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TI A practical implementation of silicon microchannel coolers for high

   power chips

SO IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES

AB This paper describes a practical implementation of a single-phase Si

   microchannel cooler designed for cooling very high power chips such as

   microprocessors. Through the use of. multiple heat exchanger zones and

   optimized cooler fin designs, a unit thermal resistance 10.5 C-mm(2)/W

   from the cooler surface to the inlet water was demonstrated with a

   fluid pressure drop of < 35 kPa. Further, cooling of a thermal test

   chip with a microchannel cooler bonded to it packaged in a single chip

   module was also demonstrated for a chip power density greater than 300

   W/cm(2). Coolers of this design should be able to cool chips with

   average power densities of 400 W/cm(2) or more.
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TI Parametric studies on automotive radiators

SO APPLIED THERMAL ENGINEERING

AB This paper presents a set of parametric studies performed on automotive

   radiators by means of a detailed rating and design heat exchanger model

   developed by the authors. This numerical tool has been previously

   verified and validated using a wide experimental data bank. A first

   part of the analysis focuses on the influence of working conditions on

   both fluids (mass flows, inlet temperatures) and the impact of the

   selected coolant fluid. Following these studies, the influence of some

   geometrical parameters is analysed (fin pitch, louver angle) as well as

   the importance of coolant flow lay-out on the radiator global

   performance. This work provides an overall behaviour report of

   automobile radiators working at usual range of operating conditions,

   while significant knowledge-based design conclusions have also been

   reported. The results show the utility of this numerical model as a

   rating and design tool for heat exchangers manufacturers, being a

   reasonable compromise between classic epsilon - NTU methods and CFD.

   (C) 2006 Elsevier Ltd. All rights reserved,

CR *ASHRAE, 1997, ASHRAE HDB FUND

   ACHAICHIA A, 1988, EXPT THERMAL FLUID S, V1, P147

   CHARYULU DG, 1999, APPL THERM ENG, V19, P625

   CHEN JA, 2001, J AUTOMOBILE ENG, V205, P911

   CHURCHILL SW, 1977, CHEM ENG, V84, P91

   ECKERT ERG, 1972, ANAL HEAT MASS TRANS

   ESCANES F, 1995, INT J NUMER METHOD H, V5, P781

   FESSLER TE, 1979, 1466 NAT AER SPAC AD

   FURUKAWA M, 1991, J THERMOPHYSICS, V5, P524

   GARIMELLA S, 2001, HEAT TRANSFER ENG, V22, P12

   GNIELINSKI V, 1976, INT CHEM ENG, V16, P359

   GOLLIN M, 1996, SAE TECHNICAL PAPER, P115

   HARVEY M, 2002, MATER WORLD, V10, P2

   HILSENRATH J, 1960, TABLES THERMODYNAMIC

   JUGER JJ, 1999, SAE TECHNICAL PAPER, P23

   LIN C, 2000, SAE TECHNICAL PAPER, P1

   OLIET C, IN PRESS HEAT TRANSF

   OLIET C, 2000, P 3 EUR C COMP METH, P1

   OLIET C, 2002, P 2002 INT REGR ENG, P1

   PEREZSEGARRA CD, IN PRESS HEAT TRANSF

   RICHARDS DR, 1984, 3769 NAT AER SPAC AD

SN 1359-4311

PD AUG

PY 2007

VL 27

IS 11-12

BP 2033

EP 2043

UT ISI:000247051700032

ER

PT J

AU Underwood, CP

   Spitler, JD

AF Underwood, C. P.

   Spitler, J. D.

TI Analysis of vertical ground loop heat exchangers applied to buildings

   in the UK

SO BUILDING SERVICES ENGINEERING RESEARCH & TECHNOLOGY

AB The work presented here deals with the design and performance of

   ground-source heat pumps and ground-sink cooling systems using vertical

   borehole arrays for commercial applications in the UK. Heating and

   cooling energy demands for a range of building and HVAC plant options

   are obtained by thermal modelling applied to four HVAC plant options:

   space heating only; heating with chilled ceilings; fan coil units and

   constant volume all-air plant. Ground loop designs are conducted for

   each system option using an impulse-response method and the parameters

   extracted from this are used in 10-year simulations of plant response

   which have been carried out using HVACSIM+. The 10-year time horizon

   was used to assess any degradation in earth temperature over time. The

   results show that a substantial reduction in energy (and, hence,

   carbon) can be expected of up to and exceeding 50% when using ground

   source heat pumps for winter heating with direct cooling in summer in

   association with moderate temperature cooling systems such as chilled

   ceilings. A degradation of earth temperature was evident with systems

   utilising limited cooling or no cooling but this did not appear to

   influence heat pump performance greatly.

   Practical Applications: Design and performance data for use in vertical

   ground loop (borehole) heat exchanger arrays providing source heat for

   heat pumps as well as direct cooling for buildings are generated and

   reported in this paper. The data should be of help to design

   practitioners for the sizing of borehole arrays for both heating and

   cooling. Design and performance matching to a wide variety of HVAC

   combinations, building energy demand levels and two contrasting sets of

   earth thermal property data are included so that practitioners will be

   able to select results that suit a range of modern applications. Also

   included are results of 10-year energy simulations that demonstrate the

   required design and operating conditions needed to ensure that initial

   undisturbed earth conditions will not drift with time to an

   unacceptable extent. Comparisons are made with conventional heating and

   cooling methods so that estimates of carbon savings due to the use of

   ground-coupled heat pumps with (and without) direct cooling can be made.
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TI Heat transfer as an important subject in waste-to-energy systems

SO APPLIED THERMAL ENGINEERING

AB Characteristics of heat transfer equipment and/or heat exchangers used

   in waste to energy systems and their specific features are described

   and discussed in the paper. A combination of intuitive design, know how

   and sophisticated approach based on up-to-date computational tools is

   shown. Concrete examples involve e.g. heat exchangers of heat recovery

   systems (especially air pre-heaters and heat recovery steam generators)

   of units for the thermal processing of wastes, their design,

   arrangement, optimization etc. An application of CFD (computational

   fluid dynamics) both for improved design and troubleshooting (e.g.

   elimination of fouling) is demonstrated. There is also shown an

   approach 'from idea to industrial applications' on an example of a new

   unit for the thermal processing of gas waste. Design of this original

   compact equipment consists in a convenient integration of combustion

   chamber and heat exchanger. Experimental as well as CFD approaches

   largely contributed to an optimum design and operation. (c) 2006

   Elsevier Ltd. All rights reserved.
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TI Improving heat exchanger designs

SO CHEMICAL ENGINEERING PROGRESS

AB This article defines and explains the factors that affect heat

   exchanger design margins. With the proper application of design

   margins, capital costs can be lowered and plant operation improved.
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TI An innovative ceramic high temperature plate-fin heat exchanger for

   EFCC processes

SO APPLIED THERMAL ENGINEERING

AB For heat exchanger applications needing extreme operation temperatures

   such as in the field of power generation or heat recovery a ceramic

   plate-fin heat exchanger is proposed, based on the "Offset Strip Fin"

   design. At first the principal selection of the materials and the

   environmental barrier coating (EBC) needed to protect the substrate

   from the aggressive flue gases is explained. Then a manufacturing

   process is described able to incorporate the EBC on all parts having

   contact to the flue gases. On the basis of a representative biomass

   fuelled externally fired combined cycle (EFCC) process with an

   electrical output of 6 MW the thermal design is presented resulting in

   a counter flow ceramic heat exchanger block of weight 4.0 t and surface

   area densities of 443 mm(2)/mm(3) on the flue gas side and 286

   mm(2)/mm(3) on the pressurized process gas side. To ensure the

   thermomechanical integrity investigations of both the steady state

   operation and the case of an emergency stop were investigated by means

   of finite element method (FEM). In the case of steady state operation a

   security factor of 8.5 was achieved. This demonstrates that the

   occurring stresses in both cases are controllable. (c) 2006 Elsevier

   Ltd. All rights reserved.
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TI Solid/vapour sorption heat transformer: Design and performance

SO APPLIED THERMAL ENGINEERING

AB A high temperature high lift solid sorption based heat transformer has

   been successfully designed and tested. The sorption reactor concept is

   based on a tube-fin heat exchanger where the heat exchanging fluids can

   flow through the hollow fins. The plates were brazed together with

   porous metal foam that was impregnated with either of the sorbents,

   LiCl and MgCl2. The adsorbate is ammonia. The batch system was tested

   as to the power delivered at high temperatures, 150-200 degrees C. Peak

   power at 200 degrees C was about 0.8 M, the average power about 0.4 kW.

   The thermal efficiency, COP, was calculated from the experimental

   results to be 0.11. This is only 40% of the expected theoretical value

   and can largely be attributed to the thermal mass of the reactor. (c)

   2006 Published by Elsevier Ltd.
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TI Field performance of an energy pile system for space heating

SO ENERGY AND BUILDINGS

AB This paper describes the field performance of air conditioning with an

   energy pile system, which was applied to the pile foundations of an

   actual building for the purpose of reducing the cost of the underground

   heat exchanger. First, the building for both office and residential

   use, for which a space heating and cooling system using friction piles

   was installed, was built in Sapporo in December 2000. Second, three

   tests were carried out to specify the design of a heat exchanger inside

   the pile, and a U-tube type underground heat exchanger was adopted from

   the viewpoint of energy efficiency and installation costs. Long-term

   space heating operation measurements indicated that the seasonal

   average temperatures of brine returning from the underground and pile

   surfaces were 2.4 and 6.7 degrees C, respectively. The average

   coefficient of performance for space heating was quite high at 3.9, and

   the seasonal primary energy reduction rate compared with a typical air

   conditioning system reached 23.2%. (c) 2006 Elsevier B.V. All rights

   reserved.
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TI Development and testing of two-stage evaporative cooler

SO BUILDING AND ENVIRONMENT

AB Evaporative cooling has been proved as an effective method of storage

   of fruits and vegetables of moderate respiration rates. Therefore, a

   modified evaporative cooler named two-stage evaporative cooler (TSEC)

   has been developed to improve the efficiency of evaporative cooling for

   high humidity and low temperature air conditioning. Two-stage

   evaporative cooler consists of the heat exchanger and two evaporative

   cooling chambers. The performance of cooler has been evaluated in terms

   of temperature drop, efficiency of the evaporative cooling and

   effectiveness of TSEC over single evaporation. The temperature drop

   through TSEC ranged from 8 to 16 degrees C. With the several

   observations for diurnal runs, it was observed that TSEC could drop the

   temperature up to wet bulb depression of ambient air and provided the

   90% relative humidity. Efficiency of single evaporation was 85-90%.

   Effectiveness of the two-stage evaporative cooling was found to be

   1.1-1.2 over single evaporation. The two-stage evaporative cooler

   provided the room conditions as 17-25 degrees C temperature and 50-75%

   relative humidity, which can enable to enhance the shelf-life of wide

   range of fruit and vegetables of moderate respiration rates. (c) 2006

   Elsevier Ltd. All rights reserved.

CR ANYANWU EE, 2004, ENERG CONVERS MANAGE, V45, P2187

   BALLANEY PL, 1972, REFRIGERATION AIR CO

   BINDIR UB, 1994, 12 WORLD C AGR ENG, P1039

   HANDENBURG RE, 1990, AGR HDB, V66, P130

   HELSEN A, 1991, CURRENT PRACTICE EUR, P169

   HISHAM ED, 2004, CHEM ENG J, V102, P255

   JAIN D, 1989, MODELLING SIMULATI B, V24, P1

   JAIN DL, 2002, ENERG CONVERS MANAGE, V43, P2235

   MEKONNEN A, 1994, AGR ENG, V49, P44

   ROY SK, 1994, LOW COST COOL CHAMBE, P393

   THOMPSON AK, 1996, POST HARVEST TECHNOL, P136

   TINDELL HD, 1983, VEGETABLES TROPICS

   UMBARKER SP, 1991, INDIAN J AGR ENG, V1, P26

SN 0360-1323

PD JUL

PY 2007

VL 42

IS 7

BP 2549

EP 2554

UT ISI:000245295900010

ER

PT J

AU Hwang, KM

   Jin, TE

   Kim, KH

AF Hwang, Kyeong Mo

   Jin, Tae Eun

   Kim, Kyung Hoon

TI A study on development of a plugging margin evaluation method taking

   into account the fouling of shell-and-tube heat exchangers

SO JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY

AB As the operating time of heat exchangers progresses, fouling caused by

   water-borne deposits and the number of plugged tubes increase and

   thermal performance decreases. Both fouling and tube plugging are known

   to interfere with normal flow characteristics and to reduce thermal

   efficiencies of heat exchangers. The heat exchangers of Korean nuclear

   power plants have been analyzed in terms of heat transfer rate and

   overall heat transfer coefficient as a means of heat exchanger

   management. Except for fouling resulting from the operation of heat

   exchangers, all the tubes of heat exchangers have been replaced when

   the number of plugged tubes exceeded the plugging criteria based on

   design performance sheet. This paper describes a plugging margin

   evaluation method taking into account the fouling of shell-and-tube

   heat exchangers. The method can evaluate thermal performance, estimate

   future fouling variation, and consider current fouling level in the

   calculation of plugging margin. To identify the effectiveness of the

   developed method, fouling and plugging margin evaluations were

   performed at a component cooling heat exchanger in a Korean nuclear

   power plant.
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TI Approximate design and costing methods for heat exchangers

SO HEAT TRANSFER ENGINEERING

AB Methodologies for the rapid sizing and costing of heat exchangers have

   been developed under the aegis of ESDU International plc, London. This

   paper is a summary of a group of design guides ( referred to as "data

   items") that cover a wide range of heat exchanger configurations. These

   data items are aimed at providing rapid selection, sizing, and costing

   at the process design stage. For two-stream exchangers, the C value

   method has been adopted in which the costs are expressed per unit (Q/

   Delta T-m), where. Q is the heat load and Delta T-m the mean

   temperature difference. The development and applications of this method

   are reviewed, with an emphasis on comparisons between various types of

   exchanger. The nature of variations from the standard cases considered

   are also discussed. Though the C value method can be applied to

   two-stream plate-fin exchangers, such exchangers often operate with

   multiple streams. Approximate calculations for the design of such

   multistream exchangers can be made using the concept of the volumetric

   heat transfer coefficient. This methodology can be combined with

   standard curves of the cost per unit volume as a function of volume to

   obtain an approximate costing of such exchangers.
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TI Analysis of effectiveness and pressure drop in micro cross-flow heat

   exchanger

SO APPLIED THERMAL ENGINEERING

AB A theoretical model that predicts the thermal and fluidic
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   this study. The theoretical model is validated by comparing the
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   Ltd. All rights reserved.
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AB An overview is given of recent high temperature heat exchangers

   technology developments, both in the thermal-fluid dynamic innovative

   solutions and in the materials. Gas turbine recuperative cycles,

   microturbine systems, indirectly fired cycles and high temperature gas

   cooled nuclear reactors are the investigated fields where this kind of

   heat exchangers is used. Some common technological features join all of

   them, namely: new surface geometry design and burdensome material

   requirements. The most important difficulties arising from the specific

   conditions of each heat exchange system are pointed out, together with

   their possible solutions. A comparison among them is presented and some

   suggestions are proposed about expanding the boundaries of the

   individual research fields, to get a wider understanding of common

   critical issues. Finally, the paper focuses on the main current

   challenges to be faced in the near future in order to get a competitive

   development of such systems. (c) 2006 Elsevier Ltd. All rights reserved.
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AB In this paper the thermal model given by Ghoshal and Tiwari has been

   validated by round-the-year experimental work at IIT Delhi, New Delhi

   (28 degrees 35'N, 77 degrees 12'E), India. The correlation coefficient

   and root-mean-square percentage deviation have been computed for each

   month for validation of the thermal model. The values are 0.99% and

   4.24% for the greenhouse temperature with an earth-air heat exchanger

   (EAHE) in the month of January. Statistical analysis shows that there

   is fair agreement between predicted and experimental values. An effort

   has also been made to optimize the working hours of an EAHE to obtain

   maximum heating/cooling potential. The non-operational hours of an EAHE

   are 252 and 279 for February and March months, respectively. The

   maximum value of heating potential (11.55MJ) and cooling potential

   (18.87MJ) has been found during off sunshine (8 pm-8 am) hours and peak

   sunshine hours (8 am-8 pm), for a typical day in the month of January

   and June. (c) 2005 Elsevier Ltd. All rights reserved.

CR ABAK K, 1994, ACTA HORTIC, V369, P149

   BARGACH MN, 2000, RENEW ENERG, V20, P415

   COFFIN W, 1985, ISES C MONTR, P611

   CONNELLAN G, 1986, P SOL EN SOC ATL GA

   GHOSAL MK, 2005, ENERG BUILDINGS, V37, P613

   JAIN D, 2003, ENERG CONVERS MANAGE, V44, P1357

   SANTAMOURIS M, 1994, SOL ENERGY, V52, P371

   SANTAMOURIS M, 1995, SOL ENERGY, V55, P111

   SHUKLA A, 2005, IN PRESS BUILD ENV

   SINGH RD, 2000, ENERG CONVERS MANAGE, V41, P505

   SNATAMOURIS M, 1996, ENERGY, V52, P353

   SODHA MS, 1985, BUILD ENVIRON, V20, P115

   THANU NM, 2001, SOL ENERGY, V71, P353

   TIWARI GN, 1986, ENERGY CONVERSION MA, V26, P71

   TIWARI GN, 1998, ENERG BUILDINGS, V28, P241

   TIWARI GN, 2003, GREENHOUSE TECHNOLOG

SN 0960-1481

PD DEC

PY 2006

VL 31

IS 15

BP 2432

EP 2446

UT ISI:000241213700004

ER

PT J

AU Franco, A

   Giannini, N

AF Franco, Alessandro

   Giannini, Nicola

TI A general method for the optimum design of heat recovery steam

   generators

SO ENERGY

AB The optimization of the heat recovery steam generator (HRSG) is one of

   the key elements for increasing the efficiency of combined plants.

   According to the current technical practice, it can be organized at

   different levels of complexity with objectives sequentially defined:

   operating parameters, geometrical details and technological elements.

   According to this point of view, in the paper a complete strategy for

   the optimum design of the HRSG is outlined. The optimization is

   organized at two levels: the first one enables to obtain the main

   operating parameters of the HRSG, while the second involves the

   detailed design of the component concerning the geometric variables of

   the heat transfer sections. The output of the first-level optimization

   is the input of the second level. In particular, the second level of

   the optimization can be articulated in two different steps. The first

   step can be aimed to the minimization of the pressure drop for a given

   heat flow. The second step leads to a reduction of the overall

   dimensions, maintaining the imposed performance of the HRSG in terms of

   heat flow and pressure drop. The whole procedure is tested with

   reference to a case of existing HRSG structures; it shows the

   possibility of improving performance maintaining a constrained packaged

   size. (c) 2006 Elsevier Ltd. All rights reserved.
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AB Within the framework programs of the EU for Efficient and

   Environmentally Friendly Aero-Engines (EEFEA) MTU has developed a

   highly efficient cross-counter flow heat exchanger for the application

   in intercooled recuperated aeroengines. This very compact recuperator

   is based on the profile tube matrix arrangement invented by MTU and one

   of its outstanding features is the high resistance to thermal

   gradients. In this paper the combined thermomechanical design of the

   recuperator is presented. State-of-the-art calculation procedures for

   heat transfer and stress analysis are combined in order to perform a

   reliable life prediction of the recuperator. The thermal analysis is

   based upon a 3D parametric finite element model generation. A program

   has been generated, which allows the automatic generation of both the

   material mesh and the boundary conditions. Assumptions concerning the

   boundary conditions are presented as well as steady state and transient

   temperature results. The stress analysis is performed with a FEM code

   using essentially the same computational grid as the thermal analysis.

   With the static temperature fields the static loading of the profile

   tubes is determined. From transient thermal calculations successive 3D

   temperature fields are obtained which enable the determination of creep

   life and LCF life of the part. Finally, vibration analysis is performed

   in order to estimate the vibration stress of the profile tubes during

   engine operation. Together with the static stress a Goodman diagram can

   be constructed. The combined analysis shows the high life potential of

   the recuperator which is important for economic operation of a

   recuperative aero-engine.
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