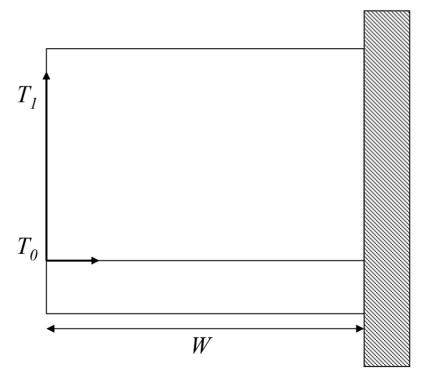
TRANSFERENCIA DE CALOR

MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín Clase #5

5.1 Transferencia de Calor Noestacionaria vs Estacionaria

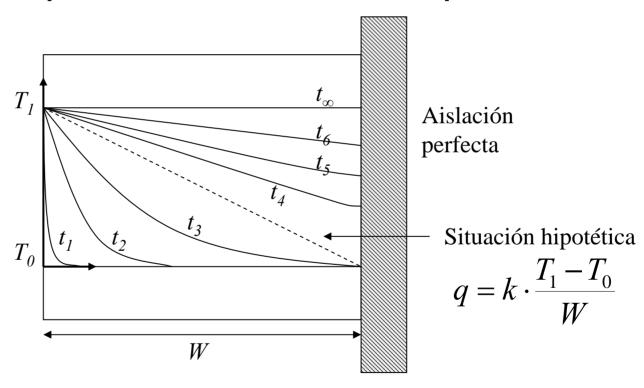
- Luego de iniciar un proceso o al hacer un cambio en éste, habrá un período de tiempo antes de alcanzar el estado estacionario.
- En algunas situaciones, el estado estacionario nunca es alcanzado.
- En otras, el estado estacionario se alcanza muy rápidamente



 El objetivo de esta sección es encontrar algunas relaciones que permitan determinar aproximadamente cuánto tiempo tardará en alcanzarse el estado estacionario.

Número de Fourier

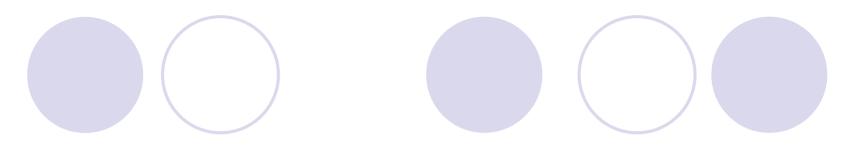
Consideremos la siguiente situación:


- •Sistema de ancho W
- •Área A (perpendicular)
- •Temperatura inicial uniforme T_0 .
- ulletEl sistema se encuentra aislado a la profundidad W
- •La Temperatura de la superficie se aumenta a T_I en t=0

Aislación perfecta

Número de Fourier

A medida que transcurre el tiempo:



Supongamos que el flujo de calor "promedio" desde que se impuso la temperatura T_1 hacia el sistema está dado por:

$$Q[\mathbf{W}] = k \cdot A \cdot \frac{T_1 - T_0}{W}$$

• Una vez que la temperatura en el extremo W ha alcanzado la temperatura $T_1 \rightarrow$ régimen estacionario, la cantidad total de calor ingresada al sistema debe ser:

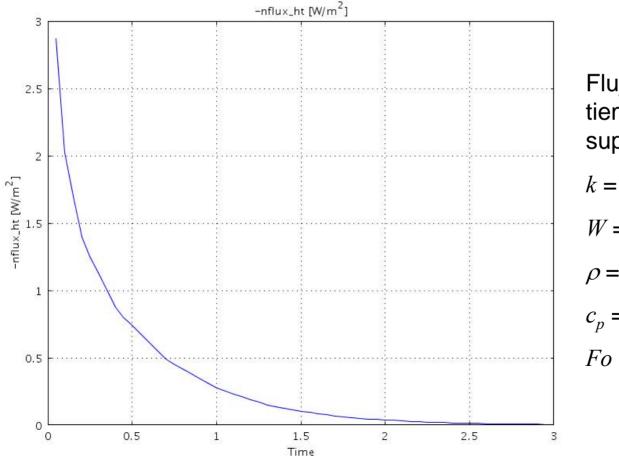
$$\Delta H[J] = m[kg] \cdot c_p \left[\frac{J}{kg \cdot K} \right] (T_1 - T_0)[K]$$
$$\Delta H[J] = c_p \cdot \rho \cdot A \cdot W \cdot (T_1 - T_0)$$

 La cantidad de energía ingresada debe igualar al flujo de calor por el tiempo necesario para lograr estado estacionario:

$$k \cdot A \cdot \frac{T_1 - T_0}{W} \cdot t = c_p \cdot \rho \cdot A \cdot W \cdot (T_1 - T_0)$$

Por lo tanto, para el flujo de calor hipotético: $c_n \cdot \rho = W^2$

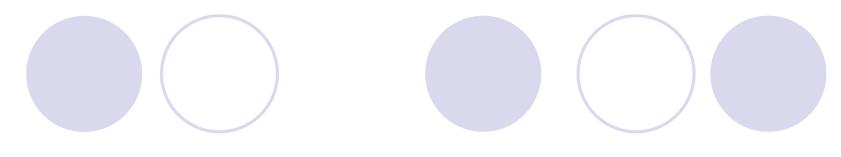
$$t = \frac{c_p \cdot \rho}{k} \cdot W^2 = \frac{W^2}{\alpha}$$


 Se define el tiempo adimensional dado por la última relación, como el número de Fourier (Fo):

$$Fo = \frac{\alpha \cdot t}{W^2}$$

- Al aumentar esta razón con el tiempo, significa que el estado estacionario se acerca.
- Si Fo<1, el proceso de conducción acaba de comenzar y no se ha alcanzado estado estacionario.

El estado estacionario se logrará si el flujo de calor a través del sistema es constante, en el caso de el ejemplo anterior debe ser =0.


Flujo de calor en el tiempo a través de superficie en x=0

$$k = 1 \text{ W/(m K)}$$

$$W = 1 \text{ m}$$

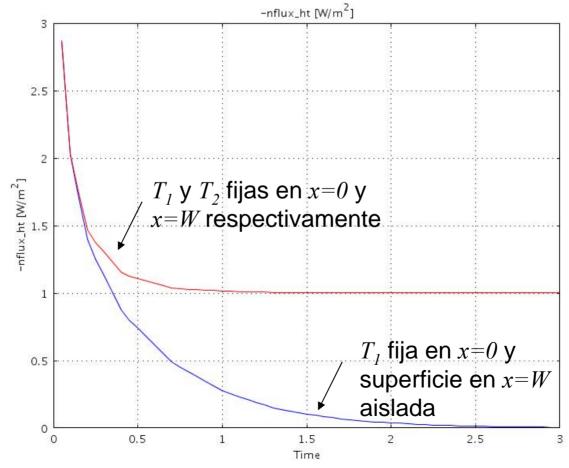
$$\rho$$
 = 1 kg/m³

$$c_p = 1 \text{ J/(kg K)}$$

 En realidad, para el caso descrito anteriormente, se ha establecido que el estado estacionario se logra cuando:

• Esta situación también es aplicable a una placa de ancho 2W y temperatura inicial T_0 y la temperatura de ambas caras es repentinamente cambiada a T_1 .

Caso con dos temperaturas fijas

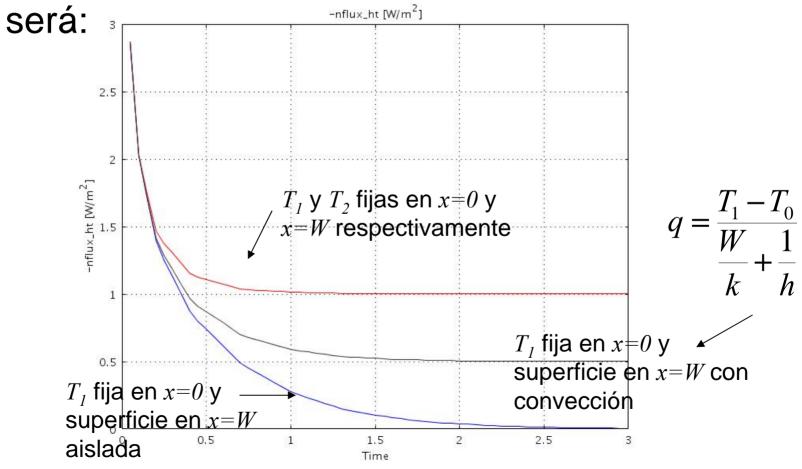

Si la temperatura se mantiene fija en ambos extremos, es decir $T=T_1$ en x=0 y $T=T_0$ en x=W. El flujo de calor en estado estacionario será:

$$q = k \frac{T_1 - T_0}{W} > 0, \quad T_1 > T_0$$

Caso con dos temperaturas fijas

El flujo de calor en función del tiempo en x=0

será:



Caso con convección en una superficie

- Supongamos que la temperatura inicial es T_0 , en x=0 se impone $T=T_1$ fija pata t>0 y la superficie en x=W está expuesta a convección con un coeficiente de transferencia de calor h y temperatura ambiente igual a T_0 .
- En estado estacionario tendremos:
- *q*=?
- Perfil de temperatura?
- Fo para lograr estado estacionario? Con respecto a los casos anteriores?

Caso con convección en una superficie

El flujo de calor en función del tiempo en x=0

Criterios para estado estacionario

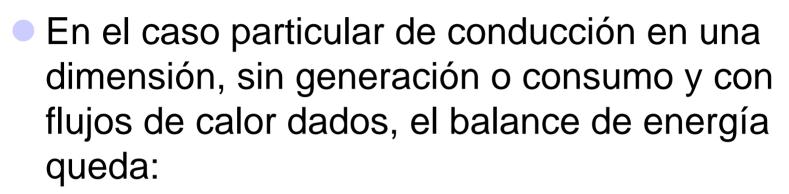
Placa o Bloque, situación:	Criterio para estado estacionario
Ancho W ; Un extremo aislado; una superficie con cambio de temperatura	$Fo = \frac{\alpha \cdot t}{W^2} \ge 2$
Ancho 2W; Ambas superficies expuestas al mismo cambio repentino de temperatura	$Fo = \frac{\alpha \cdot t}{W^2} \ge 2$
Ancho W ; Un lado mantenido a la temperatura inicial; Una superficie con cambio repentino de temperatura	$Fo = \frac{\alpha \cdot t}{W^2} \ge 1$
Ancho W ; Una superficie con cambio brusco de temperatura (T_0 a T_1), la otra superficie cambia de T_0 a T_W debido a convección en esa superficie	$Fo = \frac{\alpha \cdot t}{W^2} \ge 1 + \frac{T_W - T_0}{T_1 - T_0}$

5.2 Conducción no-estacionaria

 El balance de calor para un sistema transiente es:

Acumulación = Entrada + generación – salida - consumo

$$\frac{d(Calor)}{dt} = q_{in} + q_{gen} - q_{out} - q_{cons}$$



 El cambio de energía o calor de un sistema debido a cambios de temperatura está dado por:

$$d(Calor)[J] = m \cdot c_p \cdot dT = \rho \cdot V \cdot c_p dT$$

 Con capacidad calórica constante, la acumulación de calor en el tiempo debido a cambios de temperatura es:

$$\frac{d(Calor)}{dt} \left[\frac{\mathbf{J}}{\mathbf{s}} \right] = \rho \cdot V \cdot c_p \frac{dT}{dt}$$

$$\rho \cdot (A \cdot L) \cdot c_p \frac{dT}{dt} = A \cdot (q_{in} - q_{out})$$

$$\rho \cdot L \cdot c_p \frac{dT}{dt} = q_{in} - q_{out}$$

Ejemplo, conducción transiente 1D

 Durante el calentamiento de una muralla de 0.05 m de espesor, en algún momento, el flujo de calor hacia la muralla era de 200 W/m² y desde la muralla, 50 W/m². la densidad es de 750 kg/m³ y la capacidad calorífica, de 1250 J/(kg °C). Determine la tasa de calentamiento promedio de la muralla en ese momento.