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Stepwise Conditional Transformation for Simulation
of Multiple Variables 1

Oy Leuangthong2 and Clayton V. Deutsch2

Most geostatistical studies consider multiple-related variables. These relationships often show complex
features such as nonlinearity, heteroscedasticity, and mineralogical or other constraints. These features
are not handled by the well-established Gaussian simulation techniques. Earth science variables are
rarely Gaussian. Transformation or anamorphosis techniques make each variable univariate Gaussian,
but do not enforce bivariate or higher order Gaussianity. The stepwise conditional transformation
technique is proposed to transform multiple variables to be univariate Gaussian and multivariate
Gaussian with no cross correlation. This makes it remarkably easy to simulate multiple variables
with arbitrarily complex relationships: (1) transform the multiple variables, (2) perform independent
Gaussian simulation on the transformed variables, and (3) back transform to the original variables.
The back transformation enforces reproduction of the original complex features. The methodology
and underlying assumptions are explained. Several petroleum and mining examples are used to show
features of the transformation and implementation details.
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INTRODUCTION

The increasing demand for realistic geologic models has brought greater attention
to the field of geostatistics. For their simplicity, Gaussian techniques are most
commonly applied to create numerical models of continuous variables. Implicit to
these techniques is the requirement for multivariate Gaussianity; however, geologic
data rarely conform to such well-behaved Gaussian distributions.

Large scale lithofacies or rock-type modeling is typically followed by smaller
scale modeling of continuous petrophysical properties or metal concentrations.
Different simulation methods can be used to build numerical models of geologic
heterogeneity for uncertainty assessment. These include sequential indicator sim-
ulation (Gómez-Hern´andez and Srivastava, 1990),p-field simulation (Froidevaux,
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1993), simulated annealing (Deutsch, 1992), and the more commonly used Gaus-
sian simulation.

The use of Gaussian techniques, such as sequential Gaussian simulation
(Isaaks, 1990) or turning bands simulation (journel, 1974), to simulate region-
alized variables is dependent on the characteristics of a Gaussian variable. In
the presence of two or more variables, the conventional procedure is to trans-
form each variable to a Gaussian distribution one at a time. This ensures that
each variable is univariate Gaussian; however, the multivariate distributions (of
two or more variables at a time) are not explicitly transformed to be multivariate
Gaussian. An important assumption inherent in these techniques is that the multi-
variate distribution is also Gaussian, thus it must follow a very particular functional
form:

f (X) = 1

(2π )n/2|6|1/2 · exp[−(X − µ)′6−1(X − µ)/2] (1)

whereX is a random vector ofn random variables [X1, . . . , Xn]′, 6 is then× n
covariance matrix, andµ is a 1× n matrix of the means of each random vari-
ableXi (Johnson and Wichern, 1998). Important characteristics of the multivari-
ate Gaussian distribution are homoscedasticity and linearity. Real multivariate
distributions show nonlinearity, heteroscedasticity, and mineralogical constraints.
Figure 1 shows a schematic illustration of these common non-Gaussian behaviors.

Other transformation techniques could be used, including ACE (Brieman and
Friedman, 1985a,b), hermite polynomials, or power law transformations. How-
ever, these techniques do not necessarily produce univariate Gaussian variables
and must often be applied in conjunction with a normal scores transform to en-
sure univariate Gaussianity. Consequently, similar departures from multivariate
Gaussianity (as those shown in Fig. 1) may arise with the transformed multivariate
distribution.

Common practice is to transform each variable to a univariate Gaussian dis-
tribution and assume that higher order distributions are all multivariate Gaussian.

Figure 1. Examples of problematic bivariate distributions for geostatistical simulation: nonlinear
relations (left), mineralogical constraints (centre), and heteroscedasticity (right).
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Under this assumption of multivariate Gaussianity, the only statistics needed
to quantify the relationship between multiple variables are the correlation
coefficients. These correlation coefficients are derived from a model of core-
gionalization. The variogram and cross variograms are modeled with the linear
model of coregionalization (LMC) (Journel and Huijbregts, 1978) or a Markov
model of coregionalization (Xu and others, 1992). This common practice is lim-
iting and does not address the case when the multi-Gaussian assumption is
violated.

The stepwise conditional transformation ensures that the transformed
variables, taken together, are multivariate Gaussian with zero correlation.
Thus, conventional Gaussian simulation techniques can be applied with no
requirement for cokriging or to fit a model of coregionalization. The corr-
elation between the variables is accounted for in the transformation and back
transformation. There is an implicit model of coregionalization in the transfor-
mation/back transformation that is explored in this paper. Several mining and
petroleum related examples are shown to compare the results to conventional nor-
mal transformation.

METHODOLOGY

The stepwise conditional transformation technique was first introduced by
Rosenblatt (1952). The technique is identical to the normal score transform in the
univariate case. For bivariate problems, the normal scores transformation of the
second variable is conditional to the probability class of the first variable. Corre-
spondingly, forn-variate problems, thenth variable is conditionally transformed
on the basis of the firstn− 1 variables, that is,

Y′1 = G−1[F1(z1)]

Y′2 = G−1[F2|1(z2 | z1)]

...

Y′n = G−1[Fn|1,...,n−1(zn|z1, . . . , zn−1)]

whereY′i , i = 1, . . . ,n are multivariate Gaussian variables that are independent at
lag distance of zero, that is,

C′i j (0)= C(Y′i (u),Y′j (u)) = 0, i 6= j, i = 1, . . . ,n, j = 1, . . . ,n

Moreover, all multivariate distributions are Gaussian in shape at distance lagh = 0.
The covariance ath > 0 may not be zero. There are two possible options for fitting
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the cross covarianceC′i j (h), h > 0 at large scale:

1. Assume independence for all lag distances,

C′i j (h) = 0, i 6= j, ∀h

2. ModelC′i j (h) consistent with a valid LMC.

The first option is simplest. Calculation ofC′i j (h), i 6= j will identify if further
modeling is required due to significant departures from independence.

As mentioned above, the significant advantage of this method is that complex
multivariate distributions are transformed to the well-behaved Gaussian distribu-
tion. For example, nonlinear, heteroscedastic and constraint features (see Fig. 1)
are automatically built into the transformation and model of coregionalization.
Other features of the method are explored below; the Appendix investigates the
model of coregionalization implicit to the stepwise conditional transformation
and the assumption that all covariances at all spatial scales are zero,C′i j (h) = 0,
i 6= j, ∀h.

IMPLEMENTATION

This technique applies a quantile transformation of observed uni-
variate conditional distributions to standard Gaussian distributions. The input
multivariate distribution can be of any arbitrary form. The original multi-
variate distribution is honoured by back-transformation via a reverse quantile
transform.

Figure 2 shows two mining examples for oil sands data and nickel laterite
data. For each sample data set, cross plots are shown for the original data, con-
ventional normal score transformation, and stepwise conditional transformation.
For the oil sands data, the cross plot of the normal scores shows an almost linear
bivariate distribution with negative correlation. Application of the stepwise con-
ditional transform yields a bivariate Gaussian distribution with almost no correla-
tion. Conventional normal scores transformation of the nickel laterite data shows
a positively correlated bivariate distribution that appears slightly heteroscedastic;
while the stepwise conditional scores show a bivariate Gaussian distribution with
essentially zero correlation.

Figure 3 shows two petroleum-related examples which are referred to as
the “two-well” data and the “East Texas core” data. The bivariate distributions
after a direct normal scores transform are clearly more problematic than those
obtained using the mining data. The normal scores cross plot on the left is het-
eroscedastic, while the cross plot on the right is nonlinear and constrained in
some fashion. After applying the stepwise conditional transformation, the bivariate
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Figure 2. Comparative illustration of cross plots of the original data, normally transformed data,
and the stepwise conditionally transformed data for Oil Sands data (left side) and Nickel Laterite
data (right side).

distributions again exhibit a bivariate Gaussian distribution with essentially zero
correlation.

In practice, the following three issues are important: (1) cross covariance for
h > 0, (2) effect of ordering on covariance models, and (3) inference of multivariate
distributions in presence of sparse data.
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Figure 3. Illustration of cross plots of the original data, normally transformed data, and the stepwise
conditionally transformed data for porosity and log(permeability) for East Texas core data (left side)
and the Two Well data set (right side).
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Covariance Structure for h > 0

The result of applying this transformation is independence of the transformed
variables ath = 0, since each class ofY2 data is independently transformed to a
standard normal distribution. There is no guarantee of independence for distance
lags greater than zero (h > 0). The new model of coregionalization is complex.
The assumption ofC′i j (h) = 0, ∀h, i 6= j holds only for the case of an intrinsic
coregionalization (Appendix A). To validate this theoretical result, a numerical
exercise was performed involving two multi-Gaussian variables,Y1 andY2, with
the same direct isotropic variogram:

γ (h) = 0.5Sphα=3(h)+ 0.5Sphα=15(h)

The correlation betweenY1 andY2 was chosen to be 0.70. Three different
cross variograms were considered: “short-range,” “intrinsic,” and “long-range.”
The “short-range” case gives maximum variance contribution to the short range
structure; while the “long-range” case gives maximum variance contribution to
the long-range structure. Note thatmaximum variance contributionrefers to the
maximum contribution allowable under the linear model of coregionalization. The
cross semivariogram models are given below and illustrated in Figure 4.

short-range: γ (h) = 0.50Sphα=3(h)+ 0.20Sphα=15(h)

intrinsic : γ (h) = 0.35Sphα=3(h)+ 0.35Sphα=15(h)

long-ange: γ (h) = 0.20Sphα=3(h)+ 0.50Sphα=15(h)

For each case, stepwise conditional transformation was applied, direct and
cross variograms were calculated and modeled, sequential Gaussian simulation

Figure 4. Direct semivariogram ofY1 andY2 (left), and the three different cross semivariogram models
(right) : short-range (top left, short dash), intrinsic (middle, solid), and long-range (lower right, long
dash).
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Figure 5. Direct semivariogram ofY′2 (left) and cross semivariogram ofY′1 and Y′2 (right), after
stepwise conditional transformation. The solid black line on the cross semivariograms represent the
cross semivariogram model used to create the unconditioned simulation prior to transformation.

was performed, simulated values were back transformed, and the resulting sim-
ulated direct and cross variograms were examined. Figure 5 shows the direct
variograms forY2|1 and the cross variogram ofY1 andY2|1, following application
of the stepwise transform.

In the short-range scenario, the cross variogram is slightly higher than zero
over small lag distances and then returns to zero. Conversely, the long-range sce-
nario shows that the cross variogram is negative over the short-range. Unlike the
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Figure 6. Input model of cross variogram ofY1 andY2 (left), and the average cross variogram obtained
after simulating with stepwise transformed variablesY′1 andY′2 (right). In both cases, the variograms
follow the same line code: short-range (top left, short dash), intrinsic (middle, solid), and long-range
(bottom right, long dash).

two extreme cases, the intrinsic case shows independence of the transformed pairs,
with no deviation from zero over all lags. As predicted by theory, independence at
h > 0 is satisfied for the intrinsic case.

Following simulation, the values were back transformed and the cross vario-
gram was checked for each scenario. Figure 6 shows the model cross variograms of
the original variables and the average cross variogram obtained after simulation of
the conditionally transformed variables. The range of correlation is approximately
preserved, i.e., the short-range model produces an average cross variogram with
the shortest range of the three simulated scenarios. In all three cases, the range
of correlation following simulation shows that the stepwise conditional transform
reduces the overall range of correlation of the variables. As well, the variogram
structure of the extreme cases (short- and long-range cross variograms) appear to
be shifted toward the intrinsic model.

Effect of Ordering

Consider two variables,Z1 andZ2. Two possible scenarios exist for transfor-
mation: (1) chooseZ1 as primary variable and normal score transform to getY1,
and then transformZ2 to getY2|1; and (2) chooseZ2 as the primary variable to get
Y2, and thenZ1 is transformed to produceY1|2. In case (1), the simulation results
for Y1 would be identical to those obtained by conventional simulation using the
normal scores ofZ1, and the same can be said forY2 in the second scenario.

Simulation of the secondary variables does not produce the same results as
conventional simulation. The variogram of the secondary variable is a combination
of the spatial structure of both original variables and the cross correlation of the two.

For both ordering sequences, the semivariogram is calculated for both the
primary and secondary variable. Sequential Gaussian simulation is independently
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performed for the transformed variables. Back transformation of the simulated
values returns the original units. We determine the normal scores semivariogram
of the simulated values. The resulting semivariogram of the primary variable is
that obtained from sequential Gaussian simulation. A comparison of the semivar-
iograms for the same variable, when it is taken as (1) the primary variable and
(2) the secondary variable, will show the effect of ordering.

This methodology was applied to the “two-well” and “East Texas core” data.
Porosity and permeability were the two variables of interest. The first transforma-
tion order takes porosity as the primary variable, and the second takes permeability
as the primary variable.

Figure 7 shows the comparison of the semivariograms for both ordering se-
quences of the “two-well” data set. The semivariograms for porosity show that
when porosity is chosen as the primary variable, the postsimulation semivario-
grams closely follow the input normal scores semivariogram—as they should.
Conversely, the semivariograms corresponding to the scenario in which porosity
is the secondary variable shows greater variability and a shorter range. Differences
in the permeability variograms as a result of transformation ordering sequence
are not so obvious; however, the secondary semivariograms for permeability have
longer range.

Figure 8 shows the comparison of the semivariograms for the East Texas
data. Similar to the previous example, each scenario of ordering clearly shows de-
parture of the secondary variable semivariograms from the direct semivariograms
using the traditional normal scores. Unlike the Two Well example, the permeability
semivariograms differ considerably after stepwise transformation. Further inves-
tigation showed that the stepwise transformation produced a secondary variable
with higher nugget effect and longer range of correlation.

Overall, numerical examples show variogram mismatch is minimized when
the more continuous variable is chosen as the primary variable.

Transformation in Presence of Sparse Data

There must be sufficient data to identify all conditional distributions in the
stepwise transformation. Sparse data leads to erratic and nonrepresentative con-
ditional distributions. There is no general rule, however, 10N to 20N data, where
N is the number of variables, would permit each distribution to be discretized
into 10–20 classes with 10–20 data each. Sparse data could be supplemented by a
smoothing algorithm to “fill-in” gaps in the raw-data multivariate distribution.

Smoothing using kernel densities is robust and flexible (Scott, 1992):

f̂ (x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
(2)
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Figure 7. Effect of ordering using Two Well Data: normal scores semivariogram using simulated
data for porosity (top) and permeability (bottom). In first scenario, porosity is taken as primary
variable (left), and in the second scenario, permeability is chosen as the primary variable (right). In
all cases, the thick solid line is the normal scores semivariogram model, the dashed lines correspond
to the variogram of the simulated variable. Porosity is more continuous than permeability, and the
greatest mismatch occurs when porosity is taken as the secondary variable.

wheren is the number of data,h is the bin width obtained by partitioning the range
of the data (i.e. between the minimum and maximum observed values) (Izenman,
1991), K (·) is a kernel function associated to some specified density function.
Since we are primarily concerned with discretizing the bivariate distribution, the
kernel density is chosen to be a nonstandard bivariate Gaussian density distribution
with specified correlation:

fxy = 1

2πσxσy

√
1− ρ2

· exp

[ −1

2(1− ρ2)
·
(

(x −mx)2

σ 2
x

− 2ρ(x −mx)(y−my)

σxσy

+ (y−my)2

σ 2
y

)]
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Figure 8. Effect of ordering using East Texas core data: normal scores semivariogram using
simulated data for porosity (top) and permeability (bottom). In first scenario, porosity is taken as
primary variable (left), and in the second scenario, permeability is chosen as the primary variable
(right). In all cases, the thick solid line is the normal scores semivariogram model, the dashed
lines correspond to the variogram of the simulated variable. Permeability is more continuous than
porosity, and the most significant mismatch in the semivariogram models occur when it is taken
as the secondary variable.

wheremx andmy are assigned the paired data values,σ 2
x andσ 2

y are user-specified
variances associated to the two variables, andρ is the correlation coefficient. Note
that the above density function is the bivariate representation of Eq. (1).

The general approach is to generate a bivariate density distribution centered
about each data pair. The calculated frequencies are then averaged to obtain density
estimates for that particular pair. The result is a “cloud” of values centered about
the data. The size of this “cloud” is based on the variance specified by the user; for
practical purposes, the variance can be determined empirically (typically 0.05–
0.15). Further, the correlation coefficient of the kernel densities is typically set
to the global correlation. Discretizing the bivariate distribution for the stepwise
conditional transformation will then be accomplished using the smoothed bivariate
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distribution. The basic steps in smoothing using a kernel estimator are (with user
specified correlation coefficient,ρ, and variance for each variable,σ1 andσ2):

1. Using the scatterplot limits for both variables, discretize the scatterplot to
create a regular grid ofX andY values.

2. Go to each data pair:
• Setmx = x andmy = y.
• Visit each node in the new scatterplot grid and calculate the bivariate

frequency using the nonstandard Gaussian density function.
3. Average all the calculated frequencies at each node.

The data should first be transformed into normal scores. Using the normal
score values of the multivariate data, we smooth the bivariate distribution of the
normal scores, then perform the stepwise conditional transformation on the original
data and the smoothed distribution. Independent simulation of the model variables
can now proceed in Gaussian space. Back transformation of the simulated values
is implemented by calling on the univariate and the bivariate transformation tables.

This methodology was applied to a small petroleum-related data set consist-
ing of only 27 data pairs of porosity and log(permeability). Figure 9 shows several
comparative cross plots. The two cross plots of the stepwise conditionally trans-
formed variables resulting from (1) only the data, and (2) the smoothed distribution
have similar correlation magnitudes, but with opposite signs. Simulation and back
transformation of the transformed variables according to the smoothed distribution
shows good reproduction of the bivariate distribution. The banding effect that is
visible in this crossplot is a consequence of back transforming values within a
sparsely defined class—smoothing in this instance does not fully compensate for
defining a class with only two data points. The choice of a larger kernel would be
required with the inevitable tradeoff of too much smoothing.

The challenge of sparse data is not a limitation of the stepwise conditional
transformation; all multivariate techniques require data. The limitation of work-
ing with isotopic sampling, however, could preclude use of this transformation
procedure.

NONISOTOPIC SAMPLING

We have implicitly assumed that we have all data variables at all data locations;
a situation calledisotopicsampling. Consider the situation where there arej data
for variable Z1 and i data for variableZ2, wherei < j . If Z2 is chosen as the
primary variable, then the transformation ofZ1 depends on prior transformation
of Z2; therefore, thej − i data cannot be transformed. The stepwise approach
cannot be easily applied.

One solution is to transform and simulate the first variable at all locations
(e.g.Z1 in the above situation). Then, the simulated first variable can be used for
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Figure 9. Small petroleum data set consisting of only 27 samples. Cross plot of the original data (top
left), cross plot of the stepwise conditionally transformed data using only the original 27 data values
(top right), cross plot of stepwise conditionally transformed data using the smoothed distribution
(bottom left), and a cross plot of the simulated values after back transformation (bottom right).

later variables. Of course, there is no unique transformed value for secondary data
at locations of nonisotopic sampling. This makes data analysis and inference of
the variogram of secondary data difficult.

DISCUSSION

Conditional transformation of the data results in transformed secondary vari-
ables that are combinations of multiple “real” variables. Consequently, the as-
sociated covariance structure of the secondary transformed variables implicitly
incorporates the direct and the cross covariance structure of the original variables.
Thus, a new model of coregionalization is implicitly invoked in the covariance
structure of all transformed secondary variables.

Several “features” of this technique are important:

• No assumption is made on the shape of the input distributions of the multi-
variate data. The transform removes all structure in the input multivariate
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distribution, making it particularly robust in handling problematic charac-
teristics of multivariate distributions such as heteroscedasticity, nonlinear-
ity, and mineralogical-type constraints. Restoration of the input structure
is achieved in back transformation.
• The resulting variables are independent at lag distanceh = 0 because all

conditional distributions are transformed to standard normal distributions.
• Cosimulation may not be required. Independent simulation of the trans-

formed variables can proceed after verification thatC′i j (h) ' 0, i 6= j ,
h > 0. Back transformation restores the multivariate dependence between
the original variables (Fig. 10).
• The covariance structure of the original variables is embedded in the covari-

ance structure of the conditionally transformed variables. This results from
the transformed secondary variables being a combination of the original
variables.
• The order of the transformation matters since thenth variable is a function

of the firstn− 1 variables. Choosing the most continuous variables first
appears to work the best in practice.
• In presence of insufficient data for reliable inference of all conditional dis-

tributions. A smoothing algorithm could be used to “fill in” the multivariate
distribution so that reliable conditional distributions can be identified.

CONCLUSION

The application of Gaussian simulation techniques requires that model vari-
ables be multivariate Gaussian. Conventional practice involves independently
transforming each variable, modeling the variograms and the cross variograms,
and performing cosimulation. This implicitly assumes that the multivariate dis-
tribution of all variables is Gaussian (homoscedastic, linear, and characterized by
elliptical probability contours—no mineralogical constraints).

The stepwise conditional tranformation removes all correlation features be-
tween the variables producing independent model variables ath = 0. Cosimulation
can proceed in one of two ways: (1) assume thatC′i j (h) ' 0, i 6= j for h > 0, or
(2) model the multiple variograms consistent with LMC. The former case sim-
plifies the cumbersome cosimulation process to independent simulation of the
transformed variables. The correlation between the variables is injected during
back transformation. This is a big advantage of transforming multiple variables
in a stepwise conditional fashion. The latter case mitigates any adverse effects of
simulating nonmultivariate Gaussian variables, by ensuring that the multivariate
distributions are truly Gaussian.

The covariance structure of the conditionally transformed secondary vari-
ables is a function of the direct and cross covariance model between the original
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Figure 10. Example of independent simulation and back transformation of porosity and log perme-
ability for Two Well Data: A cross section of one realization for porosity (left) and log permeability
(right) in normal space (top row), crossplot of simulated values in normal space (middle left) and in
original space after back transformation (middle right), and corresponding cross section of simulated
porosity and log permeability in original space (bottom row). Cross plot reproduction can be compared
to top right crossplot in Figure 3.

variables. The effect of transformation ordering is observable in the departure of
the semivariogram of the transformed variable from the original variable. This de-
parture can be minimised by choosing the most continuous variable as the primary
variable for stepwise transformation. In the presence of sparse data, a smoothing
algorithm can be applied to model the conditional distributions based on the avail-
able data so that stepwise conditional transformation can be effectively applied.
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APPENDIX

Transformation by the stepwise conditional procedure leads to an implicit
model of coregionalization. The model of coregionalization is embedded within
the transformation and back transformation. The model of coregionalization can
always be understood numerically via simulation and calculation. This may be
important for complex situations; however, we can look at the model for the sim-
plified case of two homoscedastic, multi-Gaussian variablesY1 andY2 where the
covariance structure of the variables is defined analytically by a valid LMC.
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The stepwise conditional transformation of the primary variable is identical
to its normal score transform (denoted by the index 1). As a result, the covariance
structure of the primary variable is the same as the covariance calculated from the
conventional normal scores, that is,C′11(h) = C11(h).

Stepwise conditional transformation of the secondary variable results in

Y′2(u) = Y2(u)− µ2|1(u)

σ2|1
(A1)

The covariance model of the transformed secondary variable,Y′2, is,

C′22(h) = E

{(
Y2(u)− µ2|1(u)

σ2|1

)
·
(

Y2(u+ h)− µ2|1(u+ h)

σ2|1

)}
(A2)

whereµ2|1 andσ2|1 are the mean and standard deviation of the conditional distribu-
tion. These parameters are calculated by solving the kriging system of equations.
For example, in the simple case of conditioning to two primary data, the conditional
mean and variance are given by

µ2|1(u) = λ1(u) · Y1(u)+ λ1(u+ h) · Y1(u+ h)

σ 2
2|1(u) = 1− {λ1(u) · C12(0)+ λ1(u+ h) · C12(h)}

Solving for the weights yields

λ1(u) =
(
ρ − C12(h) · C11(h)

1− C2
11(h)

)
λ1(u+ h) =

(
C12(h)− ρ · C11(h)

1− C2
11(h)

)
andµ2|1 andσ2|1 become

µ2|1(u) =
(
ρ − C12(h) · C11(h)

1− C211(h)

)
Y1(u)+

(
C12(h)− ρ · C11(h)

1− C211(h)

)
Y1(u+ h)

σ 2
2|1(u) = 1−

{(
ρ − C12(h) · C11(h)

1− C2
11(h)

)
C12(0)+

(
C12(h)− ρ · C11(h)

1− C2
11(h)

)
C12(h)

}
The mean and standard deviation of the conditional distribution,µ2|1 and

σ2|1, are known in the case of multi-Gaussian variables. In fact, all conditional
distributions are Gaussian with known mean and standard deviation. We only need
the mean and variance for the purposes of calculating the covariance structure.
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Substitution ofµ2|1 andσ2|1 into Eq. (A2) shows that the covariance structure
of the conditionally transformed variable,Y2|1, implicitly incorporates the direct
and cross-covariance structure of the original variables,Y1 andY2. The new model
of coregionalization implicitly invoked via the stepwise conditional transform is a
function of the original variable covariance structures, that is,

C′11(h) = C11(h)

C′12(h) = g(C11(h),C12(h),C22(h))

C′22(h) = f (C11(h),C12(h),C22(h))

where f and g are different functions of the direct and cross covariance struc-
ture of the original variables.C′12(h) can be assumed to be zero, after numerical
verification.

For the special case of an intrinsic coregionalization, that is whenC22(h) =
C11(h) andC12(h) = ρ12(0) · C1(h), the cross covariance of the transformed vari-
ables,C′12(h), is zero. The mean and variance of the conditional distribution
reduce to

µ2|1(u) = ρ · Y1(u) (A3)

σ 2
2|1(u) = 1− ρ2 (A4)

and the covariance model of the transformed variable in Eq. (A2) simplifies to:

C′22(h) = C11(h) (A5)

This is derived by taking the product in Eq. (A2) and substitutingC22(h) = C11(h),
C12(h) = ρ12(0) · C1(h), and the mean and variance given in Eqs. (A3) and (A4).
The result is then simplified to the result in Eq. (A5). The cross covariance for the
intrinsic coregionalization case,C′22(h), is zero for all distances. This theoretical
result is validated in the body of the paper.

The direct and cross covarainces of the transformed variables is a function of
the direct and cross covariances at alllower levels. This is a useful property.


