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Abstract. Intracranial saccular aneurysms remain an enigma; it is not known why they form, why
they enlarge, or why only some of them rupture. Nonetheless, there is general agreement that mechan-
ics plays an essential role in each aspect of the natural history of these potentially deadly lesions. In
this paper, we review recent findings that discount limit point instabilities under quasi-static increases
in pressure and resonance under dynamic loading as possible mechanisms of enlargement of saccular
aneurysms. Indeed, recent histopathological data suggest that aneurysms enlarge due to a stress-
mediated process of growth and remodeling of collagen, the primary load-bearing constituent within
the wall. We submit that advanced theoretical, experimental, and numerical studies of this process
are essential to further progress in treating this class of pathologies. The purpose of this review is to
provide background and direction that encourages elasticians to contribute to this important area of
research.

Key words: collagen structure, stability, rupture criterion, growth mechanics.

1. Introduction

Intracranial aneurysms are focal dilatations of the arterial wall that usually occur
in or near the circle of Willis, the primary network of vessels that supplies blood
to the brain. In general, these aneurysms occur in one of two forms: fusiform le-
sions, which are elongated dilatations of an artery, and saccular lesions, which are
local sac-like out-pouchings. This paper focuses on the more common saccular
form, which usually develops at the apex of a bifurcation (Figure 1). Rupture of
saccular aneurysms is the leading cause of spontaneous subarachnoid hemorrhage
(SAH), which despite advances in neurosurgery and neuroradiology continues to
result in a high mortality rate (35–50%) and severe morbidity among the survivors
[20, 26, 102]. Fortunately, with advances in medical imaging, greater numbers of
unruptured aneurysms are being detected. There are two primary methods of treat-
ing these lesions: intracranial surgery, wherein the lesion is isolated from the blood
flow by placing a small metal clip at its neck, and catheter-based interventions,
which include the deployment of metallic coils that promote the formation of clots
within the lesion that again isolate it from the blood flow [10, 71]. Conservative
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Figure 1. Schema of the cerebral vasculature illustrating the circle of Willis and surrounding
arteries; shown, too, is a typical aneurysm at a bifurcation (where the fundus = pole).

management is also a clinical option, however, for it is thought that many sac-
cular aneurysms will not rupture [10, 26, 80]. For example, a recent international
trial [103] reported a small risk of rupture (∼0.1% per year) for aneurysms less than
10 mm in maximum dimension; these results have generated considerable contro-
versy, however (e.g., [4]). The primary clinical dilemma, therefore, is whether a
patient should be subjected to a prophylactic procedure that has associated risks
given that it is unlikely that the aneurysm will rupture, or if it is better to monitor
periodically the patient for changes in the lesion while accepting the devastating
consequences associated with SAH should a rupture occur.

The goals of this paper are threefold: to review our current knowledge of the
biology and structure of saccular aneurysms, to assess recent developments that
address the associated mechanics, and to identify questions about aneurysmal de-
velopment, enlargement, and rupture that require further biomechanical study. One
goal of histo-mechanical analysis, for example, is to predict better the likelihood
of enlargement of a given lesion and its rupture-potential, the former of which may
occur over periods from weeks to decades. It is hoped, therefore, that this paper
stimulates experimental, theoretical, and computational research that will comple-
ment that in the basic and clinical sciences and thereby contribute to improved
treatment strategies.
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2. Natural History and Significance

Two-to-five percent of the general population in the Western World likely harbors a
saccular aneurysm, ruptured or unruptured. Histopathological and clinical studies
reveal further that these lesions are more prevalent in women (55–65%), and that
they occur predominantly in the anterior and middle portions of the cerebral vascu-
lature (cf. Figure 1). For example, a review by Ferguson [26] reports distributions
of 37% in the internal carotid artery, 31% in the anterior cerebral and anterior
communicating arteries, 13% in the middle cerebral artery, 9% in the basilar artery,
5% in the vertebral artery, and 5% other; different reports indicate a slightly higher
percentage in the middle cerebral artery, but are otherwise similar [92, 98]. Multi-
ple lesions occur in ∼15–30% of aneurysm patients. Although saccular aneurysms
may remain dormant for years to decades, the small percentage that rupture tend to
do so during the 5th–7th decades of life (mean age ∼52 years old). For more detail,
see Sekhar and Heros [80], Hashimoto and Handa [38], Kassel and Torner [52], and
Wiebers et al. [102].

The natural history of saccular aneurysms consists of at least three phases:
pathogenesis, enlargement, and rupture. The initiation of saccular aneurysms is the
subject of considerable debate, but it is generally accepted that unique structural
features of the cerebral vasculature contribute to the pathogenesis (e.g., [7, 80]).
Cerebral arteries do not have an external elastic lamina, they have sparse medial
elastin, they lack supporting perivascular tissue, and they have structural irregular-
ities at the apex of their bifurcations [27, 40, 91]. It is thought that these factors
may render the cerebral artery susceptible to a local weakening of the wall under
the persistent action of hemodynamic loads, particularly in hypertension [92]. One
theme, in particular, is that the internal elastic lamina and muscular media must
become markedly fragmented or degraded in order for a saccular aneurysm to form
[11, 24, 80]. Other risk factors may include heavy alcohol consumption, cigarette
smoking, and the long term use of analgesics or oral contraceptives, although these
are thought to play a lesser role (see [20, 73, 103]). Increased familial incidence in
some populations suggests that genetics is important. It has been hypothesized,
for example, that a genetic defect may disrupt the normal synthesis of certain
types of collagen (e.g., types III and V) within the cerebral vasculature, which
in turn may weaken the arterial wall [41, 74]. Similarly, it has been hypothesized
that an asymmetrically formed circle of Willis may be of genetic origin, and may
increase the hemodynamic load on portions of the vasculature [20, 92]. There is a
pressing need for much more research on the roles of genetics, risk factors, cellular
responses to mechanical stresses, and hemodynamics in the pathogenesis.

Aneurysms typically enlarge from the initially small out-pouching or dilatation
of the arterial wall, which can result in lesions having diameters up to 30 mm as
well as complex shapes and composition. Unfortunately, little is known about the
mechanisms by which this enlargement occurs, or its time-course. Some recent
studies suggest that slower rates of enlargement are associated with a lower risk of
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rupture [51, 66]. Regardless, among other hypotheses, it has been suggested that
lesions may enlarge rapidly due to structural instabilities, that is via either a limit
point instability or resonance. These two hypotheses are discussed below based on
more recent nonlinear analyses and shown unlikely, at least for particular classes of
lesions. As it will be seen, there is a pressing need for an increased understanding
of this critical phase of the natural history.

Rupture of an aneurysm implies one of two outcomes: a catastrophic tearing of
a portion of the lesion, with significant bleeding that is often fatal, or a small “leak”,
with minimal bleeding but clinical symptoms. Small leaks may be sealed by a fibrin
patch and followed by the formation of an intraluminal or intramural thrombus;
such repair may render the lesion more susceptible to subsequent enlargement or
catastrophic rupture. Although histomechanical failure mechanisms are unknown,
rupture usually occurs at the fundus (Figure 1) despite the neck often being thinner
[18, 80]. Moreover, in the case of coexisting aneurysms, the larger one usually
ruptures first, or if of nearly the same size, the proximal one will usually rupture
first [18, 50].

Several studies have associated various physical factors with rupture-potential.
Asari and Ohmoto [3] suggested that it is the combination of lesion location (e.g.,
middle cerebral artery), shape (i.e., multilobular or not), and the presence of hyper-
tension that best indicates a high risk of rupture. Hademenos et al. [35] similarly
reported that multilobular lesions are more prone to rupture, but they suggested
further that the less prevalent posterior lesions have a higher chance to rupture.
The vast majority of other studies draw conclusions based primarily on the size
of the lesion, however, with estimates of the critical maximum dimension ranging
from 3 to 10 mm [18, 52, 98, 102, 103]. From a mechanical perspective, of course,
shape and wall thickness are more important contributors to rupture-potential than
overall size [84]. Ujiie et al. [99] reported that 59% of lesions are round, 24%
oval, and 22% barlike; Parlea et al. [75] reported that aneurysms of the anterior
communicating artery (recall Figure 1) tended to be pear-shaped, and, although
a clear pattern could not be established, most aneurysms tend toward a spherical
shape. That shape has not been considered more is particularly surprising since
Crompton [17] showed long ago that lesions in women tend to have a greater
neck : height ratio and they are more likely to rupture. Lesion thickness can range
from 30 to 500 µm in the unloaded configuration [96]. It is believed that increasing
thickness corresponds primarily, but not exclusively, with continued enlargement
[93]. Based on a study of 23 unruptured lesions, Suzuki and Ohara [96] suggested
further that saccular aneurysms fall into one of four categories: uniformly thin
(22%), thick at the fundus but thin at the neck (17%), thin at the neck but vari-
able elsewhere (43%), or thick at the neck but variable elsewhere (18%). Asari
and Ohmoto [3] report similar findings, including that the uniformly thin lesions
tended to be the smallest (less than 4 mm in diameter). Whereas most previous
mathematical models have assumed idealized shapes and uniform wall thickness
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(in the undeformed configuration), there is a clear need for more complete data
upon which more realistic models can be based.

3. Histopathology

Early studies using light microscopy showed relatively little structural organization
within saccular aneurysms as compared to the nearby parent arteries [28, 39, 79,
89]. Like other muscular arteries, cerebral arteries consist of three main layers:
the tunica adventitia (outer layer) consists primarily of collagen, the tunica media
consists primarily of smooth muscle with interspersed collagen and some elastin,
and the tunica intima (inner layer) consists primarily of a basement membrane
bordered on the luminal side by a single layer of endothelial cells. The transition
from parent vessel to aneurysm is characterized by a sharp break in the media
[7, 39, 80], thus it is generally thought that the aneurysm stems from the adventitia
and intima [69, 79]. Stehbens [89] suggested, however, that the appearance of the
aneurysmal wall does not indicate that part of the arterial wall from which the
sac came for many of its features seem to be acquired during the later stages of
enlargement. Regardless, a general finding is that the aneurysmal wall consists
primarily of collagen, with small patches of smooth muscle of the stellate form,
as is usually found in the intima of vessels. The elastic lamina also tends to split
into several laminae at the neck of the aneurysm and to be fragmented or absent
in the aneurysm wall [39, 89]. Stehbens [90] reported that in those portions of an
aneurysm that resemble an intimal proliferation, the collagen fibers are sparse, of
variable length and caliber, and arranged haphazardly, whereas when the wall is
fibrotic, the collagen is arranged in distinct laminae. That the fundus is generally
thicker than the neck [80, 89], and yet the site at which rupture is most likely to
occur [18, 79, 92], is one of the unresolved paradoxes of aneurysm structure.

Electron microscopy has confirmed this general histology, with additional detail
regarding the presence of monocytes, fibroblasts, macrophages, and cellular debris
[60, 72, 92]. Spatial variations in these cell types provide possible clues with re-
gard to lesion heterogeneity, including local weakening of the wall, and dynamic
changes therein [53, 54]. Recent immunocytochemical and immunofluorescence
studies reveal further detail on aneurysm composition. Austin et al. [7] found type
I collagen and fibronectin to be distributed uniformly throughout the aneurysmal
wall, and Mimata et al. [69] identified the fibrillar types I and III collagens, which
are mainly responsible for the tensile strength, throughout the wall. The microfib-
rillar type VI collagen is also distributed throughout the wall, albeit mostly in the
outer region, and the basement membrane type IV collagen is localized around
the sparsely distributed smooth muscle cells. Kosierkiewicz et al. [55] examined
lesions with atherosclerotic involvement. They identified an intimal type thickening
even in some small aneurysms and advanced plaques with smooth muscle cells and
lipid-laden macrophages in many large aneurysms. They also reported that it was
often difficult to separate the atherosclerotic region from the rest of the wall.
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Figure 2. Schema of a saccular lesion showing overlapping layers of collagen fibers of dif-
ferent strengths. The inset illustrates how the alignments in adjacent layers combine to give
tensile strength σs (modified from [66]).

The main characteristic of the aneurysm wall is its multidirectional collagen
fibers – at physiological pressures they become straight and thereby govern the
overall stiffness of the lesion (Figure 2). As the aneurysm enlarges, collagen is
repeatedly synthesized and degraded; that is, the architecture evolves “continu-
ously”. Three important parameters are changes in the orientation, cross-linking,
and volume fraction of the various types of collagen. For example, type I collagen
is substantially stiffer than type III, and the alignment of the collagen fibers is
fundamental to the strength of the tissue that must bear biaxial loading. Thus, there
is a need for combined histo-mechanical analyses.

Most general microscopic studies of the aneurysmal wall have been on lesions
that were not fixed at arterial pressure. In the unloaded state, the collagen fibers
are wavy, and their preferred orientations are not discerned easily when viewed
using normal stains for light microscopy. Since collagen is birefringent, however,
polarized light can be used to identify the collagen and to assess its orientation
[104, 106] Results by our group that exploit these observations are presented below
in the sub-section on collagen architecture.

4. Assessments of Mechanical Behavior

Scott et al. [83] performed in vitro pressure-volume tests on seven human saccu-
lar aneurysms obtained at autopsy. Data were reduced assuming that the lesions
were perfect spheres, having deformed volumes of 4πa3/3; this allowed them
to estimate the deformed radii a and wall tension T = Pa/2 (using Laplace’s
relation for a thin-walled pressure vessel). Scott et al. reported that aneurysms
exhibit a nonlinear behavior over finite strains, and suggested that they are stiffer
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than normal vessels. They also reported that two aneurysms exhibited a critical
breaking (Cauchy) stress σc on the order of 2 to 3 MPa. Because they measured
global volumes, not local strains, the results are both averaged and effectively one-
dimensional and consequently not sufficient for quantifying the requisite multiaxial
constitutive relations.

Steiger et al. [93] reported results from uniaxial extension tests on thin strips of
tissue excised from six human saccular lesions. Important findings are that lesion
behavior differs at the fundus and neck: tearing occurred at a stretch λ = 1.37
and a stress σc = 0.5 MPa in the fundus and λ = 1.57 and σc = 1.2 MPa
in the neck. That strain, not stress, was a more consistent metric of failure is
consistent with results on the failure of arteries (see [45]). Nevertheless, Steiger’s
study is limited because the data were reduced using the linearized measure of
strain, and based on the overall length of the specimen rather than a central gage
length. Moreover, the 1-D data did not discriminate between the meridional and
circumferential behaviors. Toth et al. [97] recently reported similar uniaxial data
from 22 human aneurysms, including 17 harvested at surgery. The characteristics
of the latter group includes a mean diameter of 11.6 mm (ranging from 5 to 23 mm)
and a mean patient age of 47 years old (range from 32 to 63). Twelve of the
17 lesions were from females, and 11 of the 17 patients had a history of SAH.
Similar to Steiger et al., it was found that (circumferentially oriented) specimens
from the fundus tore at lower stretches (i.e., λ = 1.23) than those from the neck
(λ = 1.55). Moreover, the strength near the fundus was greater in the meridional
than the circumferential direction. Additional results were presented in terms of
moduli for a Kelvin–Voigt linear viscoelastic model; use of a linearized measure of
strain is clearly inappropriate given the reported stretches up to 55%. Remarkably,
these three studies represent the entirety of the data up to 1999 on the mechanical
behavior of human saccular aneurysms. The need for experimental data and the
associated constitutive formulations is clear therefore.

In summary, histopathology and mechanical tests reveal the following general
characteristics of “non-complicated” saccular aneurysms: they are thin-walled
shell-like structures that consist primarily of a 2-D plexus of collagen, they appear
to have negligible bending stiffness, they exhibit nonlinear anisotropic pseudoe-
lastic responses over finite strain, and their properties vary regionally. Clearly,
therefore, a nonlinear membrane theory is a reasonable starting point for analysis.
Although Scott’s data are not sufficient for detailed quantification of multiaxial
behavior, including anisotropy and heterogeneity, Kyriacou and Humphrey [57]
showed that they are well described by a Fung-type pseudostrain-energy func-
tion w, which is defined per undeformed surface area consistent with the direct
membrane approach [47]. That is, consider a w of the form

w = c[eQ − 1], Q = c1E2
11 + c2E2

22 + 2c3E11E22, (1)

where EAB are the principal (in-plane) Green strains and c and ci are material
parameters. For the quasi-static inflation of a perfectly spherical membrane (as
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Figure 3. Best-fit of equation (1) to the tension-stretch data of Scott et al. (from Kyriacou and
Humphrey, with permission).

assumed by Scott et al.), the 2-D deformation gradient is F = diag[λ, λ] where
λ = a/A (with A the undeformed radius) and the principal Green strains are
E11 = E22 = 1

2 (λ2−1). Recalling the general constitutive relation for a membrane,

Tαβ = 1

det F
Fα�Fβ�

∂w

∂E��

, α, β, �, � = 1, 2, (2)

with c2 ≡ c1 due to the implicit assumption of in-plane isotropy in Scott’s analysis,
we see that the uniform tension T (= T1 ≡ T2) is

T = c�(λ2 − 1) exp[0.5�(λ2 − 1)2], (3)

where � ≡ (c1 + c3). Kyriacou and Humphrey determined the best-fit values
of the two independent material parameters c and � via a Marquardt–Levenberg
regression of the data presented by Scott et al., that is by minimizing the sum-of-
the-squares of the error between the calculated and measured tensions (i.e., stress
resultants). The best-fit values were c = 0.88 N/m and � = 12.99, which yielded
the fit to data shown in Figure 3. Despite this good fit, the inadequacy of the data
is evident: they do not allow separate determination of c1 and c2, which embody
the material symmetry, they do not separate the contributions due to c1 and c3,
and they do not provide information on possible heterogeneities. Based on results
on arteries reported by Fung and colleagues, Kyriacou and Humphrey assumed
that c3 ∼ c1/10, and hence c = 0.88 N/m, c1 ≡ c2 = 11.82 and c3 = 1.18.
Likewise, various anisotropies can be explored by varying the values of c1 and c2

(see Section 7).
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5. Hypothesized Mechanisms of Enlargement and Rupture

5.1. LIMIT POINT INSTABILITIES

A longstanding question with regard to saccular aneurysms has been, how can a
structure that consists of collagen, which exhibits high stiffness and low extensibil-
ity, continue to enlarge and eventually rupture? In an effort to address this question,
Austin et al. [6] and Akkas [1] suggested that saccular aneurysms suffer limit point
instabilities, that is (mathematical) bifurcations in their quasi-static response to
increases in distension pressure. Note, however, that Austin et al. based their con-
clusions on in vitro experiments on a “model lesion” that they constructed by gluing
a 0.8 mm thick collagen patch onto the center of a 0.175 mm thick elastomeric
membrane that was fixed around its periphery and inflated from underneath. Be-
cause of the use of the elastomeric membrane, it is to be expected that this model
exhibited a limit point instability [8]. Akkas, on the other hand, reported compu-
tational results for the inflation of a neo-Hookean model (i.e., W = c(tr C − 3),
where C = FTF) of a saccular aneurysm, which also exhibited a limit point as
expected. Because aneurysms, like most collagenous soft tissues, tend to exhibit
an exponential rather than rubber-like behavior, it is clear that these studies needed
to be revisited.

Consider an idealized spherical lesion� having an undeformed radius A, a uni-
form initial thickness H , and subjected to a uniform distension pressure P . With
F = diag[λ, λ], is it easy to show that the pressure-stretch relation for the Fung-
type form of w (equation (1)) is

P (λ) = 2c�

A

(
λ − 1/λ

)
exp[0.5�(λ2 − 1)2], (4)

which is easily non-dimensionalized by multiplying P (λ) by A/c. Regardless, a
limit point exists if dP/dλ = 0 for any λ > 1 (note: a membrane cannot support
compression, thus the restriction on λ). It can be shown numerically that the Fung
material does not admit a limit point, with � = 12.99 from Scott’s data. Inasmuch
as Kyriacou and Humphrey [57] found a similar result for a more general case of an
axisymmetric lesion (using finite elements), it appears that certain sub-classes of
saccular aneurysms probably do not enlarge or rupture via a limit point instability.
This finding re-emphasizes the importance of basing one’s analysis on appropriate
constitutive relations.

5.2. DYNAMIC INSTABILITIES

Richardson and Kofman [77] reported bruits in cerebral aneurysms – that is, au-
dible tones at frequencies ∼400 Hz. Ferguson [23] suggested that these bruits

� Shah et al. [84] showed that the spherical assumption is reasonable for a small sub-class of
aneurysms.
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Figure 4. Schema of a spherical aneurysm surrounded by cerebral spinal fluid. The radial
coordinate defining the fluid domain is ξ ∈ [a(t), ∞) (from Humphrey, with permission).

resulted from turbulence within the lesion while others suggested that they indi-
cated that aneurysms are excited at their natural frequency [50, 81, 86]. Resonance
implies large wall motions, indeed violent vibrations, and thus was hypothesized
by some as a potential mechanism of enlargement or rupture. There have been
but a few analyses of the associated elastodynamics, however, most of which are
based on classical shell theory and thus linearized strains and material behavior
(e.g., [49, 86]). Moreover, none of these studies account for the observation that
many saccular aneurysms are surrounded by cerebral spinal fluid (CSF). Below,
we summarize a recent study by Shah and Humphrey [85] that is based on finite
elasticity and accounts for the CSF. First, however, it is important to note the
following findings from hemodynamic studies. Experimental and computational
results both reveal that flow-induced wall shear stresses τw are small in all classes
of saccular aneurysms studied to date: maximum values are ∼5 to 13 Pa [65, 94],
which are less than the 40 Pa needed to induce endothelial cell damage [30] and
orders of magnitude less than the pressure-induced in-plane wall stresses which
can be 1 to 10 MPa [12, 57]. These findings, coupled with observations that the
maximum wall shear stress typically occurs at the neck, not the fundus where
rupture tends to occur, suggest that intra-aneurysmal pressures are the dominant
hemodynamic loads governing stress-induced rupture [29, 80, 94]. This is not to
say that wall shear stresses are not important; they likely signal the endothelium
to express various molecules, including growth factors that may regulate the intra-
mural collagen. This latter role has not been explored in detail, though it ought to
be. It also appears that intra-aneurysmal pressures are similar in magnitude to those
in the parent vessel [16, 25, 67, 81] and that they vary little with position within the
lesion [33, 37]. Consequently, it appears to be reasonable to assume (to first order)
that saccular aneurysms are loaded primarily by a uniform, time-varying distension
pressure.

For purposes of examining the elastodynamics, consider a thin-walled, spherical
aneurysm of initial radius A and wall thickness H , but now let it be subjected to a
time-varying distension pressure Pi(t) and surrounded by CSF (Figure 4). The 2-D
deformation gradient tensor F = diag[λ(t), λ(t)], where λ(t) = a(t)/A and a(t)

are the deformed radii. In addition, let the lesion exhibit an isotropic, Fung-type
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behavior (equation (1)). From Kraus [56], it can be shown that the three equations
of motion for a membrane reduce to a single ordinary differential equation for a
pulsating sphere:

ρh
d2ur

dt2
= −2T κ − trr (ri) + trr(ro), (5)

where ρ is the mass density of the aneurysm, h(t) is the deformed thickness (which
equals H/λ(t)2 if incompressible), ur(t) = a(t) − A is the radial displacement,
T = T (λ) is the constitutively determined wall tension, κ(t) = 1/a(t) is the
curvature in the deformed configuration, and trr are radial stresses on the inner and
outer surfaces of the lesion. Assuming a prescribed time-varying uniform lumi-
nal pressure, trr (ri) = −Pi(t), Milnor [68] shows that arterial pressures are well
described by a Fourier series representation of the form,

Pi(t) = Pm +
N∑

n=1

(
An cos(nωt) + Bn sin(nωt)

)
, (6)

where Pm is the mean blood pressure, An and Bn are Fourier coefficients for N

harmonics, and ω is the circular frequency. Ferguson [25] reported micro-catheter
measured intra-aneurysmal blood pressures in humans. From these data, it can
be shown that specific values of An and Bn, for the first 5 harmonics, are A1 =
−7.13, B1 = 4.64, A2 = −3.08, B2 = −1.18, A3 = −0.130, B3 = −0.564,
A4 = −0.205, B4 = −0.346, A5 = −0.0662, and B5 = −0.120, all in mmHg,
with Pm = 65.7 mmHg. Note that these lower pressures were recorded in supine,
anesthetized patients.

The cerebral spinal fluid (CSF) could similarly be assumed to exert a uni-
form time-varying pressure Po(t) on the outer surface of the membrane that is
a reaction to the pressure-induced distension of the lesion. This is tantamount
to treating the CSF as an ideal fluid (i.e., inviscid and incompressible). In this
case, trr (ro) = −Po(t), where Po can be determined by solving the pressure field
in the fluid domain ξ ∈ [a, ∞). For an ideal fluid, the governing differential
equations are the balance of mass and linear momentum (i.e., Euler) equations.
In the absence of body forces, they can be written as ∇·v = 0 and −∇P = ρf a,
respectively, where v and a are the fluid velocity and acceleration and ρf is the
mass density of the CSF. It is probably better to assume that the CSF is viscous
(e.g., Newtonian), however. In this case, the governing differential equations are
the balance of mass and the incompressible Navier–Stokes form of the linear mo-
mentum equations (−∇P +µ∇2v = ρf a), and the outer stress boundary condition
is trr (ro) = −Po(t)+2µDξξ (ξo) where D is the stretching tensor (D = 1

2(L+LT),
where L is the velocity gradient tensor). Because the solution for the ideal fluid can
be recovered from that for the Newtonian fluid, we consider the latter here.
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Assuming a flow in the radial direction ξ in a spherical domain (Figure 4), mass
balance requires that

1

ξ 2

∂

∂ξ

(
ξ 2vξ

) = 0 → vξ (ξ, t) = g(t)

ξ 2
, (7)

where the function g(t) is determined by requiring a material particle on the mem-
brane to have the same velocity as the adjacent fluid particle vξ . Hence, at ξ =
a,

d

dt

(
ur

) = dλ

dt
A = g(t)

a2
→ g(t) = A3λ2 dλ

dt
. (8)

The requisite component of D is thus computed easily.
For this radial flow, the meridional and circumferential Navier–Stokes equations

require that the fluid pressure P = P (ξ, t) alone. Hence, the only “non-trivial”
equation of motion is the radial one, which can be integrated over ξ ∈ [a, ∞)

to yield the pressure Po(t) exerted on the outer surface of the membrane by the
surrounding CSF:

Po(t) = P∞(t) + ρf A2

(
λ

d2λ

dt2
+ 3

2

(
dλ

dt

)2)
, (9)

wherein we have used vξ from mass balance and the matching condition at the
solid-fluid interface. It is interesting to note that this is the same pressure field as
that for an ideal fluid (i.e., as that obtained by integrating the unsteady Bernoulli
equation along a radial streamline).

Taken together, these equations yield the final governing differential equation
[85]:

(
ρHA

λ2
+ ρf A2λ

)
d2λ

dt2
+ 3

2
ρf A2

(
dλ

dt

)2

+ 4µ

λ

dλ

dt
+ 2T (λ)

Aλ

= Pi(t) − P∞(t) (10)

with T (λ) given by equation (3) and Pi(t) by equation (6). This nonlinear second-
order ordinary differential equation can be solved using numerical techniques such
as Runge–Kutta, which is facilitated by transforming it into a system of two first-
order equations (this is simplified by first non-dimensionalizing the equation). Shah
and Humphrey [85] solved this system of equations for the following values of
parameters, which they suggested define a representative lesion: ρ = 1050 kg/m3,
A = 3×10−3 m, H = 27.8×10−6 m, ρf = 1000 kg/m3, µ = 1.26×10−3 Ns/m2,
P∞ = 3 mmHg, and c = 0.88 N/m, c1 = c2 = 11.82, and c3 = 1.18. See the
original paper for complete results. Figure 5, panel B shows that equilibrium initial
conditions yield a periodic solution as expected (i.e., a closed path in the phase-
plane); panel C reveals further that, for the case of perturbed initial conditions,
this periodic solution serves as an attractor (i.e., the oscillations tend to dissipate
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Figure 5. Results from Shah and Humphrey on the elastodynamics of a saccular aneurysm
subjected to a sinusoidal forcing (pressure) function. Panel B shows the periodic solution in
the unperturbed case, and panels C and D show that this solution is an attractor in the case
of perturbed initial conditions, thus suggesting dynamic stability (from Shah and Humphrey,
with permission).

and the perturbed solution returns to the periodic solution) and hence the solution
is dynamically stable. Additional results suggest that the time-dependent solution
can be treated quasi-statically as a series of equilibria. Whether this observation
holds for other situations (e.g., different material parameters, different geometries,
different forcing functions, etc.) must be examined individually, and remains an
open problem. Based on this simple analysis, however, it appears that at least one
sub-class of (nearly) spherical saccular aneurysms is dynamically stable both when
Pi(t) is a periodic function having a fundamental frequency less than 5–10 Hz (the
non-autonomous system) and when it is a constant (the autonomous system; not
shown). It appears reasonable, therefore, to emphasize quasi-static stress analyses
for insight into the mechanics, a conclusion supported by Steiger [95]. Indeed,
because saccular aneurysms are known to be thin, membranous tissues subject to
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low frequency pulsatile pressures, intuition suggests that the inertial effects would
be small.

5.3. STRESS ANALYSES

There have been few rigorous studies of the quasi-static response of the aneurysmal
wall to applied loads. Overly simplified analyses have been based on electrical
analog models of latex balloons [5, 19] or constitutive relations that describe the
behavior of rubber-like [1] or linear materials [34, 86] – (note: [34] is based on an
incorrect equilibrium solution using a so-called modified Laplace’s equation).

Laplace’s equation T = Pa/2 is a universal solution for a thin-walled sphere
and thus is applicable to saccular aneurysms (as used in the above limit point
analysis). Canham and Ferguson [12] used Laplace’s equation to estimate a critical
diameter dc at which a lesion may rupture. They assumed that the aneurysmal tissue
volume vT (= 4πa2h) remains constant at all transmural pressures P (i.e., that
these lesions suffer isochoric motions in a given state of enlargement), and showed
that

dc =
(

4σcvT

πP

)1/3

, (11)

where σc is a critical wall strength. Rough estimates of vT = 1 mm3, σc = 10 MPa
(recall that Scott et al. reported a σc = 1–2 MPa and Steiger et al. reported a
σc = 0.5–1.2 MPa, both from uniaxial studies), and P = 150 mmHg suggested
a dc = 8.6 mm, a reasonable value. Limitations of this approach are the same as
those in the work of Humphrey and Kyriacou [46] and Shah and Humphrey [85]
– assumption of homogeneous and in-plane isotropic tissue behavior as well as
homogeneity of the calculated stress and strain fields. The latter suggests that each
material point is equally likely to fail, which does not account for the propensity of
rupture at the fundus [18, 80, 92].

Despite the usefulness of simple spherical models, more realistic analyses are
needed to account for the complex geometry, material properties, and applied loads
that characterize the mechanics of an intracranial saccular aneurysm. Towards this
end, Kyriacou and Humphrey [57] and Shah et al. [84] solved the equilibrium
problem in weak form using the finite element method. For example, one can
solve nonlinear axisymmetric and nonaxisymmetric inflation problems using the
principle of virtual work,∫

2o

δw dA −
∫

2

P n · δx da = 0, (12)

where w is the 2-D strain-energy function, P the distension pressure, n an outward
unit normal to the membrane in the current configuration 2, δx the virtual changes
in position, and 2o the original domain. After introduction of suitable interpolation
functions and numerical integration via appropriate quadrature rules, equation (12)
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reduces to a system of nonlinear algebraic equations of the form g(q) = 0, where
q represents the vector of (unknown) nodal positions. This equation admits an
iterative Newton–Raphson solution, viz.

K(qi)[qi+1 − qi] = −g(qi ), (13)

where K = ∂g/∂q is the tangent matrix and i an iteration counter. This finite
element solution thereby yields the current position of each node, from which one
can compute strains and then stresses; this allows one to quantify the heteroge-
neous and anisotropic response of aneurysms to distention pressures. Kyriacou and
Humphrey [57] and Shah et al. [84] considered a class of idealized axisymmet-
ric saccular aneurysms having an initially uniform wall thickness H, a truncated
spherical or elliptical geometry, a Fung-type constitutive behavior, and a clamped
boundary condition at the neck. Not having sufficient data to quantify possible
regional variations in material behavior, they considered a range of stress–strain be-
haviors from isotropic and homogeneous to anisotropic and heterogeneous. Using
the aforementioned results for equation (3) and Scott’s data, they defined isotropic
behavior by c = 0.8769 N/m, c1 = c2 = 11.82, and c3 = 1.18. For anisotropic be-
havior, the values of c and c3 were the same, but values of c1 and c2 were modified
to allow the ratio c1/c2 to vary linearly with the undeformed arc length S ∈ [0, L]
from c1/c2 = 1 at the fundus (S = 0) to either 3 or 1/3 at the neck (S = L).
Kyriacou and Humphrey prescribed the variation in c1/c2 such that the value of
w (λ1 = 1.18, λ2 = 1.18) was the same at the neck as it was in the isotropic case;
Shah et al. ensured that w (λ1 = 1.18, λ2 = 1.18) remained the same at each
point. Whereas the former allows regional variations in material heterogeneity (as
suggested by the data of Steiger et al. [93]) and material symmetry, the latter main-
tains a type of homogeneity and thereby isolates effects of regional variations in
symmetry. Of course, c1/c2 must equal 1 at the fundus due to axisymmetry, which
requires T1 = T2 and λ1 = λ2 at that location. Finally, the prescribed boundary
conditions were zero displacement at the neck ( i.e., ur = 0 and uz = 0 at z = 0,
which enforces λ2 ≡ 1 at z = 0, where u is the displacement) and zero radial
displacement at r = 0, the symmetry axis.

Perhaps the first question that one should address with the finite element method
is the applicability of the Laplace equation Tα ≡ T = Pa/2. Shah et al. [84]
attempted this by first finding the best-fit sphere for the deformed configuration
of model lesions as calculated by finite elements. They fit the deformed generator
curve via (rj )2 + (zj − o)2 = a2, where j = 1, . . . , n is the number of nodes used
in the simulation, and o and a define the center and radius of the best-fit sphere.
Next, they calculated the principal uniform Cauchy stress t , which equals T /h or
T λ2/H where h = H/λ2 is the deformed thickness, λ = a/A the uniform stretch
ratio, and A the best-fit undeformed radius. This requires a value for the uniform
λ associated with T , which was obtained by inverting the constitutive relation (cf.
equation (3)). Finite element and Laplace results were then compared as a function
of undeformed arc length S.
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Figure 6. Finite element results for a model isotropic and axisymmetric aneurysm – c = 0.88
N/m, c1 = c2 = 11.82, c3 = 1.18, H = 27.8 µm, initial volume = 0.0398 ml, and
A : B = 0.32, 1.0, and 3.12. Panels A–C show the undeformed (dashed) and deformed (solid
lines) configurations at 80 and 160 mmHg pressure. Panels D–F show the associated stresses
in the meridional and circumferential directions, with the dotted lines showing the Laplace
approximation. Panels G–I show the associated stretches (from Shah et al., with permission).

Figure 6 shows results for lesions having three different initial geometries (i.e.,
values of A/B, the ratio of the initial R and Z major axes) but otherwise the same
initial lesion volume, thickness, isotropic material behavior, quasi-static distension
pressure, and boundary conditions; specific values are in the figure legend. The
undeformed generator curves (dashed lines in panels A to C) reveal that the pre-
scribed geometry was one half of a complete ellipse or sphere. Panels A to C show
how the initially elliptical or spherical geometry was distorted upon loading (see
solid lines) due, in part, to the fixed boundary condition at the neck. Despite equal
increments in pressure from 0 to 80 and then 80 to 160 mmHg, most deformation
occurred at lower pressures as expected of a material that exhibits an exponential
stress–strain behavior. Panels D to F reveal a number of important observations
with regard to the distributions of the principal Cauchy stresses tα: the meridional
stress (solid curve) was higher than the circumferential stress (dashed curve) in
lesions when A/B � 1, but the converse was true when A/B < 1; the highest
multiaxial stresses occurred at the fundus in the lesions with the highest ratio of
A/B; the highest multiaxial stresses occurred near S/L ∼ 0.7 (with S/L = 0
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Figure 7. Similar to Figure 6 except for lesions having an increasingly greater stiffness in the
circumferential direction as you move from the fundus to the neck.

at the fundus and 1 at the neck) for lesions with A/B < 1; and, as expected,
stresses were uniform over the largest domain in lesions having A/B = 1 (i.e.,
an initially spherical geometry). Panels G to I show the associated distributions
of the principal stretch ratios λα . Note that λ2 = 1 at S/L = 1 as required by
boundary conditions. The horizontal dotted lines in panels D to I show the uniform
stress and stretch values predicted by the Laplace solution; recall that these were
calculated based on the best-fit sphere for the deformed configuration. As expected,
the Laplace approximation was best for the initially spherical geometry although
one may argue that a reasonable mean value for Tα(S) was obtained in each case.
Details on the stress field provide much greater information, however.

Additional results were reported for the same three lesions and loading con-
ditions with the exception that the material properties varied linearly in S from
isotropic at the pole (i.e., c1 = c2 = 11.8 at S/L = 0) to meridionally stiffer at the
neck (i.e., c1 = 17.79 and c2 = 5.93 at S/L = 1). The deformed configurations
were similar to those in Figure 6, and so too for the stress and stretch fields with
two exceptions: the maximum stresses increased at the fundus and the meridional
stretch decreased at the neck when A/B � 1, and the maximum values of circum-
ferential stress and stretch (i.e., near S/L = 0.7) increased slightly with respect
to those in Figure 6 when A/B < 1. Figure 7 shows results for the same three
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Figure 8. Similar to Figure 6 except for lesions of three different initial sizes (from Shah et
al., with permission).

lesions with the exception that the material properties varied linearly in S from
isotropic at the fundus to circumferentially stiffer at the neck (i.e., c1 = 5.93 and
c2 = 17.79 at S/L = 1). In contrast to changes associated with the meridionally
stiffer lesion, this circumferentially stiffer behavior resulted in marked differences
in the stress and stretch fields, particularly when A/B � 1. For example, panels
E and F in Figure 7 reveal that an increased circumferential stiffness resulted in
a decreased equibiaxial stress at the fundus, a maximum multiaxial stress away
from the fundus, and an increased meridional stretch near the neck. Increasing the
circumferential stiffness when A/B > 1 thus tended to homogenize the stress field.

Figure 8 shows results for lesions having three different initial sizes (i.e., lu-
minal volume) but otherwise the same initial spherical shape (i.e., the same un-
deformed radius, but truncated at different locations), thickness, isotropic material
behavior, quasi-static distension pressures, and boundary conditions. As expected,
panels A to C show that the more completely spherical geometry (panel C) yielded
the most sphere-like behavior; that is, the stress and stretch fields are uniform and
equibiaxial over a large portion of the lesion, the only variations being due to the
boundary condition at the fixed neck (a boundary layer effect). Despite marked
differences in size (undeformed and deformed), the magnitude of the stresses and
stretches were nearly the same at the fundus and similar over the entire domain.
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This was anticipated for the general solution for the inflation of an axisymmetric
membrane is [47],

T1 = P

2κ2
, T2 = P

κ2

(
1 − κ1

2κ2

)
, (14)

which reveals that it is the principal curvatures (κα), not the size per se, that controls
the stress resultants – this has not yet been appreciated clinically as noted earlier
with regard to the ongoing search for the “critical size”. Finally, the dotted lines
reveal, as expected, that a Laplace approximation is reasonable for nearly complete
sphere-like lesions (panels B and C) but less good for cap-like lesions.

Despite longstanding reliance on the maximum dimension as a predictor of
rupture-potential, this metric has failed to answer the most important clinical ques-
tions: Why do some lesions expand whereas others remain dormant for long peri-
ods? Why do some lesions rupture whereas most do not? Why does rupture tend
to occur at the fundus even when the neck is thinner? Although based on incom-
plete data, the biomechanical analyses presented here reveal important insights that
address these questions in part. It appears that lesions do not enlarge because of
material or dynamic instabilities; it appears that the local curvature and anisotropic
material properties, not lesion size, govern the distribution of intramural stress;
and it appears that the stresses are greatest at the fundus if the material behavior is
either isotropic or meridionally stiffer (recall that Toth et al. [97] found the latter
experimentally).

6. Need for a Structurally-Based Constitutive Relation

The above results demonstrate that biomechanics can and must play a role in un-
derstanding better the natural history of saccular aneurysms and their treatment.
Yet, analyses are only as good as the data upon which they are founded. A pressing
need in aneurysm research is the identification of an improved stress–strain rela-
tion for the tissue. It is axiomatic that material behavior results from the internal
composition of the material, hence an appropriate starting point is quantitative
histology.

6.1. COLLAGEN ARCHITECTURE

Collagen is a highly structured cross-linked biopolymer, able to withstand high
tensile loads. Tendon, having type I fibers, is perhaps the simplest and most thor-
oughly studied collagenous tissue; it has a breaking strength of 60–100 MPa and
a stiffness of 1.0–2.5 GPa at its maximum extension [22, 101]. A collagenous
framework provides strength and stiffness to blood vessels as well. Many arteries
are able to withstand more than 10× the normal blood pressure. Even veins, which
may be tested to pressures approaching 600 mmHg prior to use as bypass vessels
for the heart, are exceptionally strong [2]. That intracranial saccular aneurysms
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rupture suggests that they are, in contrast, much less able to withstand the persis-
tent loads due to normal physiological or pathological blood pressures (e.g., up
to ∼200 mmHg). It appears that two aspects of collagen structure may be key to
the reduced strength of saccular aneurysms – the layered organization of the fibers
within the wall and the existence of a fiber complement that is substantially weaker
than normal type I collagen [7, 14, 15, 31, 69].

The general spherical shape of saccular aneurysms provides a basis for under-
standing the load carrying capability of the wall. Arterial blood pressure stresses
the wall of a spherical lesion equally in all tangential directions, with “modest”
differences in the stresses for elongated or flattened lesions [57]. Of course, more
varied forms of saccular aneurysms, with secondary lobes on the primary lesion
or biloculations, will have a correspondingly varied distribution of wall stresses.
There is a need to correlate structure and mechanics in saccular aneurysms as at-
tempted in other collagenous tissues (e.g., see [22, 63, 64]). Moreover, new results
are needed to understand better how the aneurysmal wall behaves in the short term
as a stiff elastic collagenous fabric, whereas over the longer term, it behaves in
vivo as a remodeling, irreversibly enlarging structure. Progress has been made by
applying multi-dimensional polarized light (MDPL) microscopy, which has the
potential to complement the tissue mechanics. The key to assessing directional
tissue properties is an evaluation of the directional distribution of the constituent
fibers, layer by layer, and quantification of the proportion of fibers in each direction
as well as their uniaxial strength within each layer.

Given that the aneurysmal wall consists primarily of collagen, it is useful to ex-
ploit the birefringent optical properties of individual collagen fibers – wherein the
morphological, mechanical, and optical axes coincide – to study both orientation
and distribution with the polarizing microscope [9]. The histological processing
for such studies is standard (i.e., fixation, dehydration, paraffin infiltration and
embedding, and subsequent sectioning via a microtome), except for the staining
of tissue after sectioning. Birefringent enhancement stains make the measurement
of the alignment of individual fibers more precise [87] and they make possible a
measure of the strength of birefringence from the same local region. Thus, there
are two polarized light techniques of importance in studying aneurysmal collagen:
the Universal Stage attachment enables measurement of orientation in three dimen-
sions and the Senarmont compensator, which is a 45 degree aligned quarter-wave
filter, allows measurement of the birefringence of individual fibers [9].

The Universal Stage is an effective instrument for measuring two fiber angles:
the azimuth, in the plane of the tissue section, and the elevation, measured out
of the plane of the section. Thus, the tissue section is viewed optically as a thick
transparent section and the birefringent collagen fibers within that section reveal
their 3-D alignment directly on the polarizing microscope. A key point is that the
inner stage of the instrument containing the tissue slide is mounted so that it can
be rotated freely in three dimensions up to a tilt angle of 50◦. Measurements of
alignment are made at extinction, which has a precision of approximately ±1◦
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Figure 9. Schema to illustrate several tangential sectioning planes on the surface of an
aneurysm. The local stretches and stress resultants can be assessed separately in each region
prior to perfusion fixation.

[87]. Graphical presentation and analysis of data have been accomplished using
the Lambert equal area projection.

Plane polarized light traversing a birefringent material is resolved into two
rays, the ordinary ray and the extraordinary ray, which vibrate at right angles to
each other and travel at different velocities. The velocity difference introduces a
phase difference between the two rays that depends directly upon the strength of
birefringence and the thickness of birefringent fabric. By means of the Senarmont
compensator, one is able to measure, fiber by fiber, the phase difference (or phase
retardation) directly on the microscope. The rationale behind the phase retardation
method is that both the mechanical strength of the tissue and its birefringence
depend on the cross-linked molecular structure and size of the fibers [21, 100].

An important requirement for combining both phase retardation and 3-D orien-
tation is that the elevation angles of the measured fibers be relatively low, less than
15◦, which ensures that the phase retardation is not biased toward lower values.
This requirement has been met in studies on saccular aneurysms by confining
analysis to tissue sections cut tangentially or near tangentially. By the method
of repeated embedding, after each short series of tangential sectioning from the
surface, it has been possible to retrieve collagen-related microscopic data from
several regions of interest on the aneurysm surface [15]. This approach has set the
stage for matching, in the future, wall structure and material behavior, region by
region on individual lesions (Figure 9).

Figure 10 shows a tangentially cut section close to the luminal edge of a 2.6 mm
diameter human aneurysm. Superimposed on the section are four radially aligned
corridors that provide a gray-scale comparison of the strength (i.e., level) of bire-
fringence as a function of position across the wall. The layering of the wall is
evident by the concentric rings, with a parallel alignment of fibers within indi-
vidual layers. The azimuthal direction of the fibers is generally coherent within
layers with the mean direction varying widely from layer to layer (cf. Figure 2).
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Figure 10. Polarized light micrograph of a tangential section from a 2.6 mm diameter
aneurysm revealing the layered structure of the aneurysm wall (wall thickness 70 µm). Four
measurement corridors are shown, with the birefringence levels of collagen within each of the
layers being gray-scaled (from MacDonald et al. [66], with permission).

Figure 11. Lambert projections to show the orientation of collagen fibers for one of the mea-
surement corridors from the aneurysm shown in Figure 10: (i) primary data with each layer
identified by number, and (ii) data rotated to show the great circle distribution, indicating
that there is a full range of directional alignments of the collagen fibers at that region on the
aneurysm wall (with permission).

This distinctly layered organization has been characteristic of each of the several
saccular aneurysms studied, regardless of size, provided the wall is relatively free
of atherosclerosis [13, 14]. The defining feature of each layer has been primarily
the mean fiber orientation, although fiber size and birefringence also contribute to
the distinctiveness among layers.

Graphical presentation of directional data on Lambert projections provides a
quantitative and comprehensive overview of the directional organization of the
fibers in a tissue section. It is the preferred graphical method for three-dimensional
data because it is an equal area projection, preserving the total area of the data
regardless of its mean orientation and thus its projection position on the graph
[76, 88]. Figure 11(i) is an example of a Lambert projection showing a single
corridor of measurements with 10 layers across the wall of the aneurysm from
Figure 10. This projection shows the clustering of the primary data around the
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Figure 12. Plot of the calculated breaking tension in the three outer layers of an aneurysm
against the angular direction of the wall, where 0◦ on the abscissa is the meridional direction
(neck to fundus) and 90◦ is the equatorial direction. The inset is a schema of the three outer
layers with the mean collagen orientation shown, and the gray scale indicating the strength of
birefringence (from MacDonald et al., with permission).

perimeter (azimuthal directions ranging from 0 to 360◦) with the elevation angle
varying nonlinearly toward the center of the plot. The layers are numbered from
the lumen, as layer 1, to the outer edge of the aneurysm. The computer rotated
projection (Figure 11(ii)) shows the distribution of the same data relative to a
great circle girdle distribution, and reveals how well these data span all orientations
relative to the aneurysm surface.

Together, fiber direction and distribution provide a basis for estimating tissue
strength (which also depends on cross-linking, etc.), and they can be used to de-
velop microstructural methods such as those of Lanir [62]. The observed variation
of birefringence across the aneurysm wall has suggested that it is reasonable to
combine retardation and orientation data to assess directional strength of the tissue
[15]. Early findings suggest that enlargement of an aneurysm requires a reorgani-
zation of the higher strength outer fibers while new collagen is added to the inner
layers. Note, therefore, that several studies have linked collagen birefringence,
mechanics, and the healing process – for example, in skin wound healing and
maturation of a scar post myocardial infarction [21, 105, 106]. It was the study
of Doillon, however, that provided the first quantitative measure of tissue strength
directly from birefringence. Recently, MacDonald et al. [66] reanalyzed the data
of Doillon by plotting tensile strength σs (kPa) versus fiber birefringence B (phase
retardation in units of nm), which revealed a nonlinear relation σs = 0.304B2.33, for
which the correlation coefficient r = 0.99. This strength was defined as the tensile
stress at which the dermal scar began to fail due to damage and/or micro-tearing.
Figure 12 shows the contribution to directional strength of three outer layers of
a 9 mm diameter aneurysm, and the marked differences in strength contribution
because of layer thickness and fiber birefringence; included in the calculations
were aneurysm radius, layer thickness, and number of layers, and the variables
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of fiber alignment, birefringence, and estimated local wall thickness [66]. The data
revealed a tissue anisotropy of approximately 2× for the direction of least to great-
est strength, with a tensile strength (in the weakest direction) ranging from 0.73 to
1.8 MPa over 4 aneurysms. Recall that Steiger et al. and Toth et al. reported direct
measurements of tensile strength from aneurysmal tissue strips 0.5 MPa ±0.26
(SE) and 0.5 to 1.45 MPa, respectively – this shows a good correspondence with
the few aneurysms that have been studied microscopically to date.

6.2. THEORETICALLY-MOTIVATED EXPERIMENTS

There are five general steps in the formulation of a constitutive relation (DE-
ICE): Delineating general characteristics, Establishing a theoretical framework,
Identifying a specific form of the relation, Calculating best-fit values of the ma-
terial parameters, and Evaluating the predictive capability of the final relation.
Hsu et al. [42, 43] presented both a new theoretical framework and a multiaxial
experimental system for accomplishing steps 2–5 for thin, axisymmetric, non-
complicated (i.e., no atherosclerosis and no prior bleeds or repairs) saccular aneu-
rysms. Briefly, the framework exploits two results noted above: equations (14),
which show that the in-plane stress-resultants can be determined directly from
experimental data, and equation (2), which is a general membrane constitutive re-
lation. Taken together, it is easy to see that, in principle, one can glean information
about the response functions ∂w/∂Eαβ for the material via,

∂w

∂E11
= λ2

λ1

(
P

2κ2

)
,

∂w

∂E22
= λ1

λ2

(
P

κ2

)(
1 − κ1

2κ2

)
, (15)

where F = diag[λ1, λ2] and λα (stretch ratios), κα (principal curvatures), and P

(distension pressure) are all experimentally measurable. Although one would prefer
to examine these response functions by maintaining one of the principal Green
strains constant while the other varies, and vice versa, this is not possible in the
axisymmetric inflation problem. Hsu et al. [42] showed via numerical simulations,
however, that this approach can provide information on the functional form of the
strain-energy function. Unfortunately, this has yet to be accomplished in large part
due to the scarcity of unruptured human lesions at autopsy and in particular those
having an axisymmetric shape.

6.3. INVERSE FINITE ELEMENT PARAMETER ESTIMATION

Whether the lesion is axisymmetric or non-axisymmetric, or whether the functional
form of the strain-energy is identified directly from data or simply postulated, one
must calculate best-fit values of the material parameters from data. Kyriacou et
al. [59] suggested that the inverse finite element method would be useful in this
regard. Briefly, they evaluated this approach by comparing nodal displacements
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that were calculated via a (forward) finite element solution (e.g., equations (12)–
(13) with an assumed set of material parameters) with those that were found ex-
perimentally for an inflated rubber membrane; estimates of the best-fit values of
the material parameters were determined by minimizing the difference between
computed and measured displacements in a nonlinear least squares sense. Results
showed that this approach is indeed feasible, at least for simple material descrip-
tors. Nonetheless, solving the nonlinear finite element equations (iteratively using
a Newton–Raphson method) within an iterative nonlinear regression algorithm
(Marquardt–Levenberg) can be computationally expensive. Seshaiyer et al. [82]
suggested, therefore, that one simply perform the parameter estimation over a sub-
domain 2s ⊂ 2o, rather than over the whole domain 2o. Advantages are two-fold:
one avoids the necessity of knowing all of the boundary conditions, which can be
challenging even in a laboratory setting, and one need not solve a large number of
simultaneous finite element equations.

In particular, Seshaiyer et al. reported best-fit values of the material parameters
(constitutive relation similar to equation (1)) based on pressure-strain data from
multiple regions from 2 non-axisymmetric human aneurysms. The estimation was
based on four linear triangular elements that defined the sub-domain, with the 1
central node “free” and the 4 outer nodes prescribed as displacement boundary
conditions. As expected, the results suggested anisotropy and regional differences,
the most marked of which was for a lesion that was primarily collagenous but had
a region that was visibly atherosclerotic (and thus stiffer). In comparison to the val-
ues of the parameters obtained from the data of Scott et al., the more recent findings
suggested an overall stiffer behavior. For example, for one (representative) region,
c = 10.18 N/m, c2 = 20.03, c1 = 8.71, and c3 = 8.81. This was consistent with
the much less extensible behavior seen experimentally in these lesions – maximum
principal stretches were on the order of 8% rather than the 18% reported by Scott et
al. (who assumed that the lesions were perfect spheres). This difference may well
have been due to a difference in defining the stress-free states, the more recent data
likely being more reliable. Figure 13 shows an illustrative stress–stretch response to
equibiaxial stretches of 10% based on the new best-fit values. Note the anisotropy,
albeit not marked.

7. Growth and Remodeling

7.1. MOTIVATION

Diverse research over the last 25 years has revealed the ubiquitous role of growth
and remodeling within the vasculature, one that is essential to normal tissue main-
tenance, the process of healing, adaptation to altered conditions, and even the
progression or regression of disease. Examples include arterial adaptations to hy-
pertension, sustained alterations in flow, and balloon angioplasty to name but a
few [32, 61]. Based on the recent data by Canham and colleagues [66] as well
as work on protease activity in aneurysms [31, 69] it appears that stress-mediated
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Figure 13. Calculated equibiaxial stress-stretch responses based on the best-fit material
parameters determined using the sub-domain inverse finite element method for parameter
estimation – results from one region on one human lesion (from Seshaiyer et al., with
permission).

regulation of aneurysmal collagen may play a key role in the natural history of these
lesions as well. This is largely an open problem from the perspective of mechanics,
but let us briefly review recent work that illustrates its potential importance.

7.2. TOWARDS A GROWTH MODEL

There has been only one prior report of a computational model for studying the
growth of saccular aneurysms, and unfortunately it is not described in detail. Steiger
[95] considered a class of axisymmetric lesions (equations (14)) and stated that
“tissue growth rate was set proportional to wall stress”. Although there is no dis-
cussion of the constitutive or evolution equations, he reports that “sausage-shaped
and disc-shaped” lesions tended to develop toward a spherical shape whereas multi-
lobed lesions tended to remain complex. He suggested that localized blebs may be
an attempt to stabilize a localized weakness in the wall.

Let us consider the following questions: Can fibroblasts in an enlarging aneurysm
synthesize and organize collagen such that the resulting intramural stresses mimic
the values experienced in the normal parent vessel? Or, does a particular distribu-
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tion of material properties exist that would tend to minimize and homogenize the
stress distribution within an aneurysm? In an effort to begin to examine the latter
question, Ryan and Humphrey [78] studied 12 sub-classes of non-complicated le-
sions (maximum dimensions � 2 mm) defined by the triplets (A, B, Zr ) where A

and B are the major/minor radii and Zr is a “truncation level” that yields a model
having a neck (cf. Figure 6). Using finite element simulations, preferred material
properties were sought in terms of two parameters, (c2/c1)max ∈ [1/11, 11] and
p ∈ [1, 6], where

c2

c1
= 1 +

[(
c2

c1

)
max

− 1

][
i − 1

N − 1

]p

(16)

and c2 and c1 are the material parameters in the Fung pseudostrain-energy function
(equation (1)), (c2/c1)max is the ratio of these parameters at the neck of the lesion
(arc length S = L), i ∈ [1, N] is the finite element number, and p is a descriptor
of how (e.g., linearly or nonlinearly) the material symmetry varies from the fundus
to the neck. For example, (c2/c1)max = 1 implies isotropy at all S, (c2/c1)max >

1 yields a progressively increased circumferential stiffness, and (c2/c1)max < 1
yields a progressively increased meridional stiffness. Likewise, p = 1 requires
the symmetry to vary linearly from the fundus to the base (as in Kyriacou and
Humphrey [57], Shah et al. [84]), whereas p > 1 allows nonlinear variations.
Preferred properties thus indicate that particular combination of (c2/c1)max and p

that minimizes and homogenizes the stress field.
Based on literally thousands of simulations (though this would be better ac-

complished simply as an optimization problem), it was found that the multiaxial
stresses in lesions having an initially large neck : height ratio tend to be lower
and nearly homogeneous if p > 1 and (c2/c1)max > 9. Figure 14 compares,
for example, the different stress distributions for isotropic (i.e., (c2/c1)max = 1
and p = 1) and the preferred properties for one lesion. With the exception of the
boundary layer effect (due to the imposed zero displacement boundary condition
at the neck), the stresses are nearly homogeneous. Although results were different
for the different geometries (see [78]), the general finding was consistent with that
of Steiger [95]): small non-complicated lesions (i.e., thin and collagenous, free
of atherosclerosis, fibrin patches, etc.) tended to “prefer” material properties that
allowed them to become more spherical. For large neck : height ratios this requires
that the lesion expand more in the z direction, which requires less stiffness in
the meridional direction; for small neck : height ratios, this requires that the lesion
expand more in the r direction, which requires less stiffness in the circumferential
direction. These findings are teleologically reasonable as the sphere is the optimal
geometry to resist a distension pressure. An unexpected finding, however, was how
the lesions preferred to achieve this. For example, lesions with large neck : height
ratios tended to concentrate the anisotropy near the neck (i.e., larger values of p).

Although based on idealized models, the finding that intramural stresses in
aneurysms can be homogenized simply via a preferential deposition of collagen
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Figure 14. Stress distributions for the same model lesion except that the material behavior
is isotropic in one case and “preferred” in the other. Note the tendency towards homoge-
nization and minimization of the stresses in the latter case (from Ryan and Humphrey, with
permission).

(and selective removal of old collagen) is provocative. Indeed, given recent re-
ports that apoptosis (programmed cell death) and matrix metalloproteinase activity
(matrix degradation) are both increased in saccular aneurysms, and so too for
the transcription of type III collagen, it is reasonable to expect significant stress-
mediated remodeling in aneurysms [15, 36, 69]. It is tempting to hypothesize, for
example, that stable lesions are those which have remodeled in such a way that
the stresses experienced by the fibroblasts are restored close to those in the normal
parent vessel. There may be cases, of course, wherein the stresses may exceed
wall strength prior to the normalization of stress due to remodeling; likewise, the
insidious effects of atherosclerosis, the activation of platelets, etc. may also hinder
or prevent the remodeling process and thereby lead to rupture. In such cases, the
lesion could rupture prior to stabilization. There is clearly a need to explore remod-
eling theories (e.g., see [48]), which of course must be based on good estimates of
the wall shear stress and pressure fields (and thus solid-fluid interactions), which
likely serve as signals to the endothelial cells and fibroblasts to control matrix
turnover, and better data on the time-course of changes in lesion geometry and
microstructure. Only in this way will one be able to formulate and test various
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growth and remodeling theories. Much remains to be done, and finite elasticity has
a clear role to play.
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