
The advent of high-throughput technologies,
such as genomics and proteomics, is enabling
biologists to study cells as systems. This is not
only creating a whole new set of logistical
problems, but also forcing a conceptual reeval-
uation of the concept of cells as a collection of
individual cellular components. What do we
do with this developing list of cellular compo-
nents and their properties? As informative as
they are, these lists basically give us the mole-
cules that make up cells and their individual
chemical properties. How do we now arrive at
the biological properties that arise from these
detailed lists of chemical components?

From reductionism to globalism
During the latter half of the 20th century,
biology was dominated by reductionist
approaches that successfully generated infor-
mation about individual cellular compo-
nents and their functions. Over the past
decade, this process has been greatly acceler-
ated by the emergence of genomics. We now
have entire DNA sequences for a growing
number of organisms and are continually
defining their gene portfolios. Although
functional assignment to these genes is
presently incomplete, we can soon expect the
assignment and verification of function for
the majority of genes on selected genomes.
Extrapolation between genomes will then
most likely accelerate the definition of what
amounts to a “parts catalog” of cellular com-
ponents in a large number of organisms1.
Expression array and proteomic technologies
give us the capability to determine when a
cell uses particular genes and when it does
not. The reductionistic process is schemati-
cally depicted on the left in Figure 1.

However, it has become generally accept-
ed that the integrative analysis of the func-
tion of multiple gene products has become a
critical issue for the future development of
biology (e.g., see refs 2–8). Such integrative
analysis will rely on bioinformatics and
methods for systems analysis (right side of
Fig. 1). It is thus likely that over the coming
years and decades, the biological sciences will
be increasingly focused on the systems prop-

erties of cellular and tissue functions. These
are the properties that arise from the whole,
and represent “real” biological properties.
These properties are sometimes referred to as
“emergent” properties because they emerge
from the whole and are not properties of the
individual parts. This new challenge comes
with several fundamental scientific issues
and implications for the biological commu-
nity. Only a few will be addressed here.

In silico biology
As in other fields before, biology will experi-
ence an increased use of systems mathemat-
ics and computer simulations. We have
already begun to experience this trend, and it
is likely to continue. Many other fields of sci-
ence and engineering have developed systems
science and complicated mathematical simu-
lations to a high level of sophistication. These
capabilities influence our everyday life. When
placing a telephone call, one enters a complex
and optimized network. The chemicals that
we all use originate from refineries and other
highly integrated chemical processes with
complex control structures that rival those of
living cells. Aircraft pilots are trained in sim-
ulators, and the aerospace industry now sim-
ulates aircraft designs so accurately in a com-
puter that prototypes are no longer built.
This would have been unthinkable only a few
years ago. Many fields of science and engi-
neering have thus gone through productive
periods of rapid data generation, data analy-
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sis, mathematical model building, and com-
puter simulation.

What about biology? Will it ever reach a
level of sophistication in mathematical mod-
eling and simulation similar to other fields?
Opinions are mixed. The complexity of living
systems and their continual change through
evolution makes many skeptical about the
success of such endeavors. Of course, only
time will tell how successful they will be.

With the Human Genome Project’s com-
pletion at hand, and with increasing amounts
of expression data becoming available, grow-
ing attention is being paid to in silico biology.
Broadly speaking, the term in silico biology
refers to the use of computers to perform
biological studies. Computations of the
structures of complex biomolecules are cur-
rently routinely performed. Now, the mathe-
matical description and computer simula-
tion of the simultaneous action of multiple
gene products is growing in importance, and
in the view of many, will take center stage in
biology in the coming decades.

How will we proceed?
Mathematical model building in biology is
likely to differ, at least initially, from that
practiced in the physicochemical sciences. In
these fields, one starts with basic thermody-
namic concepts such as chemical potential,
fundamental rate equations such as the diffu-
sion equation, and the basics of electrochem-
istry such as the Nernst equations. These
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The challenges of in silico biology
Moving from a reductionist paradigm to one that views cells as systems will necessitate
changes in both the culture and the practice of research.
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Figure 1. The shift in emphasis of biological research. Biology has traditionally followed a
reductionist approach in which individual components of a living system are studied
separately. It is becoming clear that we need to reverse the process and to study how these
components interact to form complex systems using an integrative approach.
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equations are based on fundamental physical
theories and concepts, and contain a large
number of parameters, most of which can be
individually measured. Computer models of
complex processes have information both on
the properties of each component in the sys-
tem as well as on their interconnectivity.

In spite of impressive bioinformatic data-
bases, we cannot obtain all of the informa-
tion needed to build a computer model of a
whole cell at this detailed level of descrip-
tion. One day, this goal might be achieved,
but at present a different approach is needed
if we want working and useful computer
models of whole cells. At present, we can
obtain the network structure of multigenic
processes (e.g., through knowledge of stoi-
chiometry and the use of yeast two-hybrid
systems), but obtaining information about
the physciochemical properties of gene
products, such as binding constants and
turnover rates, is much more difficult.

In the absence of detailed information, an
alternative approach can be formulated that
is based on the fact that cells are subject to
certain constraints that limit their possible
behaviors. Imposing these constraints, one
can then determine what is possible to a cell
and what is not. Imposing a successive series
of constraints, one can limit likely cellular
behavior, but never predict it precisely. This
approach is illustrated on the left in Figure 2.
It leads to the formulation of solution spaces
rather than the computation of a single solu-
tion. Behaviors within this space can be
attained, each basically representing a differ-
ent phenotype based on the component list,
the biochemical properties of the compo-
nents, and the imposed constraints. If all of
the constraints are known, the solution space
shrinks to a single point, as shown on the
right in Figure 2. The question then becomes,
will we ever reach this state of knowledge of
cellular processes? Most likely not, at least in
the foreseeable future, except in rare cases

such as for the human red blood cell9 or for
simple viruses10. However, this approach
does lead to models that are helpful in ana-
lyzing, interpreting, and even predicting the
genotype–phenotype relationship.

Types of constraints and their
imposition
Cells are subject to a variety of constraints
(see Table 1); there are both invariant (i.e.,
nonadjustable) and adjustable constraints.
The former can be used to bracket the range
of possible behavior. The latter can be used to
further limit allowable behavior, but these
constraints can adjust through an evolution-
ary process. In addition, the adjustable con-
straints, such as kinetic constants, will vary
from one individual to another. A set of suc-
cessive constraints can be applied to the
analysis of metabolic fluxes to narrow attain-
able flux distributions achievable from a
defined metabolic genotype (see Fig. 3).

The first part of Figure 3 shows a space
where the axes represent fluxes through all
individual reactions in the metabolic net-
work. Not all the points in this space are
attainable because of the interrelatedness of
the fluxes. The stoichiometric matrix limits
the steady-state fluxes to a subspace, and

metabolic transients are rapid so
any deviations from this subspace
are short-lived. If the reactions are
defined so that all the fluxes are
positive, this plane is converted to
a cone through the use of convex
analysis. The edges of this cone
become a set of unique, systemical-
ly defined metabolic pathways (see
review in ref. 11), and all the points
on the interior of the cone can be
represented as positive combina-
tions of these fundamental path-
ways. Because of the capacity con-
straints on the individual steps in
the pathways, the length of each
edge is limited. These capacity
constraints close the cone (step 3 in
Fig. 3) and form a closed solution
space in which all allowable meta-

bolic flux maps lie. This space can be
searched for optimal phenotypes using linear
optimization12,13. Recent experimental stud-
ies in my laboratory have shown that growth
of Escherichia coli lies along an edge that rep-
resents optimal growth in minimal media.
With this information in hand, one can seek
the kinetic constraints that force the solution
to the edge of the closed cone.

The application of successive constraints
to metabolism is probably just the first such
example. It is an approach that marries the
use of unambiguous physicochemical con-
straints to the evolutionary change inherent
in biological processes, by allowing for time-
varying or adjustable constraints. This
approach offers an attractive alternative to
mathematical modeling of systemic functions
in biology. The more classical physicochemi-
cal approach to studying biological dynamics
has been developed and described in several
text books14,15, and specialized theories have
been developed, such as metabolic control
analysis16, for biological systems analysis.

The iterative model-building process
The process of building mathematical mod-
els of complex biological processes and their
computer simulation will be an iterative one.
We will begin to construct “in silico organ-
isms” that are computer representations of
their in vivo counterparts. Initial versions
will be synthesized using genomic, biochemi-
cal, and physiological data. These models will
have some interpretive and predictive capa-
bilities. However, because of incomplete
knowledge of constraints and erroneous
annotation, these initial models will be able
to represent only some functions of the
organism correctly.

In carrying out this iterative model build-
ing process, we must learn to embrace failure.
The main difference between the in silico and
in vivo organism is that the in silico version is
missing some features. Therefore, we must set
out to formulate experimentally testable
hypotheses based on the in silico analysis, per-
form the experiments, and update the models
(see Fig. 4). Interestingly, this iterative process

Table 1. Physicochemical factors constraining metabolic function

Factor Type of constraint

Capacity
Maximum fluxes Nonadjustable maximum based on maximum 

association rates
Connectivity
Systemic stoichiometry Hard nonadjustable constraints

Rates
Mass action, enzyme kinetics, regulation Highly adjustable by an evolutionary åprocess

Others
Osmotic pressure, electroneutrality, Hard nonadjustable constraints
solvent capacity, molecular diffusion

Figure 2. Constraining possible behaviors. Because
biological information is incomplete, it is necessary to
take into account the fact that cells are subject to
certain constraints that limit their possible behaviors. By
imposing these constraints in a model, one can then
determine what is possible and what is not, and
determine how a cell is likely to behave, but never
predict its behavior precisely.
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for building in silico organisms is likely to
have two feedback loops. One is the classical
experimental loop (the one on the right in Fig.
4), and the other is in silico (on the left in Fig.
4). Many corrections and adjustments for
these models are likely to originate from ana-
lyzing and searching the ever-growing avail-
ability of bioinformatic databases.

What will we do with these in silico mod-
els? They are likely to have some basic scien-
tific use, for purposes such as comparative
genomics and evolutionary studies. The ini-
tial metabolic models will likely have practi-
cal uses associated with study of human
pathogens and design and operation of
industrial bioprocesses. We will move from
talking about genetic engineering of single
genes, to what may become known as
“genome engineering,” where the whole
organism is the context of the design. Some
early studies along these lines are appearing6.

One additional issue is worth comment in
this iterative model-building process. The
high-throughput technologies are generating
a “need-to-know everything” mentality.
However, as experience has shown in other
fields, one can construct powerful and useful
computer models without “knowing every-
thing.” If we insisted on having computer
models that account for every detail of a
process being studied, we would not build
airplanes or refineries. In fact, one of the arts
of model building is to determine what is
needed in order to synthesize an insightful
and useful computer model. It is likely that
the lessons learned from other fields will ben-
efit model building in biology.

Simplicity from complexity 
It is clear that even though the molecular
composition of living cells is complex (i.e.
their genotype) the number of distinct
behaviors (i.e. their phenotypes) that they
display is much fewer. This important princi-
ple of simplicity from complexity is emerging
from singular value decomposition of gene
expression data that clearly shows that many
expressed gene products behave in a highly
coordinated fashion17,18. For instance, these
studies show that two principal underlying
modes of motion govern the genome-wide
expression pattern in yeast during its cell
cycle. Studies of mathematical models of
complex biochemical reaction networks
exhibit similar features. Temporal decompo-
sition of complex metabolic and growth
models show that there are only a few gov-
erning dynamic determinants19 and robust-
ness analysis of models of complex biological
processes, such as those for bacterial chemo-
taxis20 and pattern formation in the
drosophila embryo21, show that their overall
behavior is relatively insensitive to the exact
numerical values of the kinetic constants
used. 

The elucidation of the
underlying simplicity will rely
on well established methods of
system identification and
model reduction that have
been practiced in a number of
fields of science and engineer-
ing. The approach of succes-
sive application of constraints
described above similarly
leads to few allowable behav-
iors based on a large number
of interacting components.
These analysis methods
applied to large volumes of
biological data being currently
generated are likely to lead to
the elucidation of the princi-
pal ‘genetic circuits’1 that
underlie cell function.

What is rate limiting?
High-throughput experimen-
tal technologies are generating
biological data at unprecedent-
ed rates, and the pace will only
accelerate. The bioinformatic
infrastructure that tabulates, curates, and
makes these data retrievable is developing
(e.g., WIT, EcoCyc, Mips, Kegg, Biology
WorkBench, EMP, Swiss-Prot). Many initial
visualization tools and statistical analysis
methods, such as clustering, are becoming
available for data analysis. With few excep-
tions, mathematical models are generally not
available. Models like the human red blood
cell and Mycoplasma genitilium22, however,
are beginning to become available in trans-
portable format. The talent that goes into for-
mulating these models, performing the
numerical analysis, and interpreting the
results is presently in short supply. So far, the
available computational power for solving
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these models has not been a limitation.
The implications of the process depicted

in Figure 1 are not just that of a major shift in
scientific emphasis and outlook. The educa-
tional infrastructure in the biological sciences
must respond. The biological scientist of the
future will have to become more computer
literate and will have to possess a higher level
of mathematical and informatics training. It
is likely that the major changes needed will be
difficult to achieve within the structure of
existing biology departments. Change in fac-
ulty orientation, research, and teaching skills
that are required may not be possible with the
peer review system that is currently in place.

It seems likely that new educational pro-
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Figure 3. Narrowing down the alternatives. The application of
successive constraints to a set of reactions in a pathway
allows one to narrow down the attainable outcomes (“flux
distributions”) from a defined metabolic genotype (see text
for further details).

Figure 4. If at first you don’t succeed. . .Iterative in silico model building in biology involves the
formulation of experimentally testable hypotheses based on the in silico analysis, collection of
experimental data, and subsequent refinement of the models based on these data.
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grams and departments will arise. The new
curricula that need to be synthesized will
comprise not only computer science and
biology, but also mathematical modeling,
numerical analysis, and systems science. New
biologically based engineering programs are
likely to emerge, just as chemical engineering
emerged from chemistry and mechanical
engineering early in the last century.

Conclusions
High-throughput experimental technologies
are not only forcing researchers to accommo-
date the systems point of view in cellular and
molecular biology, but also enabling us to
study cells as systems. Given the complexity of
even the simplest cellular function, this capa-
bility is demanding the development of math-
ematical models and computer simulations to
study the simultaneous function of multiple
gene products. Such models are likely to be
developed for well-studied biological model
systems and organisms (e.g., E. coli, yeast,
Drosophila), and will then be used to analyze,
interpret, and predict the genotype–pheno-
type relationship. This study of phenotypes
with knowledge of the genotypes can be called
“phenomics22,” which is analogous to
genomics. Phenomics will have an important
theoretical component through mathematical

model building and computer simulation.
The complexity and specific properties of bio-
logical systems, such as robustness, redundan-
cy, and time-varying constants (evolution),
are likely to make model building different
from other fields of science and engineering.
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