MI63C- Dinámica y Control de Procesos

Prof: Héctor Agusto A

CÓDIGO	NOMBRE DEL CURSO					
MI63C	DINAMICA Y CONTROL DE PROCESOS					
NÚMERO DE UNIDADES DOCENTES			HORAS DE CÁTEDRA	HORAS DE DOCENCIA AUXILIAR		HORAS DE TRABAJO PERSONAL
6			3,0	0,0		3,0
REQUISITOS		REQUISITOS DE CONTENIDOS ESPECÏFICOS			CARÁCTER DEL CURSO	
MI51G,MI51A,MI42D,MI52E		Procesos Metalúrgicos, Planteamiento y solución de ecuaciones diferenciales lineales			Optativo	
PROPÓSITO DEL CURSO						

Este curso permite que usted sea capaz de Analizar y modelar el comportamiento dinámico de procesos y aplicar conceptos básicos de Control automático y su implementación en Planta

OBJETIVO GENERAL

Comprender los fundamentos de la teoría de Modelación y su aplicación en el control automático de procesos metalúrgicos. Dominar la terminología de la implementación de sistemas de control

Unidades Temáticas

- 1. INTRODUCCIÓN AL CONTROL DE PROCESOS
- 2. MODELACIÓN Y SIMULACIÓN DE PROCESOS DINÁMICOS
- 3. CONTROL CLÁSICO
- 4. CONTROL AVANZADO
- 5. IMPLEMENTACIÓN DE SISTEMAS DE CONTROL

EVALUACIÓN

<u>Instancias de calificación:</u>

Control Nº1: Unidades 1 y 2 Control Nº2 Unidades 3, 4 y 5

Tarea <u>Nº1</u> Unidad 2

Tarea Nº2 Unidad 3

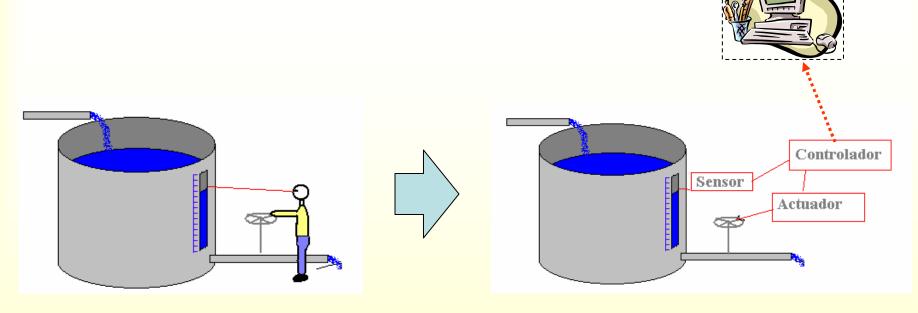
Examen: Integrador del curso, se evalúan las competencias que fueron declaradas en el programa, como logro a ser alcanzado por el estudiante.

Nota Final: 55% Nota Controles y 45% Nota Ejercicios, tarea y Laboratorio.

¿Sistemas Dinámicos?

¿Qué es un modelo?

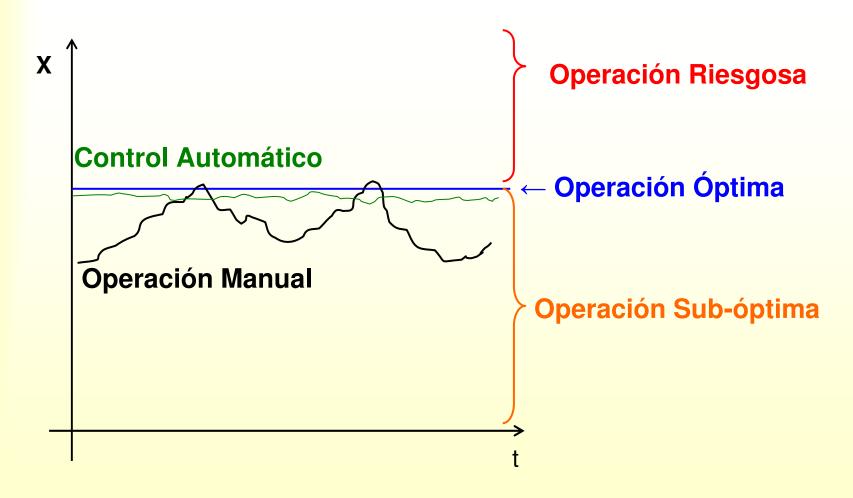
Una representación de la Realidad


¿Por qué modelar?

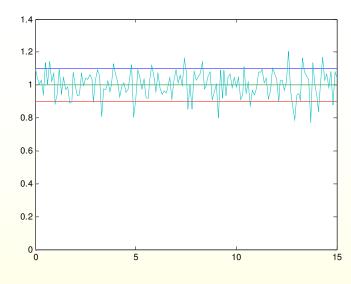
- Diseño de nuevos procesos
- Optimización de procesos existentes
- Control de procesos

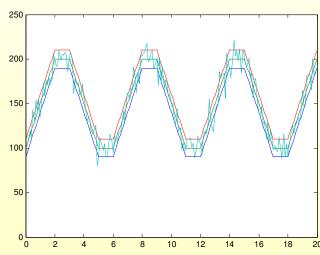
Modelación y Simulación

- Modelo: representación
- Simulador: Implementación de un modelo


Motivaciones del Control Automático

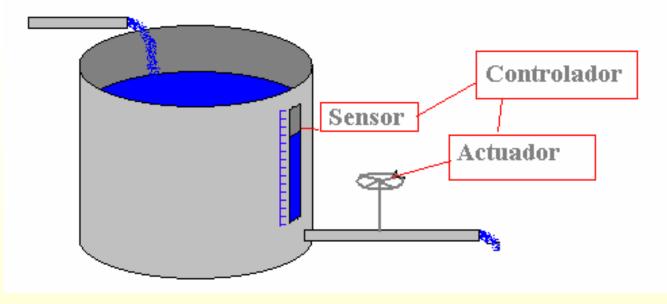
- **✓** Calidad
- **✓** Seguridad
- **✓** Optimización
- **✓** Información


Motivaciones del Control Automático



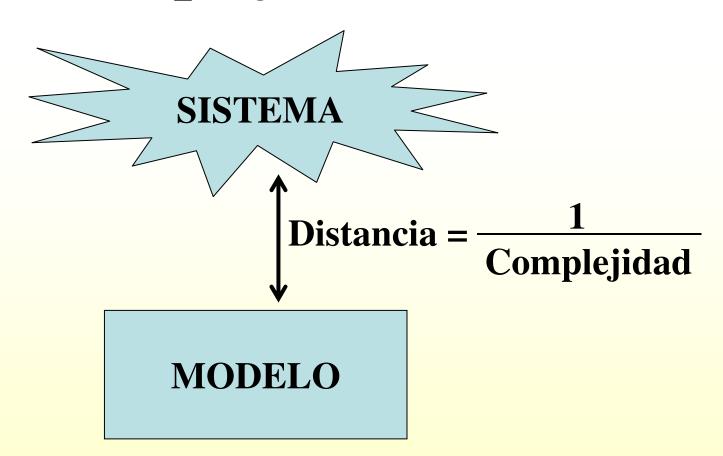
Objetivos de Control

Regulación

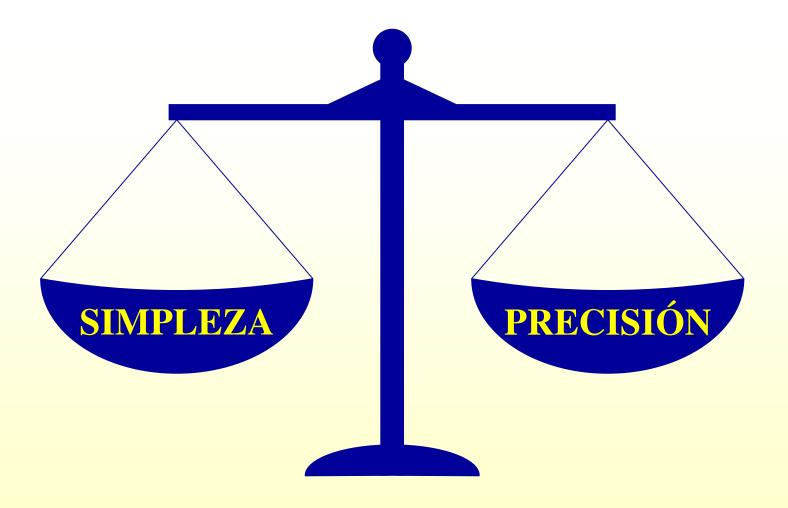

Seguimiento

Elementos de un Sistema de Control

Proceso

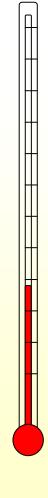

Modelación en el Diseño

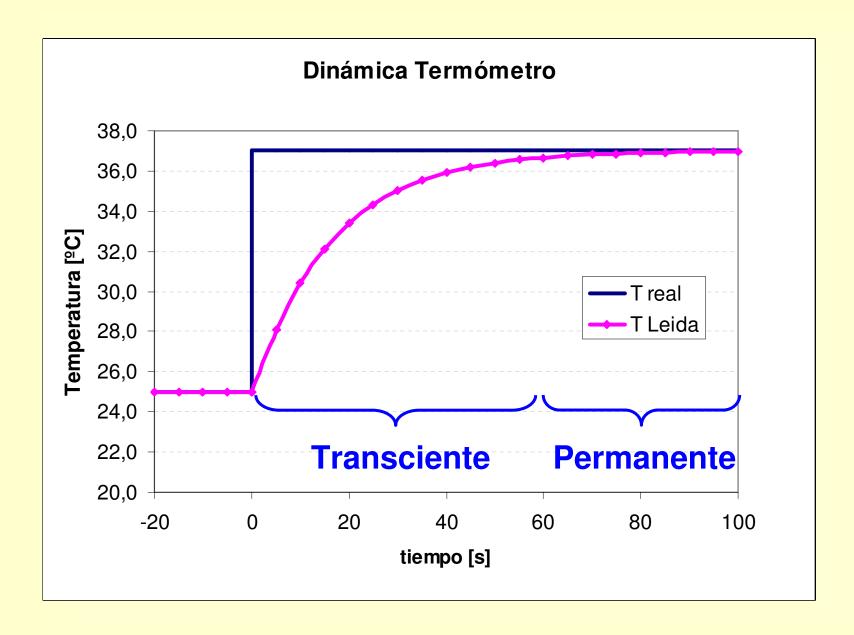
- Dimensionamiento de equipos
- Evaluación de riesgos
- Optimización de Procesos
- Diseño de Estrategias de Operación/Control


Modelos en sistemas de Control

- Ajuste de parámetros (sintonización)
- Sistemas Expertos
- Control Predictivo

Complejidad de un Modelo




Complejidad de un Modelo

Sistema Dinámico

• Ejemplo: Termómetro

¿Es el termómetro un Sistema Dinámico?

¿Es relevante su Dinámica?

Elementos de un Sistema

Variables Manipuladas (u)

Perturbaciones (w) medidas no medidas

Variables internas

Entradas

Estado (x)

Parámetros

Salidas (y)

Variables "externas"

Elementos del sistema Termómetro

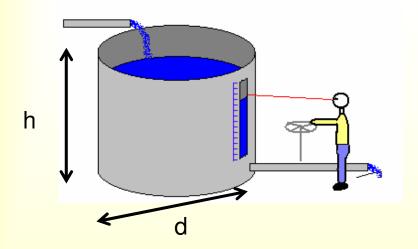
• Entradas (u): Temperatura Externa (real)

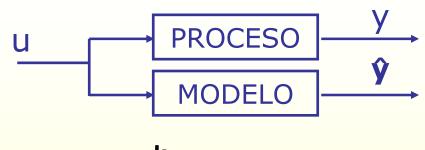
• Salidas (y): Lectura de temperatura

• Estados (x): Calor en Mercurio

• Parámetros: Capacidad Calórica

Coeficiente de Dilatación


Geometría Termómetro



¿Cómo Analizamos estos Sistemas?

- Modelar
- Estimar Parámetros
- Simular
- Evaluar

Estimación de Parámetros

$$\mathbf{J} = \sum_{i=1}^k \left\| \, \boldsymbol{y}(i) - \boldsymbol{\hat{y}}(i) \right\|^2$$

Tipos de Modelos (1)

Punto de Vista	Clasificación		
Generación	Fenomenológico - Empírico		
Naturaleza	Determinísticos – Aleatorios		
Número de variables	Monovariables – Multivariables		
Continuidad de variables	 T. continuo – V. continuas T. continuo – V. discretas T. discreto – V. continuas T. discreto – V. discretas 		

Tipos de Modelos (2)

Punto de Vista	Clasificación		
Comportamiento espacial	V. concentradas – V. distribuidas		
Comportamiento temporal	Variables - Invariables		
Linealidad de Variables	Lineales – No lineales		
Realizabilidad	Causales - Anticipativos		

- Basados en la Fenomenología del sistema, es decir fenómenos:
 - Mecánicos
 - Hidráulicos
 - Químicos
 - Eléctricos
 - Entre otros

- Aplicar Leyes de Conservación
- Aplicar Principio de Mínima Acción

Leyes de Conservación

- Conservación de:
 - Masa
 - Energía
 - Momentum
 - Carga eléctrica

Leyes de Conservación

1.- Plantear ecuaciones de balance dinámico

2.- Expresar ecuaciones de balance, en función de variables de entrada y salida.

3.- Determinar parámetros

• Ejemplo 1: Termómetro

Balance de calor: Q

$$dQ/dt = Q_{in} + Q_{gen}$$

$$Q_{in} = -k*A*(T_{ext}-T_{ter})/I$$

k: Conductividad térmica vidrio (1.1)

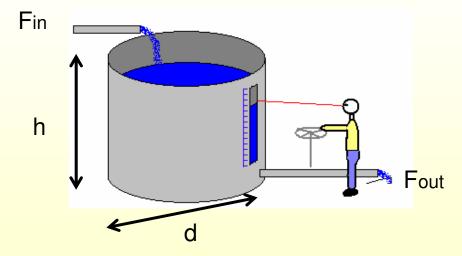
A: Área de Contacto

l: Espesor vidrio

 $Q_{in} = -\alpha * (T_{ext}-T_{ter})$

$$T_{ter} = Q/C_p$$

Cp: Capacidad calórica Mercurio


$$dQ/dt = -\alpha * (T_{ext} - Q/C_p)$$

$$dQ/dt = \alpha *Q/C_p-\alpha *T_{ext}$$

Propuesto: Ajustar parámetros obtener curva!!

Trabajo en Clase

• Obtener el modelo fenomenológico del siguiente sistema

Trabajo en Clase

• Definir: Entradas, Salidas, Estado y parámetros.

Plantear Leyes de Conservación