Haake, A., Bourimi, M., Landgraf, B.,

2003. Two-level tailoring support for cscl. In: Favela, J., Decouchant,

D. (Eds.), Groupware: Design, Implementation, and Use. Proceedings

of the Ninth International Workshop (CRIWG 2003), vol.

2806. Lecture Notes in Computer Science. Springer, Heidelberg,

pp. 74–82.

Herrmann, T., Hoffmann, M., Jahnke, I., Kienle, A., Kunau, G., Loser,

K.-U., Menold, N., 2003. Concepts for usable patterns of groupware

applications. In: Proceedings of the 2003 International ACM

SIGGROUP Conference on Supporting Group Work. ACM Press,

New York, pp. 349–358.

Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F., Wilne, W., 1994. The

Rendezvous architecture and language for constructing multiuser

applications. ACM Transactions on Computer–Human Interaction 1

(2), 81–125.

Horton, M.R., Adams, R., 1987. Standard for interchange of USENET

messages. Request for Comments 1036, IETF.

Johnson, R.E., 1997. Frameworks ¼ ðcomponentsþ patternsÞ. Commu-

nications of the ACM 40 (10), 39–42.

Kolfschoten, G.L., Briggs, R.O., Appelman, J.H., de Vreede, G., 2004.

thinkLets as building blocks for collaboration processes: a further

conceptualization. In: de Vreede, G.-J., Guerrero, L.A., Raventós,

G.M. (Eds.), Groupware: Design, Implementation, and Use, 10th

International Workshop, CRIWG 2004. Lecture Notes in Computer

Science 3198. Springer, Berlin, Heidelberg, San Carlos, Costa Rica,

pp. 137–152.

Lukosch, S., 2003. Transparent and Flexible Data Sharing for Synchro-

nous Groupware. Schriften zu Kooperations- und Mediensystemen—

Band 2. JOSEF EUL VERLAG GmbH, Lohmar—Köln.

Lukosch, S., Schümmer, T., 2004a. Communicating design knowledge

with groupware technology patterns—the case of shared object

management. In: de Vreede, G.-J., Guerrero, L.A., Raventós, G.M.

(Eds.), Groupware: Design, Implementation, and Use, 10th Interna-

tional Workshop, CRIWG 2004. Lecture Notes in Computer Science

3198. Springer, Berlin, Heidelberg, San Carlos, Costa Rica,

pp. 223–237.

Lukosch, S., Schümmer, T., 2004b. Patterns for managing shared objects

in groupware systems. In: Proceedings of the Ninth European

Conference on Pattern Languages and Programs. Irsee, Germany,

pp. 333–378.

Munson, J.P., Dewan, P., 1997. Sync: A java framework for mobile

collaborative applications. IEEE Computer 30 (6), 59–66.

Patterson, J.F., Day, M., Kucan, J., 1996. Notification servers for

synchronous groupware. In: Proceedings of the ACM 1996 Conference

on Computer Supported Cooperative Work. Boston, MA, USA,

pp. 122–129.

Prakash, A., Shim, H.S., 1994. Distview: Support for building efficient

collaborative applications using replicated objects. In: Proceedings of

the ACM 1994 Conference on Computer Supported Cooperative

Work. Chapel Hill, NC, USA, pp. 153–164.

Preguica, N., Martins, J.L., Domingos, H., Duarte, S., 2000. Data

management support for asynchronous groupware. In: Proceedings of

the 2000 ACM conference on Computer Supported Cooperative

Work. ACM Press, New York, pp. 69–78.

Roseman, M., Greenberg, S., 1996. Building real-time groupware with

groupkit, a groupware toolkit. ACM Transactions on Computer–

Human Interaction 3 (1), 66–106.

Rossi, G., Garrido, A., Carvalho, S., 1995. Design patterns for object-

oriented hypermedia applications. In: Vlissides, J.M., Coplien, J.O.,

Kerth, N.L. (Eds.), Pattern Languages of Program Design 2. Addison-

Wesley, Reading, MA, USA, pp. 177–191.

Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F., 2000. Patterns for

Concurrent and Networked Objects, vol. 2 of Pattern-Oriented

Software Architecture. Wiley, New York.

Schuckmann, C., Kirchner, L., Schümmer, J., Haake, J.M., 1996.

Designing object-oriented synchronous groupware with coast. In:

Proceedings of the ACM 1996 Conference on Computer Supported

Cooperative Work. Boston, MA, USA, pp. 30–38.



ARTICLE IN PRESS
S. Lukosch, T. Schümmer / Int. J. Human-Computer Studies 64 (2006) 599–610610
Schümmer, T., 2004a. GAMA — a pattern language for computer

supported dynamic collaboration. In: Henney, K., Schütz, D.

(Eds.), Proceedings of the Eighth European Conference on

Pattern Languages of Programs (EuroPLoP’03). UVK, Konstanz,

Germany.

Schümmer, T., 2004b. Patterns for building communities in collaborative

systems. In: Proceedings of the Ninth European Conference on Pattern

Languages of Programs (EuroPLoP’04). UVK, Konstanz, Germany,

Irsee, Germany, pp. 379–440.

Schümmer, T., 2004c. The public privacy — patterns for filtering personal

information in collaborative systems. Pattern Language workshopped
at the CHI 2004 workshop on Human–Computer–Human-Interaction

Patterns, FernUniversität in Hagen.

Schümmer, T., Slagter, R., 2004. The oregon software development

process. In: Proceedings of XP2004.

Schümmer, T., Borchers, J., Thomas, J.C., Zdun, U., 2004. Human–compu-

ter–human interaction patterns: workshop on the human role in hci

patterns. In: Extended Abstracts of the 2004 Conference on

Human Factors and Computing Systems. ACM Press, New York,

pp. 1721–1722.

Tietze, D.A., 2001. A framework for developing component-based co-

operative applications. Ph.D. Thesis, Technische Universität, Darmstadt.


	Groupware development support with technology patterns
	Introduction
	Current groupware development support
	Approach
	A pattern language
	Pattern structure
	Language overview
	An example pattern: Lovely Bags

	Experiences
	Educational setting
	Product development setting
	Results

	Conclusions
	References


