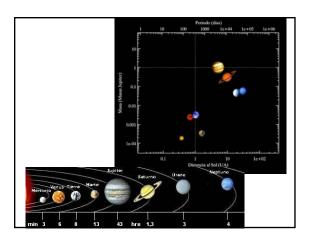

Formación del Sistema Solar

Prof: Patricio Rojo

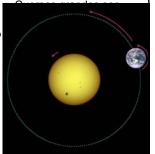
¿Cómo se formó el Sistema Solar?


- ¿Qué se necesita para una teoría?
 - Tener claro que es lo que se quiere explicar
 - Postular algo que tenga sentido
 - Físico
 - Probabilístico
 - Que se mantenga en tiempo
 - Nuevas observaciones
 - Mejores observaciones
 - Mejores simulaciones

Observaciones • Órbitas: - Coplanares - Casi Circulares - Progradas y con inclinación del planeta menor a 30° (Excepciones: Venus y Urano)

Observaciones

- Órbitas:
 - Coplanares
 - Casi Circulares
 - Progradas y con inclinación del planeta menor a 30° (Excepciones: Venus y Urano)
- Edad:
- 4.56 millones de años (4 millones en la Tierra)
- Distribución:
 - Pequeños planetas rocosos hacia el interior, grandes planetas gaseosos hacia el exterior.
 - Sol contiene 99.9% de la masa.

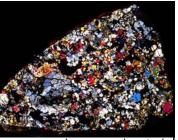

- Sol es 1000 veces más masivo que Júpiter
- Júpiter es 3.3 veces más masivo que Saturno
- Júpiter es 22 veces más masivo que Urano
- Júpiter es 318 veces más masivo que Tierra

Otras Observaciones

- Momentum angular: 98% en los planetas.
- Cometas en órbitas no eccentricidades y ejes mayores.
- Eventos de rápido calentamiento y enfriamiento evidenciados en meteoritos.
- Cuerpos grandes son diferenciados: fueron calientes.
- coplanares con altas Crateres en muchos de los cuerpos, indican una frecuencia de impactos mucho mayor a la actual.

Otras Observaciones

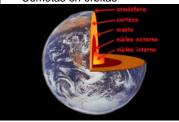
- · Momentum angular: 98% en los planetas.
- Cometas en órbitas no coplanares con altas eccentricidades y ejes mayores.
- Eventos de rápido calentamiento y enfriamiento evidenciados en meteoritos.



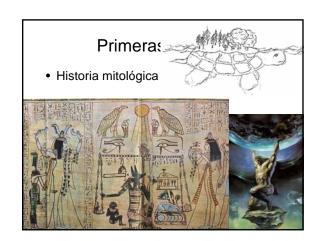
Otras Observaciones

- Momentum angular: 98% en los planetas.
- Cometas en órbitas no coplanares con altas eccentricidades y ejes mayores.
- Eventos de ráp calentamiento enfriamiento evidenciados e meteoritos.
- Cuerpos grandes son diferenciados: fueron calientes.
- Crateres en muchos de los cuerpos, indican una

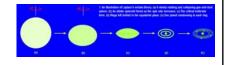
Otras


- Momentum ang 98% en los plan
- Cometas en órb coplanares con eccentricidades mayores.
- Eventos de rápido calentamiento y enfriamiento evidenciados en meteoritos.

mucho mayor a la actual.

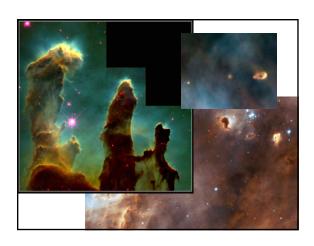

Otras Observaciones

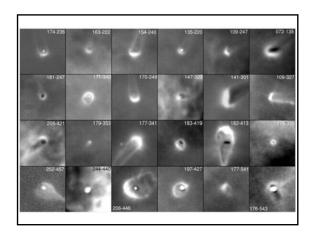
- Momentum angular: 98% en los planetas.
- Cometas en órbitas
- Cuerpos grandes son diferenciados: fueron
 - calientes.


en muchos de los indican una a de impactos ayor a la actual.

Primeras Teorías

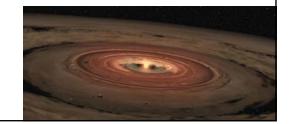
- · Historia mitológica favorita
- Kant (1755), Laplace (1796)
 - Nube colapsa esférica y luego lenticularmente
 - Principal falla: el sol rotaría muy rápido

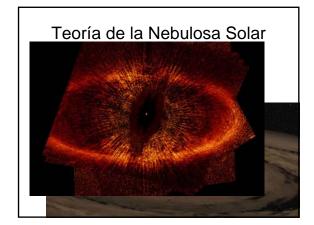

Primeras Teorías


- Historia mitológica favorita
- Kant (1) - Nube lentic – Princi
- Jeans (1916)
 - El Sol se forma
 - Estrella que pasa cerca "arranca" materia del Sol que luego formará planetas
 - Muy improbable, Jupiter rota muy lento

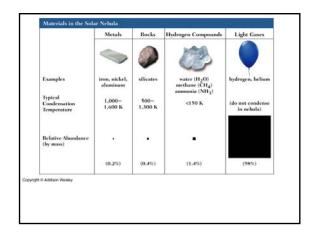
Teoría de la Nebulosa Solar

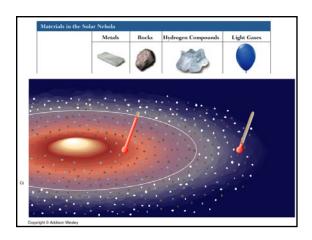
• Colapso nébula por evento externo.

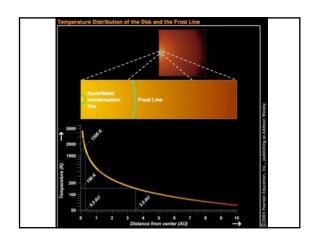


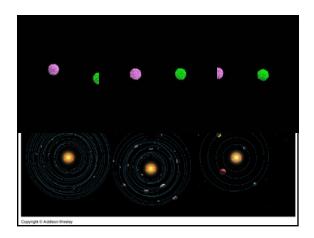


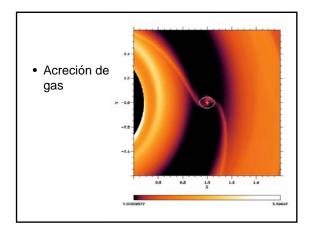
Teoría de la Nebulosa Solar

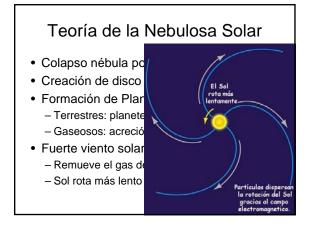

- Colapso nébula por evento externo.
- Creación de disco (achatamiento).





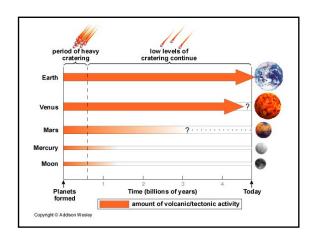

Teoría de la Nebulosa Solar

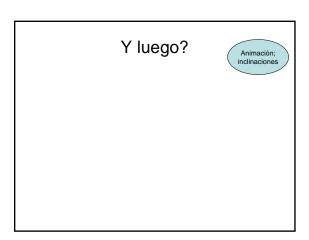

- Colapso nébula por evento externo.
- Creación de disco (achatamiento).
- Formación de Planetas
 - Terrestres: planetesimales
 - Gaseosos: acreción de gas



Teoría de la Nebulosa Solar

- Colapso nébula por evento externo.
- Creación de disco (achatamiento).
- Formación de Planetas
 - Terrestres: planetesimales
 - Gaseosos: acreción de gas
- Fuerte viento solar.
 - Remueve el gas del disco





Colapso nébula por evento externo. Creación de disco Formación de Plan Terrestres: planetes Gaseosos: acreciór Fuerte viento solar. Remueve el gas de Sol rota más lento

Teoría de la Nebulosa Solar

- Colapso nébula por evento externo.
- Creación de disco (achatamiento).
- Formación de Planetas
 - Terrestres: planetesimales
 - Gaseosos: acreción de gas
- Fuerte viento solar.
 - Remueve el gas del disco
 - Sol rota más lento
- Tiempo: ~ 100 millones de años (~1/50 de la vida del Sistema Solar)

