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■ Abstract For native and engineered biological tissues, there exist many physio-
logical, surgical, and medical device applications where multiaxial material character-
ization and modeling is required. Because biological tissues and many biocompatible
elastomers are incompressible, planar biaxial testing allows for a two-dimensional
(2-D) stress-state that can be used to fully characterize their three-dimensional (3-D)
mechanical properties. Biological tissues exhibit complex mechanical behaviors not
easily accounted for in classic elastomeric constitutive models. Accounting for these
behaviors by careful experimental evaluation and formulation of constitutive models
continues to be a challenging area in biomechanical modeling and simulation. The
focus of this review is to describe the application of multiaxial testing techniques to
soft tissues and their relation to modern biomechanical constitutive theories.
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1. INTRODUCTION

There exist many physiological, surgical, and medical device applications where
rigorous soft tissue constitutive models are required. For biological materials,
particular challenges in constitutive (stress-strain) modeling are encountered due
to their complex mechanical behavior. For example, because of their oriented
fibrous structures, they often exhibit pronounced mechanical anisotropy, nonlinear
stress-strain relationships, large deformations, viscoelasticity, poroelasticity, and
strong mechanical coupling. Taken as a whole, soft biological tissues defy simple
material models.

Early biomechanical investigations of biological tissues were confined to
uniaxial studies because of the difficulties in controlling two- (2-D) or even three-
dimensional (3-D) boundary conditions. Due to the presence of mechanical aniso-
tropy, uniaxial data cannot be used for parameter estimation in generalized 3-D
constitutive equations, even if multidimensional strain data from the uniaxial exper-
iment are available. There have also been investigations using inflation of circular
membranes, which, under the assumption of isotropy, can provide the necessary
experimental data (1, 2). Virtually all tissues are mechanically anisotropic; hence,
this method cannot be generally applied. Further, when attempting to determine
material constants for complex nonlinear constitutive models, testing methods are
required that include comprehensive testing protocols that allow large variations
in stress and strain states for accurate material parameter estimation (3).

For incompressible or nearly incompressible materials, biaxial mechanical test-
ing can be used to obtain the material parameters for 3-D constitutive models. Bi-
axial testing of techniques was originally developed for studies of rubber elasticity
(4, 5). In 1948, Treloar (4) pioneered techniques to apply two independently vari-
able strains in two perpendicular directions with simultaneous measurement of the
stresses. In 1951, Rivlin (5) developed a modified biaxial device that allowed for
applied biaxial loads to rubber sheets, which allowed more precise experimental
control. Using this device, Rivlin developed an integrated theoretical-experimental
methodology in which the constitutive form could be derived and evaluated directly
from multiaxial experimental data. This approach, and those that followed, greatly
clarified the complex mechanical behavior of rubber, which can be confounded
by such factors as material instabilities, physical aging, and Mullin’s effect.

Biaxial experiments on soft biological tissues are generally difficult to perform
and present challenges unique to biological tissues. Just a few of the experimental
problems include small specimen sizes, structural and compositional heterogene-
ity, difficulty in gripping (without doing damage), dramatic effects of different
gripping techniques (St. Venant–like effects), difficulty in precisely identifying
material axes, difficulty in assuring constant forces along specimen edges, large
specimen-to-specimen variability, and time-dependent changes due to biological
degradation. In addition, a question of homogeneity of deformation within the
specimen is paramount. These issues can often frustrate the application of even
the most straightforward attempts to develop a constitutive model.
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Biaxial testing devices have to be much more elaborate than uniaxial ones
because of the need to control two boundary conditions. In particular, the edges
must be able to expand freely in the lateral direction, and in the central target region
the stress and strain states should be uniform so that data analysis can be performed
simply. The target region must be small and located away from the outer edges to
avoid the effects of specimen grips or tethers. Strain is measured optically to avoid
any mechanical interference.

In addition to the above experimental issues, relating the observed mechanical
response to tissue structure is perhaps more paramount than in other traditional
material applications where the continuum scale is usually, at most, the size of
large polymer molecules. In contrast, biological soft tissues are comprised of a
dense network of collagen and elastin fibers, which indicates a continuum scale
of typically ∼1 µm. In addition, the fibers can undergo large rotations and ex-
hibit nonlinear stress-strain behavior that can induce complex behaviors at the
macro scale not easily accounted for in classic material models. Accounting for
these behaviors in both experimental evaluation and formulation of appropriate
constitutive models continues to be challenging.

The focus of this review is the application of multiaxial (primarily biaxial) test-
ing techniques to soft tissues and their relation to relevant biomechanical constitu-
tive theories. Although not an exhaustive review, major works of all investigators
utilizing biaxial testing techniques for biological tissues known to the authors have
been included. Finally, because biaxial testing and constitutive modeling has been
the focus of much of the authors’ recent work, the majority of the review focuses
on the results of their studies.

1.1. A Note on the Notation System and Mechanics Theory

In general, the direct tensor notation adopted by Spencer (6) is followed. Here,
tensors and vectors are represented using bold characters (e.g.,F), whereas scalars
are presented as normal text. Indicial notation is avoided for clarity of presentation.
All mathematical operations are expressed in their equivalent matrix forms so that
readers unfamiliar with tensor mathematics but who have a basic mathematical
knowledge can follow the text. For those readers interested in a more comprehen-
sive theoretical explanation of finite stress and strain tensors as well as relevant
constitutive theories, please refer to (7–9).

2. BIAXIAL TESTING: KINEMATICS AND STRESSES

2.1. Basic Techniques for Biaxial Testing of
Soft Biological Materials

In general, biaxial testing of biological tissues is performed using thin specimens,
which are either a membrane in its native form or a thin section prepared from a
thick tissue slab. The specimen is mounted to the biaxial device in trampoline-like
fashion using thin threads, which allows the edges to expand freely in the lateral
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Figure 1 (a) Schematic of a biaxial testing device; (b) schematic of a biaxial spec-
imen; and (c) a biaxial test specimen overlaid on a gray-scale representation of the
degree of collagen fiber alignment using an orientation index (OI), demonstrating high
uniformity of both fiber preferred directions and OI, along with the definition of the
PD and XD axes.

direction (Figure 1a). Testing is generally performed with the specimen completely
immersed in phosphate-buffered normal saline (pH 7.4) at room temperature or
body (37◦C) temperature. The central target region must be sufficiently small
and located away from the outer edges to avoid the tethering effects (Figure 1a).
Thus, in the central target region the stress and strain field is generally considered
homogeneous.

2.2. Kinematics of a Biaxial Test

The following is a brief summary of the most important aspects of the kinematics
of a biaxial mechanical test. For further details, the interested reader is referred to
(7). We first consider the following homogeneous (i.e., independent of position)
biaxial deformation:
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x1 = λ1X1 + κ1X2, x2 = λ2X2 + κ2X1, x3 = λ3X3, (1)

where x and X are position vectors representing the locations of material particles
in the reference and deformed states, respectively, andλi are the axial stretch ratios
andκ i measures of in-plane shear.λi andκ i are also components of the deformation
gradient tensorF, which for deformation, as described in Equation 1, is

F =


∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 =
λ1 κ1 0
κ1 λ1 0
0 0 λ3

 . (2)

F is a critical mathematical quantity because it completely describes the deforma-
tion state. Because soft tissues are comprised primarily of water and have negligible
permeability (8), they can be considered incompressible, so that J= detF= 1.
From F, the right Cauchy-Green deformation tensor is defined asC= FT · F,
from which the components of the in-plane Green-Lagrange strain tensorE=
1/2(C − I ), where I is the identity tensor.E is the most common finite strain
measure in the soft tissue literature due to the simplicity of the constitutive for-
mulations. In practice, the components ofE are computed more directly using the
following:

E11 = 1

2

(
λ2

1 + κ2
2 − 1

)
, E12 = 1

2
(λ1κ1 + λ2κ2) ,

E22 = 1

2

(
λ2

2 + κ2
1 − 1

)
. (3)

As mentioned above, the components ofF are determined optically to avoid
any mechanical interference with the specimen. This is typically done by tracking
the position of markers mounted on the upper specimen surface that delimit the
central target region using optical tracking software (10, 11) (Figure 1a). In both
our laboratory (10) and in others (12, 13), finite element shape functions are used
to approximate the position vector field within the central target regions. This can
include linear and quadratic variations in strain (14).

2.3. Forces and Stress

As mentioned above, biaxial testing of biological tissues are performed using
thin specimens (no more than∼3 mm, usually<1 mm) and acted on by only
in-plane loads. A state of plane stress is thus assumed so that the components
ti3(i = 1, 2, 3) of the Cauchy stresst (force/deformed area) are 0. Practically,
during actual experiments, one can measure the initial specimen dimensions so
that the Lagrangian stressesT (force/unit original cross-sectional area) are used for
convenience. The components ofT are computed from the measured axial forces
P using:

T11 = P1

h L2
, T22 = P2

h L1
, (4)
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where h is the specimen thickness and Li is the specimen length (Figure 1b).
Because experimentally applied loads are normal to the edges, T12= T21= 0.
The second Piola-Kirchhoff stress tensorS is the most commonly utilized stress
tensor for soft tissue constitutive theories and is determined usingS = T F−1. The
Cauchy stress tensort is determined usingt = F T/J, which in component form
are given by (with T12= T21= 0):

t11 = λ1 T11, t22 = λ2 T22, t12 = κ1 T22, t21 = κ2 T11. (5)

In the case where there is negligible shear strain (i.e., E12∼ 0), the normal com-
ponents of the first and second Piola-Kirchoff stress tensors are related by:

S11 = T11/λ1, S22 = T22/λ2. (6)

3. ISOTROPIC ELASTOMERS

Perhaps the best way to introduce characterization and modeling for the multiaxial
behavior of soft tissues is to summarize the pioneering work on elastomers of
Treloar (4) and Rivlin (5, 15, 16). In addition to describing methods for multiaxial
testing and modeling, the integrated mathematical-experimental approach of Rivlin
is an excellent example on how to conduct material modeling in general. For
this class of materials, we assume they are hyperelastic, which is defined as the
existence of a strain energy function W= W(F). W completely describes the
change in internal (mechanical) energy of the material due to the application of
external forces.

Because elastomeric materials are assumed to be isotropic, W is assumed be a
function of the following strain coordinate invariants I1 and I2, defined as:

I1 = trC = trB

I2 = 1

2
[(trC)2 − trC2] = 1

2
[(trB)2 − trB2], (7)

C = FTF, B = FFT,

whereC andB are known as the right and left Cauchy-Green deformation tensors,
respectively (6). In this formulation, W is thus still a function ofF, but it is restricted
to isotropic materials through the coordinate invariance of I1 and I2. When there is
no shear,κ1 = κ2 = 0.

Rivlin et al. (5) developed the following generalized strain energy formulation:

W =
∞∑
i=0

∞∑
j=0

Cij (I1 − 3)i (I2 − 3)j , C00 = 0, (8)

where Cij are material constants to be determined by fitting the model to experimen-
tal data. In most practical applications, the upper limits for the sums in Equation
8 are I= j = 3. For the homogenous deformation described by Equation 1, the
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general constitutive model for isotropic elastomeric materials with W= W(I1, I2)
is expressed as (16):

t(ii) = 2

(
λ2

i
∂W

∂I1
− 1

λ2
i

∂W

∂I2

)
+ p, i = 1, 2, 3, (9)

where p is a Lagrange multiplier that physically represents an arbitrary hydrostatic
pressure, and the (ii) subscript indicates no component summation.

In addition to handling incompressibility explicitly using the Lagrange multi-
plier approach, one can also take advantage of the boundary conditions of a biaxial
test to re-express the normal Cauchy stress components. Specifically, with t33= 0
(upper and lower surfaces are traction free) and employingλ1λ2λ3= 1 to impose
incompressibility, the two remaining Cauchy components are

t11 = 2

(
λ2

1−
1

λ2
1λ

2
2

)(
λ2

1
∂W

∂I1
− 1

λ2
2

∂W

∂I2

)
(10)

t22 = 2

(
λ2

2−
1

λ2
1λ

2
2

)(
λ2

2
∂W

∂I1
− 1

λ2
1

∂W

∂I2

) ,

,

where the partial derivatives∂W/∂I1 and∂W/∂I2 are the response functions. Rather
than assume an a-priori form, Rivlin noted that response functions can be deter-
mined directly from the experimental measured variables using

∂W

∂I1
=

λ2
1t11

λ2
1− 1

λ2
1λ

2
2

− λ2
2t22

λ2
2− 1

λ2
1λ

2
2

2
(
λ2

1− λ2
2

) ∂W

∂I2
=

t11

λ2
1− 1

λ2
1λ

2
2

− t22

λ2
2− 1

λ2
1λ

2
2

2
(
λ2

2− λ2
1

) . (11)

Thus, by conducting constant invariant biaxial tests the functional form of W
can be directly determined from the experimental data. This approach can avoid
much of the ambiguity inherent in constitutive modeling of elastomeric materials.
This problem should not be underestimated because other than the statement of
the basic form W= W(F), there are no other general theoretical restrictions to
guide the form of W as in linear elasticity.

4. FIRST BIAXIAL MECHANICAL STUDIES
OF BIOLOGICAL TISSUES

4.1. Fung and Coworkers

The first investigators to develop and utilize planar biaxial testing for soft biological
tissues were Lanir & Fung in 1974 (17, 18), who investigated the mechanical prop-
erties of rabbit skin. Briefly, a 3-cm to 6-cm square skin specimen was mounted in
a trampoline-like fashion with up to 68 individual attachments distributed equally
over the four specimen sides (17/side). Similar to Rivlin (5), the tension on each
line could be individually adjusted to insure a reasonably uniform stress was
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applied to each specimen side. Actuator motion was controlled utilizing a function
generator. To avoid the effects of local stress concentrations of the suture attach-
ments, bidirectional tissue strain was measured in a central region by monitoring
the distance between pairs of lines separated by∼5 mm along each axis video
dimensional analyzers (VDAs) (19). Briefly, a VDA is an electronic device the
works with a video camera signal to convert the distance between two dark-light
or light-dark transitions in the image to a linearly proportional voltage, which can
be recorded and converted to displacement. Typically, soft tissues are light in color
so that the distance between dark lines applied to the tissue surface are tracked in
real time. The advantage of the VDA is that it allows for noncontacting, real-time
displacement measurements directly using conventional video. For biaxial studies,
Lanir & Fung utilized two orthogonally positioned VDAs with a common optical
path to allow for simultaneous, synchronized displacement measurements along
each stretch axis.

Experimental results demonstrated that skin exhibited a nonlinear, orthotropic
stress-strain response, whose material axis depended on the specimen’s anatomic
orientation. Although differences between the loading and unloading curves were
observed due to hysteresis, the loading and unloading stress-strain responses were
essentially independent of strain rate. It is important to note that these results
underscore the major phenomenon found in all subsequent biaxial mechanical
investigations of soft planar tissues.

Based on these experimental observations and data, Tong & Fung (20) used the
above biaxial data to develop a constitutive model. Because of the insensitivity
to strain rate, separate pseudo strain-energy functions could be developed for the
loading and unloading phases of the stress-strain curve (8). Thus, for the loading
and unloading phases. the in-plane second Piola-Kirchhoff stresses are derived
from a 2-D strain energy function W:

Sij = ∂W

∂Eij
. (12)

For the form of W, Tong & Fung observed from the experimental data that the
stress-strain curves had a very shallow slope followed by an abrupt transition to
a very high stiffness. Due to this biphasic-like behavior, they started with the
generalized form:

ρ0 W = 1

2

(
α1E2

11+α2E2
22+α3

(
E2

12+E2
21

) + 2α4E11E22
)

+
[

c

2
exp

(
a1E2

11+ a2E2
22+ a3

(
E2

12+ E2
21

)+ 2a4E11E22

+ γ1E3
11+ γ2E3

22+ γ4E2
11E2+ γ5E11E2

22

)
− 1

]
, (13)

whereρ0 is the initial tissue density;αi, ai, andγ i are material constants, and Eij

is the Green strain tensor. This form is able to model both the low- (first term on
the right-hand side) and high-stress (second term on the right-hand side) regions
of the stress-strain curve.
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In practice, Equation 13 contains many more terms than is actually necessary
to model the stress-strain curve. For all practical purposes, theαi andγ i terms
are not necessary to obtain a satisfactory fit to the majority of the stress-strain
curve, especially the higher stress regions. Thus, Equation 13 can be reduced to
the “Fung” type (which incidentally was found to fit the data almost as well):

ρ0 W = c

2
(eQ − 1), (14)

where Q= cijklEijEkl. In practice, in biaxial testing, the shear strain E12 is nearly
zero, so that Equation 14 can be written as:

ρ0 W = c

2

[
exp

(
a1E2

11 + a2E2
22 + 2a4E11E22

) − 1
]
. (15)

This is perhaps the most broadly used constitutive model to date for the biaxial
response of soft biological tissues (as well as other loading states), including skin
(20), pericardium (21), epicardium (22), visceral pleura (23), and myocardium
(see below).

One of the difficulties in applying Equation 14 to biological tissue is the high
amount of interspecimen variability, which, in turn, translated into wide variability
in material parameter values. The sources of variability have been attributed to
experimental noise, numerical instability of the fitting algorithms resulting from
the nonlinearity of Equation 14, and strain history dependence of the tissue. These
problems can confound the ability to obtain a unique set of material constants
either for a given specimen or a class of biomaterials. Further, the residuals in
nonlinear regression may not be normally distributed, disallowing conventional
statistical analysis.

In their study of canine pericardium, Yin et al. (24) developed a statistical-based
approach to assess the sources of and account for the variability in material con-
stants in describing biaxial stress-strain data. Using experimental data for canine
pericardium (21), they determined a strain energy function (including exploring the
use of noninteger powers of the Green strain). They performed a residual analysis
to determine if standard statistical methods could be used to assess the variability,
and if not, then they used nonparameteric methods (bootstrapping). Using a five-
parameter exponential strain energy function, pericardial tissue was found to be
strain-history dependent and anisotropic, which could not be attributed to either
experimental noise or instability in the numerical algorithms.

4.2. Vito and Coworkers

Another group active in the developing multiaxial constitutive relationships was
Vito and coworkers. Among the technical improvements of their device were
the use of multiparticle tracking to allow computation of the complete in-plane
strain tensor and the use of real-time computer control (25). Perhaps their main
contribution was the development of a technique to identify the specimen’s material
axis (3). Generally, identification a material axis is based on observations of the
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gross specimen shape (e.g., long axis of a blood vessel) or gross fiber architecture
(e.g., myocardium). However, in many tissues, the fibers are too small to be visually
observed, and up to the time of the study there were no rapid, nondestructive
techniques for quantification of fiber architecture.

In Choi & Vito’s technique, they identified the material axis by determining
which directions, when loaded to the same stress, demonstrated the greatest and
least strain values. To demonstrate their approach, Choi & Vito (3) utilized canine
pericardium, a thin membrane that surrounds the heart. The pericardium func-
tions to restrict excessive dilation of the heart during filling; is involved with the
hemodynamic interaction of the heart’s right and left ventricles; and in humans,
provides mechanical support to the diaphragm. It is comprised primarily of colla-
gen, a fibrous protein (the most common in the body) that possesses high tensile
strength, and is thus found in tissues that require significant mechanical strength
or provide structural support. To determine the orientation of the material axes,
round pericardial tissue specimens were prepared, with opposing pairs of small
clamps placed throughout the specimen’s perimeter in 15◦ increments. For each
opposing pair, the specimen was preloaded, and two marks were made aligned to
the stretch axes. This procedure was repeated for each successive attachment pair.
When fully unloaded, the markers produced an ellipsoidal pattern whose semiaxes
were aligned to the material axes.

To perform the biaxial tests, a square biaxial test specimen was cut from the
original circular specimen, with edges aligned parallel and perpendicular to the
material axis as determined above. Multiple test protocols were used to obtain
stress-strain data under multiple loading states. Practically, this was accomplished
using constant ratios of strain or stress during each protocol, with a sufficient
number of protocols and ratios chosen to cover the complete E11-E22 or S11-S22

plane. Choi & Vito (3) then used the following strain energy function for the canine
pericardium biaxial mechanical data:

ρ0 W = b0
[
exp

(
b1E2

11

) + exp
(
b2E2

22

) + exp(2b3E11E22) − 3
]
, (16)

where bi are material constants. They demonstrated that when data from a single test
protocol was used to determine the values for bi, different values were obtained for
each protocol. Only when the data from all protocols was used simultaneously were
the “true” material constants obtained for the specimen. This was shown to be due
to the presence of multiple collinearities due to the use of constant E11:E22or S11:S22

ratios. This concept was extended to the multiaxial testing of blood vessels (26).
Although the values for the bi were rigorously obtained and the model was

shown to work well under strain control tests, it did not work as well under load
control tests. The reason underlying this disagreement is at present unknown and
suggests a need for experimental and theoretical investigations of constitutive theo-
ries that can better handle mixed boundary conditions. Another problematic finding
with canine pericardium is the substantial variability in both degree of anisotropy
(varying from quasi-isotropic to moderately anisotropic), which translated into
significant interspecimen variability in material constants. Thus, although reliable
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material parameters for Equation 16 may be reliably obtained for an individual
specimen, generic material parameters for canine pericardium could not be ob-
tained. This problem was addressed by Sacks (10) and is described in detail in
Section 5.1.

4.4. Alternative Approaches to Determining
Strain Energy Functions

Although based on rigorous experimental data and able to capture the 2-D in-plane
biaxial response well, the constitutive models described above present certain
difficulties both in terms of their form and parameter determination. In particu-
lar, although based on fundamental mechanics principals, there is no additional
knowledge to guide the particular choice of form of the model and it is somewhat
arbitrary. Models are generally evaluated for the degree of overparameterization
using comprehensive statistical methods [e.g., (24)] and subsequently modified,
generally in the reduction of the number of parameters.

Following methods analogous to those developed by Rivlin et al. for rubber
elasticity (5), Humphrey et al. developed a new functional form for myocardium
biaxial mechanical properties. In this approach, Humphrey defined a subclass of
transversely isotropic materials that are a function of two strain invariants (27):

W=W(I1, I4), (17)

where I1 and I4 are the first and fourth strain invariants, with I4 = α2 whereα
is the stretch ratio along the muscle fiber direction. Similar to the approach by
Rivlin, this form allows determination of the dependence of W1 and Wα on I1 and
α directly from the experimentally obtained stress and deformation data (27):

2W1 = ξ4t11− ξ2t22

ξ1ξ4− ξ2ξ3
Wα = α

ξ1t22− ξ3t11

ξ1ξ4− ξ2ξ3
, (18)

where W1= ∂W/∂I1; Wα= ∂W/∂α; tij are the physical components of the Cauchy
stress tensor; and

ξ1 = λ2
1 + κ2

1 − λ2
3

ξ2 = λ2
1 cos2 (θ ) + 2λ1κ1 cos(θ ) sin(θ ) + κ2

1 sin2 (θ )

ξ3 = λ2
2 + κ2

2 − λ2
3

ξ4 = κ2
2 cos2 (θ ) + 2λ2κ2 cos(θ ) sin(θ ) + λ2

2 sin2 (θ )

ξ5 = κ1λ2 + κ2λ1

ξ6 = λ1κ2 cos2 (θ ) + ( λ1λ2+ κ1κ2) cos(θ ) sin(θ ) + κ1λ2 sin2 (θ ) , (19)

whereλi andκ i are components of the deformation gradient tensor andθ is the
fiber angle with respect to the x1 axis. Next, based on experimental plots of W1
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and Wα versus I1 andα, they assumed the following functional form for W(I1, α):

W (I1, α) =
n∑

i=0

m∑
j=0

cij (I1 − 3)i (α − 1)j , (20)

where cij are material parameters. The interested reader is referred to (27) for
details of the derivation.

To apply this approach, Humphrey et al. (27) modified their biaxial testing
device to perform constant strain invariant tests. From the experimental data gen-
erated, plots of W1 and Wα versus either I1 varied andα held constant or I1 held
constant andα varied were generated using Equations 18 and 19. Based on the
resulting response functions as well as theoretical restrictions on the values of cij

[e.g., at zero strain W(3, 1)= 0, requiring c00= 0], the following form for passive
myocardium was derived:

W (I1, α) = c1(α − 1) + c2α − 1)3 + c3(I1 − 3)

+ c4(I1 − 3)(α − 1) + c5(I1 − 3)2, (21)

where ci are the material constants. In obtaining the material constants, additional
empirical inequalities were applied to set bounds on the values for ci.

The constant invariant tests used to derive Equation 21 require that the tis-
sue specimen be subjected to simultaneous loading and unloading, which strictly
violates pseudoelasticity (8). Thus, only data from the loading portion of the equi-
biaxial strain and constantα tests were used to determine values for ci. The data
from constant I1 tests were used only to find the functional form, and were hence
excluded because the tissue experiences simultaneous loading and unloading dur-
ing these tests. The resulting model was found to fit the biaxial data quite well,
and was also found not to be overparameterized (28). The results also emphasized
the need for good data, including accurate measurement of the applied forces,
original dimensions, and experimental deformations. Sacks & Chuong (29) later
successfully applied Equation 21 to right ventricular myocardium, where the ef-
fects of a fiber splay within the specimen were incorporated. May-Newman also
applied a similar approach to the biaxial mechanical properties of the mitral valve
(30). It is also interesting to note that the overall approach of using theoretically
guided experiments is not restricted to the form of Equation 20, but also has been
successfully applied to the epicardium (a thin connective tissue layer surrounding
the heart) (22) using the Fung model (Equation 14) and constant E11 and E22 tests.

Clearly, the strength of the above approach is that it allows derivation of func-
tional form of W to be rigorously based on direct evaluation of the experimental
data. This avoids the limitations of the trial-and-error approach of earlier work
and is an elegant example of how theory and experiment can be successfully in-
tegrated. In principal, the approach can be applied to specimens where there is
a nonzero distribution of fiber orientations. However, the lead author has found
the model to be weakly dependent with respect to transmural layer orientations,
potentially due to transverse isotropy assumption (M.S. Sacks, unpublished data).
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More detailed, realistic interlayer models may need to be developed. Further, in
order to determine the form of W, strict pseudo-elasticity must be violated (i.e.,
the tissue must be subjected to simultaneous loading and unloading protocols).
Although the loading and unloading curves are qualitatively similar, differences
do exist and may influence the sensitivity and final choice of the form.

5. RECENT DEVELOPMENTS

5.1. Control of Specimen Structure

A reoccurring difficulty in many of the above studies, particularly for collagenous
tissues such as skin and pericardium, is the substantial degree of interspecimen
variability. This variability underscores the need to determine the source of the
underlying biological variability for accurate and meaningful determination of
material constants. This is a particular problem when using biologically derived
tissues in medical devices (e.g., bioprosthetic heart valves), where accurate consti-
tutive models are essential for device design, determining effects of novel chemical
treatments, and understanding the simulation of fatigue damage. One such tis-
sue is chemically treated bovine pericardium: Although mechanically anisotropic
(31, 32), there is no evidence that bioprosthetic heart valves are constructed to
accommodate or take advantage of this anisotropy in a systematic way. Finite ele-
ment stress analyses of bioprosthetic heart valves suggest that high flexural stresses
during valve opening and high tensile stresses during valve closure are associated
with failure locations (33–35). Their accuracy, however, is limited by the use of
simplistic isotropic material approximations because, in reality, chemically treated
bovine pericardium is an anisotropic, biocomposite material.

To quantify the fibrous structure of planar tissues, Sacks et al. (36) have de-
veloped a small-angle light scattering technique (SALS). SALS allows for rapid
quantification of the angular distribution of fibers at each point in the tissue, from
which the preferred fiber direction and degree of orientation can be determined.
A SALS-based tissue-sorting procedure was used to guide the selection of bovine
pericardial specimens to minimize structural variability (10). Note that in this
study, the designations preferred fiber (PD) and cross-preferred fiber (XD) were
used for the x1 and x2 axes, respectively (Figure 1b). An extensive biaxial test
protocol was then used and the resulting stress-strain data was fitted to an expo-
nential strain energy function developed by Choi & Vito (3). Results indicated that
this equation was able to reproduce the mechanical response of chemically treated
bovine pericardium over a wide range of biaxial test protocols. Most importantly,
the high structural uniformity resulted in both a consistent mechanical response
and low variability in the material constants.

Because of this consistency, the data from all specimens were combined into
a single dataset. From this dataset, “group” material constants were determined,
which represent a more generalized estimate of tissue properties. The individ-
ual specimen constants showed predictably better agreement with the data, but the

A
nn

u.
 R

ev
. B

io
m

ed
. E

ng
. 2

00
3.

5:
25

1-
28

4.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
id

ad
 d

e 
C

hi
le

 o
n 

07
/3

1/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



12 Jun 2003 14:55 AR AR191-BE05-09.tex AR191-BE05-09.sgm LaTeX2e(2002/01/18)P1: IKH

264 SACKS ¥ SUN

group constants were able to represent the data reasonably well. This study demon-
strated that much of the past difficulties with tissue variability were a direct result
of uncontrolled variability in tissue structure. Previous studies on myocardium
(28, 29, 37) controlled specimen structure by visual selection and alignment to
the overall preferred fiber direction. This was an important step in the analysis
of orthotropic biological tissues. The use of SALS, however, not only allowed
similar specimen fiber alignment for collagenous tissues, but more importantly,
showed the quantitative relation between the degree of fiber alignment and degree
of mechanical anisotropy. To the authors’ knowledge, this is the first time such a
comparison was undertaken for fibrous collagenous tissues.

In addition to minimizing tissue variability, tight control of tissue structure
allows elucidation of the more subtle aspects of tissue mechanical properties. In
our previous studies on pericardial mechanical properties, we observed that the
strain level along the x1 axis (or PD direction, Figure 1a) has a stronger effect on the
x2 axis stress level (or XD, Figure 1a) than the x2 axis strain level has on the x1 axis
stress level (38). While this phenomenon has been termed coupling, it is distinct
from the expression ∂

∂E11

(
∂W
∂E22

) = ∂
∂E22

(
∂W
∂E11

)
, which holds at a particular strain

state (E11, E22). In contrast, the phenomenon referred to here deals with how stress
magnitudes along one axis are affected by the strain level along the perpendicular
axis. Similar mechanical coupling properties have been reported for mitral valve
leaflets (39) and for passive myocardium [e.g., figure 4 in (40)]. Work by the Sacks
group using a structural constitutive approach has demonstrated that this effect is
a direct result of the particular architecture of the pericardium’s collagen fibers.
This architecture can produce complex mechanical behaviors at the tissue level
due to large fiber strains and rotations, along with a nonlinear fiber stress-strain
relationship (41, 42).

5.2. Effects of In-Plane Shear

A limitation in virtually all planar biaxial studies of soft tissues has been the
inability to include the effects of in-plane shear. This is due to the inability of
current mechanical testing devices to induce a state of in-plane shear due to the
added cost and complexity. We have developed a straightforward method for planar
biaxial testing that induces a combined state of in-plane shear and normal strains
(43). The method relies on rotation of the test specimen’s material axes, with
respect to the device axes, and on rotating carriages to allow the specimen to freely
undergo in-plane shear.

To demonstrate this method, five glutaraldehyde-treated bovine pericardium
(GLBP) specimens were prepared with their preferred fiber directions (defin-
ing the material axes) oriented at 45◦ to the device axes to induce a maximum
shear state (Figure 2a). The test protocol included a wide range of biaxial strain
states, and the resulting biaxial data re-expressed in the material axes coordi-
nate system. The resulting biaxial data was then fit to the following strain energy
function W:
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Figure 2 (a) A schematic of the biaxial specimen showing the specimen axes (X′
1−

X′2 axes) and material axes (i.e., X′1 − X′2 axes), which was aligned at a 45◦ angle
with respect to the specimen axes. (b) Experimental protocols of stress-control biaxial
testing, where the labels indicate the ratios of the normal Lagrangian stress in the
specimen axes coordinate system (T′

11 : T′22).

W = c

2

[
exp

(
A1E2

11+ A2E2
22+ 2A3E11E22

+A4E2
12+ 2A5E11E12+ 2A6E22E12

)− 1
]
, (22)

where Eij are the components of the Green strain tensor expressed in the material
axes coordinate system and c and Ai are constants. Whereas W was able to fit the
data very well, the constants A5 and A6 were found not to contribute significantly
to the fit and were considered unnecessary to model the shear strain response.
Although not able to independently control the amount of shear strain or induce a
state of pure shear, the method presented readily produces a state of simultaneous
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in-plane shear and normal strains. The method is very general and can be applied
to any anisotropic planar tissue that has identifiable material axes. However, peak
nominal stresses in the study cited above were limited to∼250 kPa and peak shear
stresses to± 40 kPa. Other applications, such as novel heart valve biomaterials,
may be subjected to larger in-plane shear strains. Clearly, robust constitutive mod-
els require a comprehensive experimental dataset that spans the estimated normal
operational stress range.

Sun et al. (44) recently conducted a study to produce biaxial mechanical exper-
imental strain over a wide range of normal and shear stresses by modifying our
strain-based biaxial testing protocol to a stress-based one using peak stresses of 1
MPa. As in our previous study, GLBP was utilized as the representative soft tissue
biomaterial. The stress-controlled biaxial protocol covered a wide range of strain-
stress space (Figure 2b). Of particular note are the high in-plane shear stresses
generated (peak∼400 kPa) at a peak shear strain of± 0.10 (Figure 3b), which
are comparable in magnitude to the corresponding normal stress and extensional
strain components (Figure 3a,c). A feature of the GLBP biaxial response we have
not previously observed was that the responses to the T′

11 : T′22= 1 : 0.1 and 0.1 : 1
“outer” protocols were different from the “inner” five protocols (T′11 : T′22 = 1 : 0.5,
1:0.75, 1:1, 0.75:1, 0.5:1; Figure 2b). The outer two protocols exhibited not only
large shear response, but also lesser extensibility for the normal components. This
behavior suggested a substantial change in mechanical behavior under the extreme
T′11 : T′22 ratios, where the shear stresses were greater by approximately twofold or
more compared to the other test protocols.

Given the substantially more complex tissue response using the stress-controlled
protocol, it was not surprising that Equation 22, albeit containing two additional
degrees of freedom from our earlier model (43), was still not sufficiently improved.
In particular, Equation 22 had difficulties with the shear response of the 1:0.1 and
0.1:1 protocols. Based on our current observations (Figure 3), we hypothesized
that the high shear state occurring in the outer two protocols was a primary factor
in our poor fit results. We therefore subdivided the experimental data into two
sets: Set I was composed of the “inner” five protocols (T′

11 : T′22= 1:0.5, 1:0.75,
1:1, 0.75:1, 0.5:1 protocols) and Set II was composed of the “outer” two protocols
(T′11 : T′22= 0.1:1 and 1:0.1). Next, we applied this approach using Equation 3,
which was able to describe each individual dataset well (Figure 4), with Set I r2=
0.980 and Set II r2= 0.963. These results suggest that a Fung-type model using
Equation 22 was adequate using two separate sets of material constants for the
low/moderate and high shear states.

Although able to fit the biaxial data, a single analytical expression was clearly
preferable. This was underscored by the limited predictive abilities of the subdi-
vided model. For example, we expected that Equation 22 could predict the Set I
response using the Set II parameters reasonably well because the Set I strain range
lies within the Set II strain space. However, the results for this interpolation were
poor (Figure 5). Given the complexity of the strain space, improper subdivision
could lead to highly erroneous stress predictions.
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Figure 3 A representative biaxial mechanical response for each component, with
peak shear stresses of 400 kPa and peak shear strains of± 0.10. One novel feature
observed was that the mechanical response to the T′

11 : T′22= 1:0 and 0:1 were quite
different from the other protocols. Labels indicate the ratios of the normal Lagrangian
stress in the specimen axes coordinate system (T′

11 : T′22).
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Figure 4 Results for the seven-parameter Fung model applied to (a) the subdivided dataset
I, demonstrating a very good fit (r2= 0.980), and dataset II, demonstrating a very good fit
(r2= 0.963). Inset: biaxial protocols for each protocol set.

To develop a single model for all protocols, we expanded Equation 22 as follows:
To minimize the number of parameters, we chose to modify Q only through the
addition of quartic order terms. Although cubic order terms of the general form
could have been added, it was felt that quartic functions of the form would be more
numerically robust and able to simulate complex mechanical responses with fewer
parameters. Thus, the final generalized form for the expanded Q (incorporating
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Figure 5 Predictive capability results for the equal-biaxial protocol 1:1 by fitting
the seven-parameter model to the T′11 : T′22 = 1:0.1 and 0.1:1 protocols only. Even
though equal-biaxial protocol lies within the stress and strain ranges used for parameter
determination, the interpolated result is poor. For illustration purposes, the peak values
of S11, S12, and S22, which were 1.4e+5, 0.4E+5, and 1.2E+5 kPa, respectively, were
truncated.
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symmetry ofE) is given by:

Q = A1E2
11+ A2E2

22+ 2A3E11E22+ A4E2
12+ 2A5E12E11+ 2A6E12E22

+B1E4
11+ B2E4

22+ B3E2
11E

2
22+ B4E4

12+ B5E2
12E

2
11+ B6E2

12E
2
22, (23)

where Ai and Bi are the material constants.
As in any nonlinear constitutive model, the number of term additions needs to be

minimized to avoid numerical instability issues in computational implementations.
To provide a rationale for adding the additional quadric terms in Equation 23,
we developed the following interpolation method to estimate the strain energy
response functions with respect to each strain component directly from our stress-
controlled biaxial test data. EachScomponent from the loading data was expressed
as a function of two strain components, whereas the third component was kept at
a constant value. This allowed us to simulate the pseudo-elastic loading response
of eachS component against various combinations ofE and guide the choice of
the functional form ofQ. Interpolations were restricted over the strain space of
the actual experimental data. Details of the approach are presented in (44). All
together, nine response functions were generated, three for each stress component.

Representative response functions are shown in Figure 6a for S12, where E11and
E12were varied and E22was held at 0.2. In this case, the response function indicated
that S12 had a relatively weak dependence on E11. This indicated that additional
terms did not require E11, so that B1, B3, and B5 = 0. Figure 6b also shows S12

where E11 and E22 were varied and E11 was held at 0.18. The response function
indicated that S12 had a strong dependence on E12 and E22. Based on the more
gradual increase in stress of the stress-strain curves, we determined that inclusion
of quartic powers for individual strain components (i.e., E4

ij ) was unnecessary, thus
B2 = B4 = 0, leaving only the term B6E2

12E
2
22. Replacing B6 with B, we derived

the following eight-parameter form for the expanded Fung-type model:

Q = A1E2
11+ A2E2

22+ 2A3E11E22+ A4E2
12

+ 2A5E12E11+ 2A6E12E22+BE2
12E

2
22. (24)

Equation 24 was found to describe the biaxial mechanical response for all
seven protocols well, with a mean r2= 0.94. Bootstrapping results indicated that
the parameters were highly clustered for the simulated datasets, giving further
confidence in the uniqueness of the model parameter values and model robustness.
The predictive capability of Equation 24 was evaluated by fitting the Set I data only
and then extrapolating Set II (Figure 7a). As expected, Equation 24 demonstrated a
better fit to Set I alone (Figure 7a) than when Sets I and II were fit simultaneously
(Figure 7b), especially the in-plane shear response. Interestingly, this approach
also demonstrated good predictive capabilities (Figure 7a). Overall, Equation 24
was able to faithfully reproduce the complete high in-plane response and predict
the tissue response outside the range used for parameter determination.
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Figure 6 Representative response functions for (a) S12versus E11and E12, with E22=
0.2, indicating that S12 had a relatively weak dependence on E11. In contrast, the S12

versus E12 and E22, with E11= 0.18, responses shown in (b) indicated that S12 had a
strong dependence on both E12 and E22.

6. STRUCTURAL CONSTITUTIVE MODELS

Although the phenomenological constitutive models discussed above were suc-
cessful in the above applications, they are unable to elucidate the underlying
mechanisms of tissue behavior. Structural constitutive models attempt to integrate
information on tissue composition and structure to avoid ambiguities in material

A
nn

u.
 R

ev
. B

io
m

ed
. E

ng
. 2

00
3.

5:
25

1-
28

4.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
id

ad
 d

e 
C

hi
le

 o
n 

07
/3

1/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



12 Jun 2003 14:55 AR AR191-BE05-09.tex AR191-BE05-09.sgm LaTeX2e(2002/01/18)P1: IKH

272 SACKS ¥ SUN

Figure 7 In-plane shear fit results for the eight-parameter model fit to (a) Set I only
and predicting the Set II response, and (b) all data simultaneously. As expected, the
fit to Set I demonstrated a better fit to both the inner test protocols (Set I), but also
demonstrated reasonable predictive capabilities.

characterization and offer insight into the function, structure, and mechanics of
tissue components. Structural constitutive models have been developed for a vari-
ety of intact tissues and tissue components including lung (45), collagen (46, 47),
cartilage (48), passive myocardium (49), heart valves (41), and maturing skin
(50).

Perhaps the most complete approach for structural constitutive modeling for
soft tissues has been developed by Lanir et al. (51–53). In this approach, the tissue
total strain energy is assumed to be the sum of the individual fiber strain energies,
linked through appropriate tensor transformation from the fiber coordinates to the
global tissue coordinates. However, critical structural information (such as fiber
orientations) modeled using assumed statistical distributions (usually Gaussian),
with the distribution parameters numerically estimated from statistical fits to the
mechanical testing data.
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Using bovine pericardium, Zioupos et al. (32) attempted to estimate the an-
gular distribution of collagen fibers from uniaxial tensile experiments. However,
the accuracy of this method is uncertain because the correlation between fiber ori-
entation and ultimate tensile strength may be skewed by the large fiber rotations
that exist under uniaxial loading conditions. In general, integration of quanti-
tative morphology into structural constitutive models has yet to be achieved in
the biomechanics literature. Thus, full realization of the utility of structural ap-
proaches continues to be limited without direct quantitative structural information
to either validate structural model predictions or for direct implementation into the
model.

In the SALS technique (36), Helium-Neon (HeNe) laser light is passed through
a tissue specimen. The spatial intensity distribution of the resulting scattered light,
I(θ ), represents the sum of all structural information within the light beam envelope.
HeNe laser light is used because its wavelength (λ = 632.8 nm) is within an order
of magnitude of the diameter of the collagen and elastin fibers. Specifically, from
I(θ ) the angular distribution of tissue fibers can be directly obtained (54).

The availability of quantitative fiber architectural information obtainable by
SALS motivated the following study (55): a structural formulation incorporating
the discrete quantitative fiber architectural data derived from SALS based on Lanir
(51, 56, 57). To demonstrate the approach, biaxial mechanical and fiber orientation
data for native bovine pericardium was used from an earlier study (10). Two
material models were utilized for the fiber stress-strain relationship, and insights
into the planar mechanical properties of soft collagenous tissues were elucidated.

The distribution of collagen fiber angles was directly measured using SALS
because the angular distribution of scattered light I(θ ) is directly proportional to
the angular distribution of fibers (36). A 2.54-mm rectilinear scanning grid was
used resulting in 625 tests per specimen, with I(θ ) measured using 1◦ increments
(10). The mean scattered light intensity distribution,Ī (θ ), was computed for each
specimen by averaging the values of I(θ ) for each value ofθ from all test locations.

For structural model implantation, it is necessary to determine the statistical
distribution function of the angular distribution of the collagen fibers, R(θ ). Specif-
ically, R(θ )dθ is defined as the fraction of collagen fibers oriented betweenθ and
θ + dθ and subjected to the normalization constraint

∫ π/2
−π/2 R(θ )dθ = 1. R(θ ) was

determined directly from the mean scattered light distributionĪ(θ ) for each speci-
men using

R(θ ) = Ī(θ )
θ=π/2∑
θ=−π/2

Ī(θ )1θ

, (25)

where, becausēI(θ ) is measured in discrete 1◦ increments (36),1θ = π/180.
Because of the high structural consistency of the test specimens, local variations
in I(θ ) were small and̄I(θ ) was considered to be representative of the whole
specimen (Figure 8a). For comparison to native heart valve fiber structure, the
pericardial R(θ ) demonstrated a broader distribution (41) (Figure 1b).
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Figure 8 (a) The fiber angular distribution R(θ ) for native bovine pericardium from
one specimen demonstrating the structural regularity, as indicated by relatively small
variations R(θ ) (error bars= 1 standard error). (b) A representative example of the
effective fiber stress-strain curve, along with the fit of the two-parameter fiber stress-
strain law, demonstrating an excellent fit to the data.

A concern in the application of a structural constitutive model was how the
externally applied biaxial strains actually translated to local fiber strains. Under
the assumption of affine transformation, local fiber strains are equal to the tensorial
transformation of the global tissue strains. However, the complexity of tissue struc-
tures may induce local irregularities, possibly causing nonuniform fiber strains.
Information on local fiber strains under biaxial stretch for pericardium or similar
tissues has not been previously reported.

Measurement of changes in collagen fiber crimp offers a means to estimate local
fiber strains. In planar tissues, the collagen fibers can also undergo large rotations as
well as stretch, making tracking of individual tissue areas difficult and potentially
confounding measurements. However, under equibiaxial strain, the E12= 0 and
there is no fiber rotation, so that each fiber is subjected to the same uniaxial strain
level equal to the equibiaxial strain level (58). Thus, changes in crimp period
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will be equal for all collagen fibers in a tissue subjected to an equibiaxial strain
state.

Based on these considerations, we utilized a specialized biaxial stretching de-
vice developed in our lab that allows for the biaxial stretch under real-time strain
control and simultaneous SALS measurements (54). Six bovine pericardial spec-
imens were prepared as above (including optical markers) and maintained in the
optically cleared dehydrated state. Each specimen was first placed under a stereo
optical microscope equipped with a charge-coupled device (CCD) camera and
trans-illuminated with polarized light. Because the specimen was cleared, colla-
gen crimp structure could be visualized throughout the total specimen thickness.
Using a net magnification resulting in a resolution of 3.9 pixels/µm, the crimp pe-
riod was measured within the region delimited by the optical markers at six evenly
spaced locations. At each location, a total of six images were taken, one at the
upper surface and the remaining five taken at evenly spaced increments through
the thickness of the specimen by changing the focus.

Crimp periods were determined using commercial image-processing software
(SigmaScan Pro, Jandel Scientific, Inc.). Crimp periods were defined as the dis-
tance between successive fiber crests, which were identified as light/dark tran-
sitions under polarized light. After the crimp measurements were taken in the
undeformed state as above, the specimens were first rehydrated in room tempera-
ture normal saline for 2 h, then stretched to an equibiaxial strain (i.e., E11 = E22)
of 0.16, then glutaraldehyde treated in the stretched state overnight to fix the tissue
structure at the stretched state. The specimens were then removed, recleared, and
the crimp dimensions reanalyzed in the deformed state as above.

A general structural approach for constitutive modeling for planar collagenous
tissues is presented, based upon the theoretical work of Lanir (51, 53). It is assumed
that a representative volume element (RVE) can be identified that is large enough
to represent the processes associated with the microstructure of the material in
some average sense, yet small compared to the characteristic length scale of the
microstructure, i.e., the tissue thickness. The RVE is treated as a 3-D continuum,
and it is assumed that the material can be modeled as a hyperelastic solid, so that

S= ∂W

∂E
, (26)

whereS andE are the second Piola-Kirchoff stress and Green-Lagrange strain
tensors, respectively, and W is the tissue strain energy density per unit volume.

Within the RVE, the following assumptions are made:

1. The pericardium can be idealized as a planar network of collagen fibers
embedded in a compliant ground substance (i.e., the matrix). Because peri-
cardium contains only a small amount of elastin (59), its contribution was
ignored. Further, the hydrostatic forces generated by the matrix are consid-
ered negligible compared to the fiber forces and were also ignored.

2. The collagen fibers are undulated, which gradually disappears with stretch.
The load required to straighten the collagen fiber is considered negligible
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compared to the load transmitted by the stretched fibers. Hence, collagen
fibers transmit load only if stretched beyond the point where all the undula-
tions have disappeared and are assumed to be linearly elastic.

3. The degree of fiber undulation can vary considerably. At the tissue level,
the gradual straightening of the linear elastic collagen fibers with variable
undulations produces the classic nonlinear stress-strain relationship (8).

4. The fiber strain can be computed from the tensorial transformation of the
global strain tensor referenced to fiber coordinates (i.e., the affine transfor-
mation assumptions).

5. The strain energy function of the tissue is the sum of the individual fiber
strain energies.

Assumption 4 implies that the uniaxial strainε along each fiber can be deter-
mined from the global tissue strain stateE using

ε = NT EN, (27)

whereN = cosθ î + sin θ ĵ is the unit vector parallel to the fiber’s long axis,
which makes an angleθ with respect to the x1 axis. Following Equation 12, it is
convenient to express the effective collagen fiber stress as a second Piola-Kirchhoff
stress,Sf . Because it is assumed that each fiber can only support load along its
axis,Sf (ε) = Sf

11(ε), with all other components equaling zero.
To simulate the effective collagen fiber stress-strain law, two models were uti-

lized. For the first model, the simplest formulation (including the fewest number
of parameters) was desired, which incorporated the effects of collagen volume
fraction, uncrimping, and the intrinsic properties of collagen. For this approach,
the following exponential form was used:

Sf
11(ε) = A [exp(Bε) − 1], (28)

where A and B are positive constants.
In the second model, the fiber recruitment and linear elastic collagen proper-

ties of the collagen fibers (following assumptions 2 and 3) were incorporated. A
stochastic approach is used to represent the distribution of fiber slack length as a
function of fiber strain. Here,εa andεs are the actual and straightened fiber strains,
respectively, and are related usingεa = ε−εs

1+2εs
, whereε is the total fiber strain given

by Equation 27. The gradual recruitment of fibers with fiber strainε (assumption
3) is simulated by a statistical distribution of D(ε). Assuming each fiber has an
elastic modulus K, the fiber stress-strain relationship is thus (51)

Sf
11=K

ε∫
0

D(x)
ε− x

1+ 2x
dx. (29)

Note that for convenience, K incorporates the collagen fiber volume fraction.
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For the present study, D(εs) was approximated with a Gamma distribution:

D(εs) = 1

βα 0(α)
εα−1

s exp

(−εs

β

)
, (30)

which has a meanαβ and varianceαβ2, whereα andβ are positive constants.
Gamma distributions are attractive in that the lower bound is zero, preventing
unrealistic “negative” crimp values. Physically, D(εs) represents the fraction of
fiber fully straightened betweenε andε+1ε For this second model, there are a
total of three material parameters: K,α, andβ.

Based on the assumption 5, the total tissue strain energy W can be expressed as

W =
π/2∫
−π/2

R(θ )w(ε) dθ, (31)

where w is the fiber strain energy function. From Equation 2, the tissue stress-strain
relationship is given by (56)

S=
π/2∫
−π/2

R(θ )Sf
11(ε)[N⊗ N] dθ, (32)

where⊗ indicates external multiplication so that [N⊗N]ij = NiNj. In component
form, Equation 31 becomes

S11 =
π/2∫
−π/2

R(θ )Sf
11(ε) cos2 θ dθ

S12 =
π/2∫
−π/2

R(θ )Sf
11(ε) cosθ sinθ dθ (33)

S22 =
π/2∫
−π/2

R(θ )Sf
11(ε) sin2 θ dθ.

A unique feature of the current approach is that the fiber angular distribution
function R(θ ) was determined directly from the mean scattered light distribution
Ī(θ ) of the specimen. Equations 33 were thus solved numerically using Romberg
integration (60), with Sf11(ε) set to zero whenε ≤ 0 because fibers cannot support
load when compressed.

An important feature of Equations 33 is that by summing the two expressions for
normal stresses under equibiaxial strain conditions (E11 = E22, S12 = E12 = 0),
the fiber stress-strain law can be obtained directly from the experimental data using
Sf

11 = S11+ S22 (53). Thus, the material parameters for Sf
11(ε) were experimentally
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determined directly from the equibiaxial test data, using the Marquardt-Levenberg
nonlinear least-squares algorithm (60). Moreover, because R(θ ) was determined
experimentally, only the parameters associated with the fiber stress-strain material
laws need be determined for the complete model.

Results for the crimp periods were generally consistent with previously re-
ported values for bovine pericardium (61), with values ranging from 24µm to
29 µm in the reference state. After the application of an equibiaxial Green-
Lagrange strain level of 0.16 (equivalent to 15% strain), the mean collagen fiber
crimp period increased in value ranging 27µm to 34µm. On a specimen-by-
specimen basis, this translated to an increase in fiber crimp period of∼15%,
which is consistent with the externally applied strain level. This result indicated
that, at least to a first approximation, the collagen fibers deformed similarly to
the macro tissue strains. Under equibiaxial strain, the angular distribution of fiber
orientations did not change from the reference state as measured by SALS. Thus,
collagen fiber crimp does not detectably affect the fiber orientation distribution
R(θ ) for pericardium as measured by SALS.

STRUCTURAL MODEL RESULTS The two-parameter fiber stress-strain law (Equa-
tion 28) fit the equibiaxial derived data quite well, with r2 = 0.99 or greater
(Figure 8b). Variations in the constants A and B were also generally low, with the
mean r2 of 0.992. The recruitment fiber material law (Equation 29) also produced
good results, although slightly lower r2 values. Both the fiber recruitment distri-
bution (Equation 29) and the resulting stress-strain curve were very consistent,
both between specimens (as evidenced by the low standard errors) and between
the group and specimen means. Because Equation 28 is nonlinear, mean values
for A and B cannot be used to determine a mean fiber stress-strain response; only
the group values can be considered representative of the average collagen fiber
stress-strain response.

For the recruitment fiber material law, the mean collagen fiber modulus K was
approximately 60 MPa. The predicted values for the mean uncrimping Green-
Lagrange strain was 0.24, which corresponds to a physical strain of∼22%. To
provide a more physically intuitive presentation of the fiber recruitment model
results, the predicted D(ε) and effective fiber stress-strain responses (for both the
mean specimen and group results) are plotted together in Figure 9a. The increas-
ing stiffness of the fiber stress-strain curve clearly correlates with the increasing
number of recruited fibers. Integration of D(ε) was used to obtain the cumulative
distribution function F(ε), which represents the fraction of fibers of the total that
are stretched at the current strain level. For bovine pericardium, at the maximum
Green-Lagrange strain level of 0.16, results for F(ε) indicate that∼22% of the
collagen fibers are fully straightened (Figure 9b).

A typical stress-strain response for native bovine pericardium for all test pro-
tocols is shown in Figure 10. Both the equi- and nonequibiaxial protocols were
fit well by Equations 33 and the two-parameter fiber stress-strain law. Note that
unlike our earlier studies (10), data from the nonequibiaxial protocols were not
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Figure 9 (a) The effective fiber stress-strain curve Sf using fiber recruitment model,
along with the fiber recruitment function D(ε). Both mean specimen and group re-
sults are shown. Note the close correlation between the group and individual specimen
means, indicating low interspecimen variations. (b) The “group” cumulative recruit-
ment function F(ε), which predicted that at a Green-Lagrange strain of 0.16,∼22% of
all fibers bear load.

used to determine the material constants. Thus, the goodness of fit to the nonequib-
iaxial data demonstrated excellent predictive capabilities. Further, the mechanical
consistency of specimens allowed us to generate meaningful results when the data
from all specimens were fit simultaneously. Although having a slightly lower r2,
the grouped data coefficients fit the data reasonably well and can be considered
representative of average tissue properties.

In summary, it was demonstrated that a structural constitutive modeling ap-
proach was able to accurately predict equi- and nonequibiaxial test protocols. An
important aspect of this approach is that only a single equibiaxial test to determine
the fiber stress-strain response and R(θ ) determined by SALS are required to de-
termine the complete planar biaxial mechanical response. Studies of collagen fiber
crimp suggest that the local fiber strains follow closely the externally applied tissue
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Figure 10 An example of the structural model fit to the biaxial mechanical data
for native pericardium, demonstrating an excellent fit. Note that only data from the
equibiaxial test was utilized to determine the form of the fiber stress-strain curve. The
fit to the nonequibiaxial data demonstrates the predictive capabilities of the structural
model. Labels indicate E11:E22 ratios for each protocol. Inset: biaxial strains for each
protocol with the labels indicating the E11:E22 ratio.

strains, so that the affine transformation assumption appears to be valid. However,
future evaluations will have to be performed for tissue subjected to a wider range
of strain to fully validate the current approach.

7. FUTURE AREAS

From this review, one can see that our understanding of the biaxial mechanics of
soft tissues is incomplete and remains a challenging scientific area. In particular,
although biaxial testing techniques are sufficient for membrane tissues or tissues
where thin sections can be prepared, characterization and modeling of thick-walled
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organs requires true triaxial approaches. Recently, Dokos et al. developed a novel
shear-test device for soft biological tissue, capable of applying simple shear defor-
mations simultaneously in two orthogonal directions while measuring the resulting
forces generated in three axes, is described (62). The device was validated using
a synthetic gel, the properties of which were ascertained from independent tensile
and rotational shear tests. Material parameters for the gel were fitted using neo-
Hookean analytical solutions to the independent test data, and these matched the
results from the device. Preliminary results obtained with rat septal myocardium
are also presented to demonstrate the feasibility of the apparatus in determining
the shear characteristics of living tissue.

Dokos et al. recently utilized this device to examine the shear properties of pas-
sive ventricular myocardium in six pig hearts (63). Samples (3× 3 × 3 mm) were
cut from adjacent regions of the lateral left ventricular midwall, with sides aligned
with the principal material axes. Four cycles of sinusoidal simple shear (maximum
shear displacements of 0.1–0.5) were applied separately to each specimen in two
orthogonal directions. Resulting forces along the three axes were measured. Three
specimens from each heart were tested in different orientations to cover all six
modes of simple shear deformation. Passive myocardium has nonlinear viscoelas-
tic shear properties with reproducible, directionally dependent softening as strain
is increased. Shear properties were clearly anisotropic with respect to the three
principal material directions: passive ventricular myocardium is least resistant to
simple shear displacements imposed in the plane of the myocardial layers and
most resistant to shear deformations that produce extension of the myocyte axis.
Comparison of results for the six different shear modes suggests that simple shear
deformation is resisted by elastic elements aligned with the microstructural axes
of the tissue. The results of this study further underscore the need for actual triaxial
data for the analysis of thick-walled organs.

The underlying motivations for the studies cited in this review lie not only
in the understanding of natural tissue function, but also in new biomedical ap-
plications. One such application is tissue engineering, a new therapeutic ap-
proach for the functional restoration of diseased or damaged organs that utilizes
cells and related biological factors to generate living tissue replacements. In me-
chanically demanding applications, the design and development of these tissues
will invariably require a detailed understanding of the biomechanical phenom-
ena associated with the growth, development, and engineering of soft tissue re-
placements. The experimental and theoretical techniques described in this review
should aid in these efforts by helping to provide a rational basis for investigation
and design.
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