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Indicator Principal Component Kriging 1 

V .  S u r o - P ~ r e z  2 a n d  A .  G .  J o u r n e l  2 

An alternative to multiple indicator kriging is proposed ~14ffch approximates the full coindicator 
kriging system fly kriging the principal components o f  the original indicator variables. This trans- 
fi~rmation is studied in detail for  the biGaussian model. It is shown that the cross-correlations 
between principal components are either insignificant or exactly zero. This result allows derivation 
of  the conditional cumulative density function (cdf) by krigb~g principal components and then ap- 
plying a linear back transfi~rm. A performance comparison based on a real data set (Walker Lake) 
is presented which suggests that the proposed method achieves approximation of  the conditional 
cdf equivalent to indicator eokriging but with substantially less variogram modeling effort and at 
smaller computatiotlal cost, 

KEY WORDS: indicator kriging, principal component analysis, biGaussian model, indicator co- 
variance matrix, orthogonalization. 

INTRODUCTION 

Most Earth Sciences data feature patterns of spatial continuity which can be 
used to model and assess the uncertainty prevailing at unsampled locations. 
Models of spatial continuity allow going beyond the actual data toward an as- 
sessment of  the uncertainty specific to each unsampled location. Characteriza- 
tion of uncertainty and spatial interpolation are a primary goal of any geosta- 
tistical approach. 

The uncertainty associated with an unsampled value z(x) at location x can 
be modeled by the probability distribution of a random function (RF) Z(x). 
This distribution is made conditional on the surrounding information. The de- 
gree to which the distribution of Z(x) is influenced by the surrounding data is 
dictated by the prior model of spatial continuity or dependence between the (n 
+ 1) RVs Z(x), Z(x,~), ~ = 1 . . . . .  n. Consider then the conditional cumu- 
lative distribution function (cdf) of Z(x): 

F(x; z l {n} )  = P{Z(x)  _< z ] { Z ( x , 0  = z(x,O, o~ = 1 . . . .  n}}  
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For any set {n} of  data values, there are as many conditional cdf's of type F(x; 
z t {n}) as there are models of spatial continuity which relate the unknown value 
z(x) to the data values. All such conditional calf's Fl(x; z I{n}), l = 1 . . . . .  L, 
including those provided by all forms of indicator kriging, should be seen as 
alternative models of the uncertainty prevailing at the unsampled location x, 
rather than different estimates of an elusive " t rue"  cdf F(x; z l{n}). 

Prior to selection of any estimated value z*(x), access to a conditional cdf 
model Ft(x; z l{n}) allows determination of probability intervals and probabil- 
ities of exceedence such as: 

P{Z(x) ~ (z~, z2]l{n}} = Ft(x; z21{n}) - El(x; zl I{n}) 

P{Z(x) > zll{n}} = 1 - Ft(x; z,l{n}) 

The concept of a loss function (Journel, 1984) allows deriving from the 
model Ft (x; z l{n }) not just one but as many optimal estimates for z (x) as there 
are different criteria for optimality. This usually involves the minimization of 
the expected value of some loss function associated with the estimation error 
z*(x) - z(x). 

Disjunctive Kriging (DK) (Matheron, 1976; Rivoirard, 1989), Indicator 
Kriging (IK) (Journel, 1983), Multigaussian Kriging (MG) (Verty, 1983), Prob- 
ability Kriging (PK) (Sullivan, 1984), Uniform Conditioning (Guibal and Re- 
macre, 1984), and BiGaussian Kriging (Marcotte and David, 1985) are all tech- 
niques providing models for such conditional cdf's. Except for IK and PK, all 
these algorithms are parametric in the sense that they call for a prior bivariate 
or multivariate distribution model for the random function Z(x); the parameters 
of the conditional cdf Ft(x; z[{n}) are then derived by some form of kriging. 
In the case of IK and PK, the bivariate distribution of any pair of RFs Z(x) and 
Z(x')  is inferred directly from data rather than derived from prior models. 

Principal Component Analysis (PCA) (Anderson, 1984; Borgman and 
Frahme, 1976; Davis and Greenes, 1983) and the indicator formalism where 
any attribute value z(x) is coded into an indicator vector of O's and l 's ,  are 
used in this paper to model the conditional cdf. The approach presented here 
attempts to fill the gap between the IK approach which uses indicator autoco- 
variances to model Ft(x; z [{n}) and the theoretically better Indicator Cokriging 
(ColK) which makes use of both indicator autocovariances and cross-covari- 
ances. The proposed approach provides a model of the conditional cdf by krig- 
ing the indicator principal components instead of the indicators themselves. 

Presentation of the principal components approach is accomplished first by 
considering a parametric point of  view. The biGaussian model is studied in 
detail and analytical expressions for the corresponding indicator crosscovari- 
ances are derived. It is shown that these indicator crosscovariances are not neg- 
ligible with respect to indicator autocovariances. ColK would account for such 
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cross-information, however, it is difficult to implement. PCA amounts to sum- 
marizing the indicator auto- and cross-covariances information into the principal 
component (pc) autocovariances. The resulting pc crosscovariances are almost 
null. 

The performance of this latter approach, hereafter denoted IPCK (Indicator 
Principal Component Kriging), is analyzed using a real data set (Walker Lake). 
Prediction intervals are obtained using ColK, IPCK, and IK. The theoretically 
better ColK algorithm results are compared to those provided by the nonpara- 
metric technique IPCK. It is shown that IPCK provides a good approximation 
to the ColK reference model, yet requires much less modeling and computa- 
tional effort. 

T H E  INDICATOR APPROACH 

The indicator approach calls for the coding of the stationary random func- 
tion Z(x) into a series of indicators (binary random variables) defined for dif- 
ferent cutoffs zk: 

l(x; z,) = (I) 
otherwise 

This coding defines a stationary indicator vector: 

l(x; z) = [l(x; zl) . . .  l(x; z~)] r (2) 

where K is the total number of cutoffs. Note the indicator vector above does 
not reproduce exactly the original value Z(x). If the indicator vector is such 
that i(x; Zk) = 0 and i(x; Z~+ i) = 1, then the attribute z(x) recovered from the 
indicator vector is only known to be in the class z(x) e (z,, z, + I]. The indicator 
coding (1) allows an immediate relationship between the indicator expected 
value and the original Z univariate distribution: 

E{I(x; z,)} = P{Z(x) < z,}  = F ( z , )  (3) 

Similarly, the bivariate cdf of any pair of random variables Z(x), Z(x + 
h) can be expressed as the noncentered indicator covariance Kt(h; z~ z,,): 

Kl(h; zk, zk.) = E{l(x;  zk)l(x + h; z,.)} 

= P{Z(x) < zk, Z(x + h) < zk,} k, k' = 1 . . . . .  K (4) 

Note that strict stationarity is assumed in Eq. (4) for expressing the noncentered 
covariance as function of only the distance h. Furthermore, the indicator ap- 
proach amounts to discretizing the Z-bivariate distribution for each lag h by K 2 
indicator covariance values. 
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CoIndicator Kriging 

The CoIndicator kriging (CoIK) algorithm makes use of the full bivariate 
distribution as discretized by K cutoff values as in Eq. (4), and thus requires 
the modeling of K 2 indicator auto- and cross-covariances of the type: 

C1(h; z~, zk,) = K/(h; zk, zk,) - F(zk)F(zk,)  

The ColK model for the conditional cdf is written: 

K n 

FCoIK(X; zkol{n}) = ~ Y] ~,ko~',~I(x~; Zk,) (5) 
k ' = l  o~=1 

The weights Xkok'~ are obtained by minimizing the estimation variance: 

E[I(x; z j  - FCoIK(X; Z~ot{n})l 2 (6) 

which entails the following system of constrained normal equations (Myers, 
1982): 

Z Xkok'~Cl(x~ -- X~; Zk, Zr) + /~k = C~(x - x~; Zk~, Zk) 
k ' = l  / 3 = l  

k =  1 . . . . .  K;c~ = 1 , . . . n  

n 

~] X~/3 = tSkk o, k = 1 . . . . .  K (7) 
/ 3 = 1  

where the #Is are Lagrange multipliers resulting from the minimization of (6). 
6kk o is the Kronecker delta: 

~kko = II0 i fk  = k0 
otherwise 

Remarks 

For each cutoff zko, the ColK estimator requires solution of a system of 
K (n + 1) equations. 
Spatial clustering and preferential sampling in high or low values can 
render the inference of O(K 2) indicator autocovariances and cross-co- 
variances difficult. Even if there are enough data and the sampling is 
unbiased, the number of indicator autocovariances and cross-covari- 
ances required to achieve enough resolution (K large enough) may be 
prohibitive. This is precisely why ColK is rarely, if ever, used in prac- 
tice. 
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Disjunctive Kriging (DK) allows cutting the previous inference burden 
to the single autocovariance of a specific transform of the original vari- 
able Z(x). But this is possible only by calling for a specific bivariate 
distribution model for any pair of RVs Z(x), Z(x + h), which may or 
may not be appropriate. The major difference between DK and ColK is 
the decision in the latter case to model the bivariate distribution from 
data. 
A model of conditional cdf that is fully conditional on all n data values 
z(x~) taken altogether would call for the (n + l)-variate distribution of 
the (n + 1) RVs Z(x), Z(x~), ot = 1 . . . .  n (Journel, 1977). Clearly, 
such high-order multivariate distribution cannot be inferred from the 
sparse data available, and would necessarily come from a parametric 
model--for example, from the multiGaussian model (Verly, 1983). The 
unique parameter (actually a function) of this Gaussian model that is 
inferred from actual data is the correlogram of either Z(x) or its normal 
score transform. 

Indicator Kriging 

The IK model can be seen as an approximation of the ColK model (5), 
where the cross-covariances are ignored: 

n 

F~K(x; Zkol{n}) ---- Z )~ko~l(X=; Zko) (8) 
o t = l  

The weights )xko~ are obtained by minimizing the corresponding estimation 
variance, leading to the following system of constrained normal equations 
(Journel, 1983): 

~ )Xko~Ct(x~ -- x~; Zk0) + /~ko = C/(X -- x~; Z j ,  c¢ = 1 . . . . .  n 

tl 

)xko a = I (9) 

The required information is now limited to K autocovariances corresponding to 

the K cutoffs z~. 

Remarks  

• The IK model FIK(x; z j  requires solution of a system of (n + 1) equa- 
tions for each cutoff zko. 

• Although IK ignores the cross-covariances, the resulting model values 
F m (x; zk. f {n }) and F1K (x; zk I {n }) are not independent since the con- 
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ditioning information l(x,,; zk') and l(x~; zk') is correlated across cutoff 
values. 
By retaining only the indicator of nonexceedence i (x~,; zk0), for modeling 
the conditional cdf at Zko, IK does not recognize how large or small is 
each original sample value z(x,~). ColK recognizes within which class 
falls each original data by considering the full indicator data vector 
l(x~; z). 

PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis (PCA) is an algebraic technique involving 
a linear transform of one vector into another. In two dimensions, PCA can be 
seen as a rotation of orthogonal axes, with an angle chosen such that the spread 
of the first transformed variable along the first axis is maximum and the spread 
of the second transformed variable along the second axis is minimum (Ander- 
son, 1984). 

PCA is an orthogonalization procedure which does not require any prior 
statistical hypothesis about the data. However, statistical interpretation of this 
orthogonalization shows that the cross-covariance between the transformed 
variables, say Y.(x), is null: 

E{(Y,.(x) - /zr,)(Y/(x) - /~)}  = 0, Y j  ~ i 

/zr, being the mean of component Yi(x). Additionally, the first transformed 
variable Y1 (x), or first principal component, has maximum variance, the sec- 
ond principal component, I"2 (x), the second largest variance, and so on. 

These properties have made PCA a popular way to reduce the dimension 
of the data by selecting a reduced number of principal components, those which 
contribute most to the variance. For example, in geochemistry where the num- 
ber of variables is usually large, PCA has been used extensively to reduce the 
dimension of the problem (Howarth, 1983). Such a decision is based on the 
assumption that the variance is the most important aspect of variability and that 
retaining those variables with the largest contribution to that variance would 
provide a concise yet satisfactory explanation of the source of that variability. 
However, the choice of the variance as the sole criterion to rank sources of 
variability is debatable. 

Transforming the Indicators 

The indicator vector at location x is defined by expressions (I) and (2). 
The corresponding indicator covariance matrix r. t(h0 for any specific distance 
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vector h~ is: 

where: 

F C/(h,; zl, zl) . . . . . .  Ct(h,; z,, zr) 1 

El(h|) = /C,(h,; Z2, Zl) . . . . . .  C/(hl; z2, Zx) i (10) 

[t_C~(h,;izK, 1 Z,) . . . . . .  Ct(h,; zr, zK) 

C1(hj; zk, z,,) = c o v  {l(x; Zk), I(X + hi; Z,,)} 

One way to obtain the corresponding principal components is to consider 
the spectral decomposition of r-l(h l) (Anderson, 1984) defined as: 

El(hi) = AAA r (11) 

where A is an orthonormal matrix and A is a diagonal matrix. Both matrices 
are defined specifically for the vector h I . By virtue of this decomposition, the 
columns of matrix A are the eigenvectors of r-t(h0 and the elements of the 
diagonal matrix A are the eigenvalues of El(hi) ordered from largest to smallest 
(kl --> k2 --> . . .  k, >-- 0) (Wilkinson, 1965). 

Once the matrix A is calculated from (l l) for some specific lag ht, the 
indicator principal component vector is obtained by simple matrix multiplica- 
tion: 

V(x) = ArI(x; z) (12) 

Each element of Y(x) is thus written: 

K 

Y~(x) = ~,, ak, kl(x; Z,,) (13) 
k ' = l  

where ak,.k and l(x; z~.) are the elements of matrix A and vector I(x; z), re- 
spectively. The new variables Yk are linear combinations of the original indi- 
cators with the property that their cross-covariances for h = h, are exactly zero, 
Cr(h, ; k, k ' )  = 0 for all k ~e k'. The variance of Yk is equal to the k th eigenvalue 
(OJk) of E1(hl): 

Cr(0; k, k) = (~k, ¥ k = 1 . . . . .  K (14) 

The orthogonalization (12) does not ensure that the cross-covariances Cr(h; k, 
k ' )  are zero for h #: h~. If that were the case, the cokriging of  Y (x) would 
reduce to the separate kriging of  each of its elements Yk (x). However, since 
Yk(X) and Yk,(x + h) are uncorrelatexi by construction at hl, it is conjectured 
and hereafter checked, that their level of  correlation at any larger h will be 
negligible. 
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Kriging of Indicator Principal Components 

A set o f  n data vectors Y(x,~) are obtained from the transformation (13) 
and a cokriging-type estimator of  the principal component  Yk0(x) is imple- 
mented: 

K n 

r~o (x) = Z Z Xko~ Y~ (x~) (15) 
k = l  c¢=1 

Assuming that orthogonality holds true for all h: 

Cr(h;  k,  k ' )  ..~ 0, q k ~ k '  (16) 

allows reducing the est imator (15) to its simpler ordinary kriging version: 

Y*o(x) = Z ~,,o, Yk,,(x=) ko = 1 . . . . .  K (17) 
c~=l 

with the weights kko~ being derived from a constrained normal system of  type 
(9): 

n 

kkot3Cr(x0 - x~; ko) + /zko = Cr(x  - x~; ko), c~ = 1 . . . . .  n 
t~=l 

Xko~ = 1 
/3=! 

with: 

Cy(x~ - x~; ko) = cov (Y~o(X~), Y~o(X~)) 

The IPCK Model 

The inverse of  transform (12) provides a model for the conditional cdf of  
Z(x): 

FwcK(X; z I{n}) = AY*(x) (18) 

where the vector Fwc K (x; z] {n}) is defined as: 

FIPCK(X; ZI{tZ}) = [FIPcK(X;  zll{n}) . . .  F i P c K ( x ,  ZKl{rt})] T 

and the vector Y*(x) is: 

Y*(x) = [ Y ~ ' ( x ) . . .  Y*(x)] r (19) 

Note that the estimator (17) and the model (18) appear as linear combi- 
nations of  all indicator data associated with all K cutoffs, as is the CoIK model 
(5). 
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THE BIGAUSSIAN CASE 

Consider a stationary random function Z(x), such that any pair Z(x), Z(x 
+ h) has a standard bivariate normal distribution with zero mean and covariance 
matrix: 

[1 ~(h)]  
Ez(h) = , with la(h)l < 1 (20) 

p(h) 

With these parameters, the bivariate normal distribution is expressed as (An- 
derson, 1984): 

z 2 + Z n - 2a(h)zz']  
= 1 exp - 2(i  -- p 2 - ~  j (21) f(z ,  z'; o(h)) 27rx/1 02(h) 

where 0 (h) is the z-correlogram defined as: 

coy (Z(x), Z(x + h)) 
o(h) = = E[Z(x)Z(x + h)] 

var (Z(x)) 

Using this standard bigaussian model, the corresponding indicator covari- 
ance can be expressed as (Suro-Perez, 1988): 

1 farcsin " ¢ h ) [ z 2 + z ' 2 - 2 z z ' s i n O ] d o ( 2 2  ) 
= exp - -~ cos~ C~(h;z,z') ~r o 

The advantage of expression (22) against the traditional expression: 

C~(h; z, z') = f~ f~ f (x '  y; p(h)) dx dy - F(z)F(z') 

is the reduction of a double integral to a single integral. 

Indicator Covariance  Matrix E t (h) 

From expression (21), two properties of symmetry for the Gaussian indi- 
cator cross-covariances can be derived: 

C/(h; z, z') = Ct(h; z', z) (23) 

and 

Ct(h; z, z') = C/(h; - z ,  - z ' )  (24) 

Expression (23) entails the symmetry of the covariance matrix 21(h) with 
respect to the main diagonal. The combination of expressions (23) and (24) 
entails symmetry with regard to the other diagonal if the K cutoff values are 
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chosen such that: 

z~ = - - Z K - k + t  V k = I . . . . .  K (25) 

This property is called persymmetry (Golub and Van Loan, 1983). The partic- 
ular choice of  cutoff values (25) implies that the indicator cross-covariances 
satisfy the relation: 

Cx(h; zk, z~.,) = Cl(h; ZK-k'+~, Z r - k + 3 )  V k ,  k '  (26) 

Thus, for a proper choice of  cutoff values, the covariance matrix El(h) for a 
standard biGaussian distribution is not only symmetric: 

r.t(h) = ~r(h) (27) 

it also satisfies the relationship of persymmetry: 

~ l ( h )  = E ~ I ( h ) E  ( 2 8 )  

with: 

E = [ e , , . . . e t ]  

and the vector e i being defined as the ith-column of a K x K identity matrix. 
Note that results (27) and (28) are valid for all h. 

E i g e n v e c t o r s  of  ~;t(hl) 

Symmetry and persymmetry of r.t(ht) yields specific properties for the cor- 
responding eigenvectors. The eigenvectors associated with the odd order eigen- 
values are written: 

at  = [al . t  . . .  a , , ,_  l.t  a,,,.t a m -  t.t  . . .  a t , t ]  r (29) 

K + I  
l = 2 k -  1, k =  1 . . . . .  - -  

2 

while the eigenvectors associated with the even-order eigenvalues are: 

au = [at.,, . a m -  ;.u 0 - a m _ l . , ,  . .  - a t , , , ]  r " " " ( 3 0 )  

K - I  
u = 2 k ,  k =  1 . . . . .  - -  

2 

where K is an odd number of  cutoff values and rn is: 

K + I  
m - - -  

2 

As will be seen in the following section, these specific expressions have im- 
portant consequences for the computation of the principal component covari- 
ance matrix. 
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Computation of the Principal Component Cross-Covariances 

By definition, indicator principal components are linear combinations of 
the original indicators, with weights corresponding to the r~t(h0-eigenvectors. 
If Y/(x) is the lth-principal component and Y,(x + h) is the uth-principal com- 
ponent, the cross-covariance is written as: 

Cr(h; 1, u) = c o v  (aTI(x; z), a r I (x  + h; z)) = arEl(h)a,  (31) 

where a/and a, are the previously defined eigenvectors associated to the matrix 
El(hi). The latter product (31) is zero for all h under the conditions of the 
following theorem: 

Theorem. The crosscovariance of  the principal components Yl and Yu de- 
rived from the indicator variable I(x; z) are zero: 

C r ( h ; l , u )  = 0 ¥ h  

i f  ~1 (h) is symmetric and persymmetric, and the indexes l and u are odd and 
even, respectively, or vice versa. 

Proof. Assuming l odd and u even and the expressions (29) and (30) for 
the corresponding eigenvectors, the product a]-E/(h) is written: 

arEt(h) = [dt . . .  d, ,_t dm d,,_l . . .  dl] 

Thus, the final product is: 

aTE~(h)a~ = O, V h 

This result implies that some principal component cross-covariances are 
zero exactly for all h and, consequently, that the joint estimation of the elements 
of Y(x) can be achieved by the solution of a sparse cokriging system. That 
sparse cokriging system can be further approximated by kriging each Yk sepa- 
rately. This last approximation assumes that all the cross-covariances are zero 
when in fact only some are so exactly. 

THE PRACTICE OF IPCK 

The seven following steps represent a typical sequence for application of 
IPCK: 

Declustering the Univariate CDF 

For the choice Ihl = 0, all elements of the indicator covariance matrix 
El(h) are sole functions of  the univariate cdf F(z).  From data an experimental 
distribution F*(z)  can be inferred. In the presence of preferential sampling, 
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these data need to be declustered in order to correct the bias introduced by their 
preferential location. This problem is discussed in Journel (1983) and Isaaks 
and Srivastava (1989). 

Selection o f  Cutoff  Values 

The choice of cutoff values conditions the structure of the indicator covari- 
ance matrix and the corresponding orthogonal matrix A. Symmetric quantiles 
for in Gaussian case implies that some principal component crosscovariances 
are exactly zero for all h. The decision about the number of cutoffs depends on 
each specific application. If the main interest focuses on the high quantiles, then 
this part of the cdf should be discretized more. The number of cutoffs in this 
approach is not a serious problem since the burden of covariance modeling is 
alleviated by the fact that the higher the order of the indicator principal com- 
ponent, in general, the lesser its autocorrelation (Suro-Perez, 1988). The last 
indicator principal component autocovariances are often quasi-pure nugget ef- 
fect. 

Choice of  h for the Spectral Decomposit ion of  ~i  (h) 

Orthogonalization of El(h) can be done for any h. Ideally, the specific 
distance hI at which orthogonalization is to be performed should be such that 
after transformation (12), the indicator principal component cross-covariances 
can be considered negligible. A reasonable first choice is the smallest lag dis- 
tance of the experimental indicator covariances/variograms, because it is ex- 
pected that for most bivariate distribution models the indicator principal com- 
ponent cross-covariances are decreasing functions of h. Another choice would 
be either h = 0 or h l -~ 0. 

Checking for Zero Cross-Correlat ion 

Since the IPCK goal is to approximate CoIK, the relevant check consists 
in evaluating the relative magnitude of the principal component cross-covari- 
ances with respect to the corresponding autocovariances. If that relative mag- 
nitude is small, then IPCK can be applied safely, no matter the bivariate dis- 
tribution, whether biGaussian or not. If that relative magnitude is large, IPCK 
is not recommended. 

Order Relations Problems 

The resulting model FlecK(X; Zkl{n}) does not necessarily satisfy order 
relations for cdf's that are: 

FiPcK(X; zk[{n}) ~ [0, 11 

F~ecK(x; z,l{n}) -- F~pcK(x; z,,[{n}). V z,. > z, 
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The first condition may not be satisfied because kriging-type estimates are 
nonconvex linear combinations of the conditioning data. Indeed, the kriging 
weights can be negative and the estimate can lie outside the limits defined by 
the maximum and minimum data values. The second type of order relations 
problems is due to the fact that the model value F1pcK(X; zk I{n}) is not con- 
strained by FIpcK(X; zk +ll {n}); indeed, the two respective kriging systems do 
not impose any such constraint. However, experience has shown (Sullivan, 
1984; Suro-Perez and Journel, 1990) that although order relations are numer- 
ous, they are all of  small magnitude and can be corrected easily to obtain a 
model for the conditional distribution which satisfies the requirements of a cdf. 

Optimal Estimates 

Various estimates for the original unsampled value z(x) can be derived 
from the conditional cdf FwcK('); they are all optimal but for different criteria 
of optimality established from a loss function concept (Journel, 1989). For a 
given loss function L(-)  of the random error z*(x) - Z(x), an estimate of the 
expected loss is: 

S' 
L(z*(x) - z) dF~pcK(x; zl{n}) (32) E { L ( z * ( x )  - Z ( x ) ) l { n } }  = o 

Minimization of expression (32) yields the corresponding L-optimal esti- 
mate z~ (x). Numerical evaluation can be obtained through repetitive numerical 
integration for a series of values z* (x). 

Probability Intervals 

Probability intervals can be computed directly from the conditional cdf 
model: 

P *  {Z(x) ~ (a, b ) l {n} }  -- F~pcK(X; bL{n}) - F~pcK(X; a l { n } )  (33) 

The probability of exceedence of any given threshold c is: 

P{Z(x) > el{n}} = 1 -FwcK(x ;  cl{n};) (34) 

Note that probability intervals and probability of exceedence are indepen- 
dent of the choice of the particular optimal estimate z*(x).  These measures of 
uncertainty are intrinsic to the information {n } retained and the model of spatial 
correlation used to build the conditional cdf model. 

WALKER LAKE DATA SET 

This data is a subset of the larger Walker Lake data set presented by Isaaks 
and Srivastava (1989). This subset was defined and used by the US-EPA (United 
States Environmental Protection Agency) to evaluate a "variance of geostatis- 
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Table 1. Walker Lake Statistics" 
IIIII  

No. of data Mean Variance q0.25 q0.75 min max cv 

19,800 194.134 127,570.2 4 . 3 2 4  229.66 0.0 5505.924 1.84 
IIIII I 

Qcv is the coefficient of variation, qp is the p-quantile, min is the minimum value, and max is the 
maximum value. 

ticians" (Englund, 1990). The variable is a local elevation roughness index 
associated to the variance of 25 contiguous topographic evaluation data. Table 
I presents some univariate statistics of the data set. Note the large coefficient of 
variation (1.8) indicating a highly skewed distribution. Figure 1 shows a gray 
scale map based on all reference 19800 data. A NE-SW structure is observed, 
which is captured in the Z-correlogram map shown in Fig. 2. 

Considering only the 126 sample data retained by the EPA study, 660 
conditional cdf's are modeled at locations regularly spaced and shown in Fig. 
3. Table II shows the statistics of the 126 samples considered for this study. 
The kriging plan consists of retaining a minimum of 3 and a maximum of 16 
sample data, with a maximum of 4 samples per quadrant. The search neigh- 
borhood is an ellipse oriented in the direction of maximum continuity (N68°E), 
with a major axis equal to 25 units and a minor axis equal to 13 units. 

ColK, IK, and IPCK are the three algorithms employed to model the con- 
ditional distributions. Nine decile cutoffs corresponding to the exhaustive in- 
formation are considered and are shown in Table III. For all three algorithms 
the exhaustive information is used to evaluate all indicator auto- and cross- 
covariances and the indicator principal component autocovariances. 

• 229.6 - 5505.9 

~ 3 5 . 2  - 229.6 

] 4.3- 35,2 

] 0,0- 4.3 

Fig. 1. Gray scale map of the Walker Lake data set. 
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Fig. 2. Z-correlogram map for Walker Lake. 
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locations where conditional cdf models are built. 

Table II. Walker Lake Statistics: 126 Samples" 

No. of data Mean Variance qo.25 q0.75 min max cv 

126 208.535 119,263.1 9.600 295.595 0.0 1653.66 1,66 
IIIII II 

"These statistics have been obtained considering only the 126 data whose locations are shown in 
Fig. 3. 
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Table I11. Nine Deciles (Walker Lake Data)" 

qp P 

0.057 0. l 
1.636 0.2 
7.957 0.3 

17.898 0.4 
35.225 0.5 
74.396 0.6 

156.072 0.7 
323.342 0.8 
593.247 0.9 

"qe corresponds to the p-quantile of the Walker Lake data. and p 
is the proportion of values below ql," 

Conditional Distributions for Walker  Lake 

The 126 sample locations represent a realistic situation. Clustering and 
undersampling are features frequently encountered in practice. Since these data 
were selected independently for the EPA study (Englund, 1990), they should 
not favor any of the three algorithms retained for testing. 

Although statistical inference of representative covariance models is cru- 
cial to any geostatistical approach, this problem has not been addressed here. 
Instead, we allow ColK, IPCK, and IK to use covariance models deduced from 
the exhaustive (19800 data) information. Indeed, the main goal of this section 
is to compare the performance of these three algorithms, under perfect infer- 
ence. 

Indicator Cokriging and Indicator Kriging 

Forty-five indicator auto-crosscovariances were computed from the 19800 
data constituting the exhaustive information (Fig. 1). In all the cases a non- 
ergodic estimator (Isaaks and Srivastava, 1988) was considered. The indicator 
cross-covariances were assumed symmetric with respect to the cutoffs: 

Ct(h; k, k') = CAh; k', k) 

The symmetry assumption allows reduction of the 9 z = 81 indicator covariances 
and cross-covariances required by CoIK to only 45. 

Figure 4a and b shows the indicator autocovariances for the first decile 
cutoff and for the median, respectively. Notice how anisotropy is more preva- 
lent at the median cutoff. Figure 5a and b shows the indicator cross-covariances 
between the first and second cutoff and the median and sixth cutoff. In both 
cases, the magnitude of these cross-covariances are significant when compared 
to the magnitudes of  the corresponding indicator autocovariances. CoIK does 



| o  OdS~ .... I .... I .... I .... I .... I .... I''' 

o.125 

0.! 

( . 3  

Z 
0-15 

0 . 1  

0 . 0 5  

0 

- O ,  OS  

0 . 0 7 5  

0.Ck25 

°I, -0°025 

-O, OS , , , I , , , , I , , J , I . . . .  I , n , * I , * . * I , , , , 
0 lO 20 30 40 50 60 70 

h 

0.25 

Indicator Principal Component Kriging 775 

0 10 20 30 40 50 60 70 

h 
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convention will be maintained hereafter. (a) First decile; (b) median. 
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account for such indicator cross-covariances in modeling the conditional distri- 
butions. The CoIK model, using the full discrete bivariate structural informa- 
tion, is now compared with the models provided by IPCK and IK. 

Indicator Principal Component Kriging 

The indicator principal components Yi(x) are obtained by expression (12). 
The indicator covariance matrix was orthogonalized at hI, with hI being the 
unit lag in the N-S direction. In real practice, h~ could be chosen as zero or the 
smallest lag considered for the experimental covariances. The corresponding 
orthogonal matrix A is: 

-0 .156 0.348 -0.508 0.608 -0.433 0.191 -0.015 0.000 0.001 

-0.281 0.492 -0.364 -0.119 0.539 -0.486 0.066 -0.002 -0.009 

-0.369 0.422 0.083 -0.501 -0.047 0.625 -0.180 0.011 0.007 

-0.426 0.180 0.456 -0.047 -0.488 -0.386 0.422 -0.091 0.005 

-0.440 -0.096 0.356 0.367 0.148 -0.119 -0.610 0.348 0.067 

-0.411 -0.294 0.035 0.250 0.319 0.235 0.152 -0.625 -0.330 

-0.355 -0.381 -0.225 -0.019 0.125 0.177 0.410 0.303 0.607 

-0.258 -0.355 -0,353 -0.275 -0.212 -0.104 -0.007 0.390 -0.629 

-0.148 -0.240 -0.298 -0.295 -0.308 -0.273 -0.469 -0.484 0.346 

The columns of matrix A correspond to the weights ak., in expression (13). 
The first indicator principal component explains about 74% of the indicators 
variability, while the last component has almost zero variance. 

Figure 6a-c shows the two first and the last indicator principal component 
autocovariances. The spatial correlation range decreases with the higher order 
of the indicator principal components, and essentially vanishes for the 9 th com- 
ponent. Transformation (12) appears to order the indicator principal compo- 
nents not only according to their variances, but also according to their spatial 
correlation. 

Figure 7a and b shows the two most significant cross-covariances (in the 
sense that they are different from zero). In both cases, the magnitude of the 
cross-covariances appears to be negligible when compared to the corresponding 
autocovariances. Therefore, the constitutive approximation that the Y-covari- 
ance matrix is diagonal for all h is reasonably well-supported by the Walker 
Lake data. In other cases where the indicator covariance matrix was factorized 
for h~ close or equal to zero, similar results were obtained. For example, the 
cases hi = [0 0] r, [1 0] T, [1 1] r, [0 - 1] r, yield an almost diagonal Y-covariance 
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70 

matrix for any h with negligible indicator principal component cross-covari- 
ances. This confirms the conjecture that orthogonalizing the indicator covari- 
ance matrix for small h~ yields approximately diagonal Y-covariance matrices. 

For this exercise only, the three first indicator principal components were 
considered as significantly spatially correlated; the other six were modeled as 
pure nugget effect. Consequently, kriging is needed only for the first three com- 
ponents; thus, three equation systems are required. For the other six, a moving 
average estimate suffices without any need for solving further systems of equa- 
tions. 

A comparison of the conditional cdf 's  modeled from ColK and IPCK is 
shown on the scattergrams of Figure 8a-c. Figure 9a-c shows the conditional 
cdf models obtained from ColK and IK. The three models appear to be very 
similar. Apparently, introduction of the indicator cross-covariances in ColK 
does not result in models of  conditional cdf 's  much different from the models 
obtained using IPCK or IK. Table IV shows the average of the absolute differ- 
ences between the models provided by IPCK-ColK and IK-ColK. Notice that, 
in general, IPCK approximates better ColK; however, for the first decile IK 
does a better job than IPCK. 
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i 

Z~ 

Table IV. Average Absolute Differences" 

AveragelColK - IPCK I AveragelColK - IKt 

0.057 0.019 0.012 
1.636 0.022 0.020 
7.957 0.023 0.031 

17.898 0.028 0.038 
35.225 0.031 0.044 
74.396 0.027 0.052 

156.072 0.024 0.048 
323.342 0.021 0.042 
593.257 0.014 0.023 

"The column AveragelColK - l[ is the average of the absolute 
difference at 660 locations (Fig. 3) between the conditional cdf 
provided by ColK and the model t, lbr the cutoff z~. / corresponds 
either to the IPCK or the IK model. 

P r e d i c t i n g  P r o p o r t i o n s  a n d  O p t i m a l  E s t i m a t e s  

From each conditional cdf, two symmetric quantile values, q/*~(x) and 
q*_,(x), are retrieved. The predicted probability for Z(x) to be in the interval 

[q*~ (x), qT.,(x)] is then: 

t = p 2  - P J  withp2 = 1 - p j  

Quantile values were interpolated linearly (i.e., within-class conditional distri- 
butions are considered as uniform). In a practical situation, better models for 
within-class distributions could stem from the corresponding data. 

Table V shows the performance in terms of  predicted proportion for the 
three techniques. In this table, t /corresponds to the actual proportion o f  values 
Z(x) falling in the interval [qt*~ (x), qt,*_,(x)] obtained from the model / (ColK, 
IPCK, and IK). If  these models are reliable, then on average over all 660 es- 
timated locations, the actual proportion tl should be close to the predicted value 
t. 

The scores are practically the same for proportions less than 0.5, For the 
0.5 predicted proportion, the actual proportion derived from IK is closer to the 
predicted one than either ColK or IPCK. However,  for the predicted proportions 
0.7 and 0.8, the actual proportions obtained from ColK and IPCK are closer to 
the actual ones than IK. For these proportions, the IK model of  conditional 
distribution overestimates the proportion of  values Z(x) by predicting a 70% 
and 80%, when actually 66% and 74% of the data are contained in the corre- 
sponding probability intervals. 

For the 90% proportion, the three methods overestimate the proportion o f  
Z(x) values inside of  the corresponding probability interval. However,  IK 
overestimate the most. 
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Table V. Proportions Prediction (Walker Lake)" 

l [(~,IK IIPCK IlK 

0.1 0.086 0.098 0.083 
0.2 0.210 0.195 0.177 
0.3 0.303 0.309 0.290 
0.4 0AI8 0.418 0.390 
0.5 0,536 0.542 0,495 
0.6 0.639 0.628 0.580 
0.7 0,730 0.727 0.663 
0.8 0.819 0.810 0.748 
0.9 0.874 0.862 0,801 

"t and t; are the predicted and actual proportion, respectively. I 
corresponds to the model ColK, IPCK, or IK. 

Next, consider  for loss function the mean absolute deviation: 

L(Z(x)  - z*(x) )  = IZ(x) - z*(x) l  

The value that minimizes the corresponding expected loss (32) is the median or 
q~5( ' ) -  That median value is taken from each o f  the three conditional distri- 
bution models.  In both cases, a within-class l inear interpolation was used to 

obtain the median.  
Two different criteria (Zhu and Journel,  1990) are considered to compare 

the three different opt imal  estimates.  The first one concentrates on conditional 
bias. Selection is usually done by applying some cutoff on the optimal estimate 
(here the condit ional  median) and the selection loss of  accuracy can be mea- 

sured as: 

E [ Z * ( x )  - Z (x ) lZ*(x )  < Zk,] (35) 

with zk, being a selected cutoff. This expression (35) measures the average error 
given that the est imate is less than a part icular  cutoff. I f  selection is accurate,  
this measure is close to zero. Table  VI shows the (loss of)  accuracy scores 

considering nine cutoffs. The scores are similar  and there appears to be no clear 
advantage o f  one method over  the others. 

The second criterion corresponds to the efficiency of  a selection performed 

on the est imated value: 

E{Z(x)lZ(x) > zk.} - E { Z ( x ) l Z * ( x )  > z~,} (36) 

This index compares  the average of  the Z(x)  under perfect selection, 
E{Z(x)lZ(x) > z~,}, with the one obtained by doing the selection using the 
est imate E{Z(x)IZ*(x) > zk,}. Table VII shows the resulting (loss of)  effi- 
ciency scores. Again,  the scores are similar,  indicating that estimates derived 

from ColK,  IPCK,  and IK provide about the same efficiency in selection. 
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Table VI. Accuracy Performance (Walker Lake Data)" 
i 

Cutoff ColK IPCK IK 

qo2 -2.30 -2.13 -2.31 
qo.3 -2.05 - 1.89 -2.31 
qo.4 - 29.66 - 34.63 - 34,58 
qo~ -56.07 -58.70 -57.44 
qo~6 - 68.48 - 68.10 - 77.26 
qo,7 -73.62 -75.90 -77.09 
qo,8 -95.25 -93.71 - 101.41 

"The scores have been obtained by using expression (35). Best is 
zero. 

Table VII. Efficiency Performance (Walker Lake Data)" 

Cutoff ColK IPCK IK 

qo2 19.32 15.85 18.57 
qo.a 36.52 37.27 38,69 
qo.4 45.01 49.19 47,12 
qo~5 71.24 78, 12 70.84 
qo.6 100.76 101.85 106.20 
qo7 76.03 66.77 64.68 
qo8 228.41 215,08 238.02 

i 

"Expression (36) has been used to obtain these scores. Best is zero. 

The last two criteria indicate no advantage of CoIK over IPCK or IK, or 

vice versa. For predicting proportions, CoIK and IPCK perform better than IK. 

C O N C L U S I O N  

IPCK is a nonparametric technique for modeling the conditional distribu- 
tion F(x;  zl{n}). This model is obtained by kriging a limited number of prin- 

cipal components obtained from a linear transformation of the indicators I(x; 
z). A comparison of the models of conditional distribution derived from CoIK, 
IPCK, and IK has shown only small differences between the three models. If 

CoIK is considered the reference model, then, IPCK approximates it better than 
IK. Furthermore, because indicator principal components are continuous vari- 

ables as opposed to binary indicators, inference of their covariances or vario- 
grams should be easier. 

The Walker Lake data set has shown that under a practical bivariate dis- 
tribution, not biGaussian, IPCK performs as well as CoIK or IK. In addition, 
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because the higher indicator principal components are uncorrelated, there is no 

need to krige them. This property makes IPCK faster than IK and much faster 
than ColK, since a smaller number  of systems needs to be solved and a smaller 

number  of indicator principal component variograms needs to be modeled. 
IPCK is an approximation to ColK since, in general, it considers only part 

of the full discrete bivariate distribution. However, in the biGaussian case, and 

also for the real data set analyzed in this paper, there is no significant loss of 

information by using IPCK. 
There appears to be no major practical implementation problems to obtain 

the model FtecK(x; zl{n}).  Any ordinary kriging program suffices to develop 
it, with indicator principal component  data replacing indicator data. The trans- 
formation matrix A r is obtained from any public-domain singular value decom- 

position or spectral decomposition subroutine. 
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