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ABSTRACT 

Hagen, D.C., 1982. The application of principal components analysis to seismic data sets. 
Geoexploration, 20: 93-111. 

In the area of stratigraphic seismology, the oil company explorationist frequently en- 
counters the problem of evaluating subtle character changes that occur within a set of 
essentially uniform seismic traces. Typically, the zone of interest is limited in the vertical 
(depth) direction to a small window relative to the overall trace length, and the seismic 
events are flat, or nearly so, across the set of traces. The application of principal com- 
ponents analysis takes advantage of the high degree of redundancy in the seismic data set 
to determine its statistical behavior and reduce it to its essential features. Investigations 
thus far indicate the information can be reduced to %lO% of the original data base size. 
The principal component correlation coefficients were found to provide an accurate meth- 
od of grouping the traces in both the supervised and unsupervised modes. If one or more 
well logs are available, then their geographical locations relative to the seismic data can 
be used to initialize the cluster centers, to which other traces are added as appropriate. 

INTRODUCTION 

Many exploration projects in the oil industry involve the integration of 
information from well logs and seismic data if these are available in an area 
of interest (Sheriff, 1977). The concept is to establish the lithology of the 
well log, and in turn relate its character to that of the seismic data. Using the 
much more extensive seismic coverage generally available, the lithology can 
be extrapolated and structural maps produced showing areas of potential 
hydrocarbon accumulation. This works well for finding structural traps in 
which permeable rocks are overlain by impermeable ones. An important 
element in the technique is the determination of the connection between 
well log and seismic data. If the well logs measure acoustic velocity informa- 
tion, it is possible to construct synthetic seismograms using a generating 
wavelet that matches the seismic data passband. Once this correlation is 
established a structural interpretation of the seismic data can be made. 

Techniques used for seismic data acquisition and processing have con- 
tinually improved over the years, and the resulting information available to 
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the interpreter has increased in reliability and resolution. This has created a 
growing tendency to use seismic data for stratigraphic interpretation in which 
subtle changes in waveform along a reflecting horizon are related to lateral 
variations in composition and/or porosity within a rock layer. If well logs 
are available, the stratigraphic approach is similar to that used in structural 
interpretation, but on a different scale. Log values are adjusted in magnitude 
and separation until a model is found that produces a synthetic seismogram 
matching the seismic data after the latter has been processed in an optimal 
form. Additionally, or alternatively, the siesmic data can be integrated to 
produce a synthetic log, which is then compared to impedance data computed 
from the actual log. 

Many stratigraphic interpretation problems involve small vertical windows 
of seismic data. Typically, such a data base has a high degree of redundancy 
in the horizontal direction, along with more subtle variations which the in- 
terpreter is actually interested in. The modeling approach described previously 
does not take advantage of this observation, but ultimately relies on human 
judgment to determine when good correlations are achieved. 

For the past several years Professor Lester R. LeBlanc and coworkers at 
the Ocean Engineering Department, University of Rhode Island, have been 
working on techniques to determine the composition of sea floor sediments 
from acoustic reflection profiles (Milligan et al., 1978; LeBlanc and Middleton, 
1980). Taking advantage of the redundant nature of the profiles, the method 
of principal components analysis was used to reduce the data to its essential 
statistical features. Each trace could then be represented by a small set of 
coordinates which was used to classify it into one of several possible types. 
This classification scheme resulted in an excellent agreement with actual 
sediment categories. 

The principal components technique was developed in the 20’s and 30’s 
by several investigators, with perhaps Hotelling (1933) being due the most 
credit for the procedure. An outline of the statistical theory behind it is 
succintly presented by Milligan et al. (1978), which with further condensa- 
tion is summarized as follows. Let a set of trace segments be represented in 
vectorformas(xik),wherek=l,...,Nisthetraceindexandi=l,...,M 
is the sample index. Then the mean vector and covariance matrix estimates 
are: 

(1) 

xjk - i$> (xjk - ii.1 

The assumption is made that the mean and covariance contain all the statistical 
information about the data base; i.e., it is second order. The covariance 
matrix is inverted to produce a set of eigenvectors and eigenvalues. The in- 
version process produces M eigenvectors which, as a set of vectors has the 



95 

property of being orthogonal. The contribution of each eigenvector to the 
overall variance is proportional to the corresponding eigenvalue. The inversion 
process produces eigenvectors in the direction of decreasing eigenvalues, so 
if the first i@<M eigenvalues provide a sufficient amount of variance measure, 
then only @ of them need be used in further analysis. The I@ eigenvectors, 
which contain N samples each, can then be correlated against each trace to 
obtain a coefficient expressing that eigenvector’s contribution to the trace. 
Each trace then can be estimated as a linear combination of the fi eigenvec- 
tors, or principal components. 

ii 

Xik %rji;.k= c a&t&i (3) 
m=l 

where Xik, jrik = actual, estimate, ith sample of hth trace, Zmi = ith Sample Of 

mth eigenvector, Crmk = correlation coefficient of eigenvector 2, and trace 

xk- 
The percent of the total variance of the data base which is accounted for 

by the first @ principal components is given by 

5 Am 

o2 (j,j)= m;l (4) 

C Smm 
m=l 

where X, = mth eigenvalue, and S,, = diagonal components of covariance 
matrix. 

To appreciate the significance of eq. 4, it might be helpful to consider 
that for a set of 200 good quality traces, using a 50-sample window, 3 to 4 
principal components will generally express 85 90% of the overall variance. 
Thus the original data base of 10,000 samples can be reduced to 4 X 50 + 
4 X 200 = 1000 samples, indicating a typical lo-fold information redundancy 
in the original seismic data. 

Since each trace in the data set can be estimated as a linear combination 
of the same principal components, the unique character of a trace is ex- 
pressed by its set of correlation coefficient values (Crmk ), m = 1, . . . , fi. 
Milligan et al. (1978) and LeBlanc and Middleton (1980) used these coef- 
ficients weighted by the inverse square root of the corresponding eigenvalue 
as coordinates in $-dimensional space, and allowed these to agglomerate 
iteratively to a pre-determined number of clusters. This non-supervised 
clustering procedure is initiated by defining one cluster for each of the N 
traces, merging the two nearest as defined by the distance measure 

d AB = 
(amA -amB)2 

Am 
(5) 
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and recomputing the coordinate position of the merged clusters. The pro- 
cedure is repeated with a reduction of one cluster at each step until only 
the desired number remains. 

RESULTS 

The stratigraphic interpretation problem is on a different scale from that 
of sea floor sediment identification but can be handled in a similar manner. 
The clustering done for the subject work primarily used the supervised mode 
with the correlation coefficients of the traces at known well locations serving 
as cluster centers. 

The procedure is illustrated using the profile of seismic data shown in 
Fig. 1, which is a window from a common depth point stack. The explora- 
tion target was a porous zone which appeared and disappeared laterally in 
the zone 1.66-1.68 s. It was determined the indicator differentiating the 
non-porous and porous classes was the split-up of the single low-frequency 
cycle into two high-frequency cycles. Wells penetrated this zone at shotpoint 
locations 152, 181, 194, 214 and 230. The coefficients for the traces at 214 
and 230 were used in the supervised classification process to represent the 
porous and non-porous classes, respectively. The wells at 151, 181 and 195 
were not used in the classification process, and indicated non-porous, porous 
and porous character, respectively. The solid and hollow circles are used to 
symbolize the porous and non-porous wells. It should be noted that data 
recording difficulties were encountered around the well at 195. This led to 
an anamoly in the data and subsequently some difficulty in classifying the 
well. In Fig. 2, the data has been flattened on an event at 1.41 ms and filtered 
using a 6-58 Hz passband to eliminate variations unrelated to stratigraphy. 
The statistical analysis was done on the data in this format. 

The porous/non-porous contrast is emphasized in Figs. 3 and 4, which are 
shade-coded renditions of the data illustrating the amplitude envelope and 
instantaneous frequency transformations of the traces (Taner and Sheriff, 
1977). In the interest of condensing the computer time, the zone of interest 
was narrowed to 150 ms and every other trace was used. The behavior of the 
amplitude envelope did not correlate with the porous/non-porous distinction, 
while the frequency emphasized it very well, as might be expected from an 
observation of the stacked data. In general, a frequency high indicates porosity 
and a low is related to a lack of porosity. The high and low frequency 
anomalies can be detected by differences in shading patterns. 

The discriminating behavior of the instantaneous frequency led to its use 
as input to the statistical analysis procedure. Because of uncertainty as to the 
number of principal components required, several examples were run and 
the data estimates were generated using eq. 3. The comparisons for 2, 3 and 
5 principal components with the original data are shown in Fig. 5. While the 
5-component case shows the best resemblance, the &component case was 
deemed a sufficiently close match. 
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The correlation coefficients for the first three components are shown in 
Fig. 6. The behavior reversal for components one and two between shotpoints 
214 and 230 is particularly noticeable. Another observation of interest is 
that coefficient behavior exhibits a low frequency characteristic, which sug- 
gests coefficient values for missing traces could be determined by interpola- 
tion and used to reconstruct those traces. 

+10- 

0: 

-10. -L- ~_~ ~-1 _-L___I--- I- I -1 

The correlation coefficients were used to classify the data using the data 
at 214 and 230 as cluster centers. The distance of each trace to each center 
was computed using eq. 5. It was assigned to the closest class, provided it 
fell within a maximum acceptance radius. If it could be assigned to a class, 
the probability it was in the correct class was computed as the ratio of its 
reciprocal distance to that class and the sum of the reciprocal distance to all 
classes : 

1 

P(XEA) = 1 

dXA 

1 
-+ -+ 
dxA dxB . ” 

Fig. 7 shows the classification results for 1, 2, 3 and 5 principal com- 
ponents. A dark background indicates that a trace was determined to be 
classified as porous, and a light background as non-porous. The heavier 
the shading within a particular class, the higher is the probability that it 

(6) 
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has a stratigraphy similar to what exists at the well. As expected, the data 
at 214 and 230 show a high probability of belonging to the respective classes. 
The procedure has correctly classified the wells at 151 and 181 with a high 
degree of probability, but the classification of the well at 195 is less certain, 
probably due to the recording anomaly in the area. While all four are in 
general agreement, the classification becomes more discriminating for larger 
numbers of components. 

Another comparison of classification variables is shown in Fig. 8, all for 
the 3-component case. The illustration showing classification for variance- 
weighted coordinates is shown for reference. Below it is the classification 
result without weighting, showing little apparent difference. The bottom 
figure illustrates variance-weighting with an acceptance radius for the porous 
class only half as large as the non-porous class. As expected, the number of 
traces correlatable to the porous class has diminished. 

The classification procedure can readily be extended to two or more 
transformations of the basic data set if that is necessary to fully distinguish 
between different classes. Although the amplitude envelope transform did 
not exhibit a suitable character, as an experiment it was used anyway in con- 
junction with the frequency transform, and a comparison of the results is 
shown in Fig. 9. This classification appears to be less distinct than the frequen- 
cy alone, suggesting that inclusion of the amplitude has confused the issue. 
The use of multiple transforms has proved helpful in other cases, particularly 
in combining transforms generated over dissimilar axes, such as instantaneous 
frequency in the time domain and power spectra in the frequency domain, 
or amplitude and velocity data in the time domain. 

The preceding classifications have all been done in the supervised mode. 
Again, as a comparison, the frequency data were classified in the unsupervised 
mode using the previously referenced technique (Milligan et al., 1978). Fig. 10 
is a comparison of the results, with the supervised classification being reduced 
to a binary (yes-no) decision. For the case of two classes, the results are 
very similar. No attempt was made in this experiment to determine a probabil- 
ity of class membership. 

The techniques have been applied to two-dimensional data as well, in 
which the matrix is strung out as one long vector. If the matrix becomes 
sizable, however, it is difficult to invert because of roundoff problems and 
the build-up of computer time. For small matrices, though, the technique has 
proven to work quite well. 
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CONCLUSIONS 

Although the results presented in this report refer to a single data base, 
the techniques of principal components analysis and clustering as described 
have been found to be applicable to other seismic data. If further experiments 
confirm the technique as being reliable and robust, it may prove useful in 
reducing the judgment factor in stratigraphic interpretation problems. In 
summary, the results presented indicate the following. 

(1) A seismic data set typically has a high content of information redundan- 
cy, a fact which can be used to advantage in determining its essential features. 

(2) If the appropriate pre-normalization operations are performed, this 
reduced information can be used to accurately categorize the data using 
either a supervised classification tied to well log data, or unsupervised clas- 
sification in which “natural” clusters are allowed to form. 

(3) The statistical analysis and classification can be done on the seismic 
data, or on one or more transforms of the data, depending upon which shows 
the discriminating character. 

It appears the usage of these techniques would indeed be helpful in reduc- 
ing the “manual” workload of the oil company explorationist. 
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