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1 Introduction and basic facts

Nonlinear backward stochastic differential equations were first introduced in 1990

by Pardoux and Peng [35]. Under the Lipschitz assumption of the generator f , the

authors stated the first existence and uniqueness result. Later on (1991-1994) they

developed the BSDE theory relaxing hypothesis that ensured existence and unique-

ness on this type of equations and giving applications to optimal control problems,

a reference [36]. In [33] the authors proved a result of existence and uniqueness of

BSDE under weaker conditions than the Lipschitz property.

The interest in BSDEs comes form their connections with PDEs, (see [14], [41]);

stochastic control and mathematical finance (see [17], [18], among others). In partic-

ular, as shown in [16], BSDEs are a useful tool in the pricing of a European option,

which consists of a contract which pays the amount ξ at time T . In a complete

market, the price process Y of ξ is a solution of a BSDE.

On the other hand, a result of existence and uniqueness of BSDE equations under

the assumption that the generator is locally Lipschitz conditions can be found in [20].

A similar result was obtained in the case when the coefficient is continuous with Linear

growth [24]. The same authors [25] generalized these results under the assumption
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that the coefficients has a super-linear quadratic growth. Other extensions of existence

and uniqueness of BSDE can be found in [21], [26] and [33]. Studies of stability of

solutions for BSDE have been studied, for example in [1] the authors study stability

under disturbances in the filtration.

In [6] it is considered standard BSDEs when the noise is driven by a Brownian

motion and an independent Poisson random measure. They have shown the existence

and uniqueness of the solution, in addition, the link with integral-partial differential

equations is studied.

The BSDEs with jumps, beginning with an existence theorem given in [26] and

[39]. The authors stated such a theorem for Lipschitzian generators, which can be

proved by a fixed point techniques. Other interesting paper on BSDEs with jumps is

given in [38] and [40].

Since in a very few cases BSDE solutions are explicit, it is logical to ask for numer-

ical methods approximating the unique solution of this type of equations and to know

the associated type of convergence. On this matter some methods of approximation

have been developed.

An algorithm of four steps proposed in [28], to solve equations of the Forward-

Backward type, relating the type of approximation to the partial differential equations

theory. On the other hand in [3] it is proposed a method of random discretization in

the time for a BSDE, where the convergence of the method for the solution (Y, Z) only

needs regularity assumptions, but for the simulation studies it is necessary multiple

approximations. See also [10] [29] and [13] for a FBSDE solutions; [19] for a regression-

based Monte Carlo method and [42] for approximating solutions of BSDEs, and [37]

for Monte Carlo valuation of American Options.

On the other hand in [11], [9], [2] and [27] the authors replace the Brownian motion

by simple random walks in order to define a numerical approximations for BSDE. This

technique allows to simplify the computation of the conditional expectations involved

at each time step.

A quantization technique was suggested in [4] and [5] for the resolution of reflected

backward SDEs when the generator f does not depend on the control variable z. This

method is based on the approximation of the continuous time processes on a finite

grid, and requires a further estimation of the transition probabilities on the grid.
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For a class of RBSDE, in [8] the authors propose a discrete-time approximation

for a forwardbackward stochastic differential equations. The Lp norm of the error is

shown to be of the order of the time step. On the other hand a numerical approxi-

mation for a class of RBSDE based on the numerical approximation for BSDE and

the approximation given in [30] can be found in [31] and [34].

One of the most recently work in the numerical scheme for a class of with Jumps

is given in [23] and is based in the approximation for the Brownian motion and a

Poisson process by two simple random walk. Finally for decoupled forward-backward

SDEs with jumps a numercially scheme was proposed in [7].

Let Ω = C (
[0, 1],Rd

)
and consider the canonical Wiener space (Ω,F ,P,Ft), in

which Bt(ω) = ω(t) is a standard d-dimensional Brownian motion. We consider he

following Backward Stochastic Differential Equation (BSDE in short).

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs, (1)

where ξ is a FT -measurable square integrable random variable and f is Lipschitz

continuous in the space variable with Lipschitz constant L. The solution of (1) is a

pair of adapted processes (Y, Z) which satisfies the equation.

2 Numerical methods for BSDE

One idea to get a numerical scheme for solving BSDE is based upon a discretization

of the equation (1) by replacing B with a simple random walk. To be more precise,

let us consider the symmetric random walk W n:

W n
t :=

1√
n

cn(t)∑

k=0

ζn
k , 0 ≤ t ≤ T,

where {ζn
k }1≤k≤n is an i.i.d. Bernoulli symmetric sequence. We define Gn

k := σ(ζn
1 , . . . , ζn

k ).

Throughout this section cn(t) = [nt]/n, and ξn denotes a square integrable random

variable, measurable w.r.t. Gn
n that should converge to ξ. We assume that W n and

B are defined in the same probability space.

In [27], the authors consider the case when the generator depends only on the

variable Y , which makes simpler the analysis. In this situation the BSDE (1) is given
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by

Yt = ξ +

∫ T

t

f(Ys)ds−
∫ T

t

ZsdBs, (2)

whose solution is given by:

Yt = E
(

ξ +

∫ T

t

f(Ys)ds /Ft

)
, (3)

which can be discretized in time with step-size h = T/n by solving a discrete backward

stochastic differential equation given by:

Y n
ti

= ξn +
1

n

n∑
j=i

f(Y n
tj

)−
n−1∑
j=i

Zn
tj
4W n

tj+1
, (4)

This equation has a unique solution (Y n
t , Zn

t ) since the martingale W n has the

predictable representation property. It can be checked that solving this equation is

equivalent to finding a solution to the following implicit iteration problem:

Y n
ti

= E
{

Y n
ti+1

+
1

n
f(Y n

ti
)/Gn

i

}
,

which due to the adaptedness condition, is equivalent to

Y n
ti
− 1

n
f(Y n

ti
) = E

{
Y n

ti+1
/Gn

i

}
. (5)

Furthermore, once Y n
ti+1

is determined, Y n
ti

is solved via (5) by a fixed point tech-

nique: {
X0 = E

{
Yti+1

|Gn
i

}

X1 = X0 + 1
n
f(Xk).

It is standard to show that if f is uniformly Lipschitz in the spatial variable x with

Lipschitz constant L (we also assume that f is bounded by R) then the iterations

of this procedure will converge to the true solution of (5) at a geometric rate L/n.

Therefore, in the case when n is large enough, one iteration would already give us

the error estimate: |Y n
ti
−X1| ≤ LR

n2 , producing a good approximate solution of (5).

Consequently, the explicit numerical scheme is given by:





Ŷ n
T = ξn; Ẑn

T = 0

Xn
ti

= E
{

Ŷti+1
|Gn

i

}

Ŷ n
ti

= Xn
ti

+ 1
n
f(Xn

ti
)

Ẑn
ti

= E
{[

Ŷti+1
+ 1

n
f(Ŷ n

ti
)− Ŷ n

ti

]
(4W n

ti+1
)−1 |Gn

i

}
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The convergence of Ŷ n to Y is proved in the sense of the Skorohod topology in

[27] and [9]. In [11] it is proved the convergence of the sequence Y n using the tool of

convergence of Filtrations. See also [3] for the case where f depends on both variables

y and z.

3 Application to European options

3.1 Black and Scholes Model

Let us assume that the price S of an asset evolves according to the following linear

SDE

dSt = µStdt + σStdBt (6)

which is the continuous version of

St+4t − St

St

≈ µ4t + σ4Bt, (7)

where the relative return has a linear growth plus a random perturbation. σ is called

the volatility and it is a measure of uncertainty. In this particular case, S has an

explicit solution given by the Doleans-Dade exponential

St = S0e
(µ− 1

2
σ2t)+σBt . (8)

The other element of this simple model is the existence of a riskless asset whose

evolution is given by βt = β0e
rt, where r : is the interest rate, that we assume is

constant over time. Then β satisfies the ODE:

βt = β0 + r

∫ t

0

βsds (9)

A portfolio is a couple of adapted processes (at, bt) that represents the amount of

investment in both assets at time t (both can be positive and negative). The wealth

process is then given by

Yt = atSt + btβt (10)

A main assumption is that Y is self-financing which in mathematical terms means

that

dYt = atdSt + btdβt. (11)
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A call option is a financial contract between two parties. The option gives you the

right to buy an agreed quantity of a particular commodity S at a certain time (the

expiration date, T ) for a certain price (the strike price K). Of course you have to

pay a fee (called a premium q) for this right. If the option can be exercised only at

T , the option is called European. If it can be exercised at any time before T is called

American. The main question is what is the right price for an option in both cases?

Mathematically q is determined by the existence of a replication with the initial value

q and the final value (ST −K)+, that is to find (at, bt) such that

Yt = atSt + btβt YT = (ST −K)+ Y0 = q. (12)

We look for a solution to this problem of the form Yt = w(t, St) with w(T, x) =

(x−K)+. Using Itô’s formula we get

Yt = Y0 +
∫ t

0
∂w
∂x

dSs +
∫ t

0
∂2w
∂x2 d[S, S]s +

∫ t

0
∂w
∂t

ds

= Y0 +
∫ t

0
∂w
∂x
{µSsds + σSsdBs}+

∫ t

0
1
2

∂2w
∂x2 σ2S2

sds +
∫ t

0
∂w
∂t

ds

= Y0 +
∫ t

0
∂w
∂x

σSsdBs +
∫ t

0

(
1
2

∂2w
∂x2 σ2S2

s + µSs
∂w
∂x

+ ∂w
∂t

)
ds.

Using the self-financing hypothesis we obtain

Yt = Y0 +
∫ t

0
asdSs +

∫ t

0
bsdβs = Y0 +

∫ t

0
as {µSsds + σSsdBs}+

∫ t

0
bsdβs

= Y0 +
∫ t

0
asσSsdBs +

∫ t

0
(rbsβs + asµSs) ds.

Using the uniqueness in the predictable representation property for the Brownian

Motion we obtain that

asσSs = σSs
∂w
∂x

rbsβs + asµSs = 1
2
σ2S2

s
∂2w
∂x2 + µSs

∂w
∂x

+ ∂w
∂t

as = ∂w
∂x

(s, Ss)

bs = Ys−asSs

βs
.

Since r (Ys−asSs)
βs

βs + asµSs = 1
2
σ2S2

s
∂2w
∂x2 + µSs

∂w
∂x

+ ∂w
∂t

, the equation for w is:

r
∂w

∂t
+

1

2
σ2x2∂2w

∂x2
= −rx

∂w

∂x
+ rw (13)

w(T, x) = (x−K)+.

6



The solution of this PDE is related to a BSDE which we deduce now. Let us start

again from the self-financing assumption

(ST −K)+ = YT = Yt +
∫ T

t
∂w
∂x

dSs +
∫ T

t
r(Ys − Ss

∂w
∂x

)ds

= Yt +
∫ T

t
σSs

∂w
∂x

dBs +
∫ T

t
(rYs + (µ− r)Ss

∂w
∂x

)ds,

from where we deduce

Yt = ξ +

∫ T

t

(αZs − rYs)ds−
∫ T

t

ZsdBs,

with α = r−µ
σ

, ξ = (S0e
(µ− 1

2
σ2T )+σBT −K)+ and Zs = σSs

∂w
∂x

. In this case we have an

explicit solution for w given by

Y0 = S0Φ(g(T, S0))−Ke−rT Φ(h(T, S0))

w(t, x) = xΦ(g(T − t, x))−Ke−r(T−t)Φ(h(T − t, x))
,

where g(t, x) = ln(x/K)+(r+1/2σ2)t

σ
√

t
, h(t, x) = g(t, x)− σ

√
t and Φ(x) = 1√

2π

∫ x

−∞ e
−y2

2 dy

is the standard normal distribution. In general, for example when σ may depend on

time an (St), we obtain a BSDE for (Yt) coupled with a Forward equation for (St),

that can be solved numerically.

4 Numerical methods for RBSDE

In this section we are interested in the numerical approximation of backward stochas-

tic differential equation with reflection (in short RBSDE). We present here the case of

one lower barrier, which we assume is an Itô process (a sum of a Brownian martingale

and a continuous finite variation process).

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs + KT −Kt, 0 ≤ t ≤ T,

Yt ≥ Lt, 0 ≤ t ≤ T, and

∫ T

0

(Yt − Lt) dKt = 0. (14)

where as before f is the generator, ξ is the terminal condition, L = (Lt) is the re-

flecting barrier. Under the Lipschitz assumption of f (see [14] and for generalizations

see [33], [12], [22]) there is a unique solution (Y, Z, K) of adapted processes, with the

condition that (K) is increasing and minimal in the sense that is supported on the

times (Y ) touches the boundary.
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The numerical scheme for RBSDE that present here is based on a penalization of

the equation (14) (see [14]) and then use the standard Euler scheme. The penalization

equation is given by

Y ε
t = ξ +

∫ 1

t

f(s, Y ε
s , Zε

s)ds−
∫ 1

t

Zε
sdBs +

1

ε

∫ 1

t

(Ls − Y ε
s )+ds,

where ξ and f satisfy the above assumptions (A1), (A2). In this framework, we

define

Kε
t :=

1

ε

∫ t

0

(Ls − Y ε
s )+ds, 0 ≤ t ≤ 1,

where ε is the penalization parameter. In order to have an explicit iteration we include

an extra Picard’s iteration and the numerical procedure is then

Y ε,p+1,n
ti = Y ε,p+1,n

ti+1
+

1

n
f(ti, Y

ε,p,n
ti , Zε,p,n

ti ) +
1

nε
(Lti − Y ε,p,n

ti )+ − 1√
n

Zε,p+1,n
ti ζi+1 (15)

Kε,p+1,n
ti+1

−Kε,p+1,n
ti :=

1

nε

(
S − Ÿ ε,p+1,n

ti

)+

for i ∈ {n− 1, . . . , 0}. (16)

Theorem 1 Under the assumptions

(A1) f is Lipschitz continuous and bounded.

(A2) L is assumed to be an Itô process.

(A3) lim
n→+∞

E

[
sup

s∈[0,T ]

∣∣E[ξ|Fs]− E[ξn|Gn
cn(s)]

∣∣
]

= 0.

the triplet (ξn, Y ε,p,n, Zε,p,n, Kε,p,n) converges in the Skorohod topology towards the

solution (ξ, Y, Z, K) of the RBSDE (14) (the order is first p →∞, then n →∞ and

finally ε → 0).

4.1 A procedure based on Ma and Zhang’s method

In this subsection we introduce a numerical scheme based on an idea given in [30].

The new ingredient is to use a standard BSDE with no reflection and then impose in

the final condition on every step of the discretization that the solution must be above

the barrier. Schematically we have

• Y n
1 := ξn.
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• for i = n, n− 1, . . . 1 let
(
Ỹ n, Zn

)
be the solution of the BSDE:

Ỹ n
ti+1

= Y n
ti

+
1

n
f(s, Ỹ n

s , Zn
s )− Zn

s (W n
ti+1

−W n
ti
). (17)

• define Y n
ti+1

= Ỹ n
ti+1

∨ Lti+1

• let Kn
0 = 0 and define Kn

ti
:=

∑i
j=1(Y

n
tj−1

− Ỹ n
tj−1

).

Clearly, Kn is predictable and we have

Y n
ti−1

= Y n
ti

+

∫ ti

ti−1

f
(
s, Ỹ n

s , Zn
s

)
ds−

∫ ti

ti−1

Zn
s dW n

s + Kn
ti
−Kn

ti−1
.

Theorem 2 Under the assumptions A1, A2 of Theorem 1 and

lim
n→+∞

E

[
sup

s∈[0,T ]

∣∣E[ξ|Fs]− E[ξn|Gn
cn(s)]

∣∣
]2

= 0,

we have

lim
n→∞

IE

[
sup

0≤i≤n

∣∣∣∣Yti − Y n
ti

∣∣∣∣
2

+

∫ 1

0

∣∣∣∣Zt − Zn
t

∣∣∣∣
2

dt

]
= 0.

5 Application to American Options

An American option is a one that can be exercised at any time between the purchase

date and the expiration date T , which we assume is non-random and for the sake of

simplicity we take T = 1. This situation is far more general than the European-style

option, which can only be exercised on the date of expiration. Since an American

option provides an investor with a greater degree of flexibility the premium for this

option is higher than the premium for a European-style option.

We consider an economy with a set of dynamically financial markets, described

by a Filtered probability space (Ω,F ,F0≤t≤T ,P). As before we consider the following

adapted processes: The price of the risk asset S = (St)0≤t≤T and the wealth process

Y = (Yt)0≤t≤T . We assume that the rate interest r is constant. The aim is to obtain

Y0, the value of the American Option.

We assume that there exists a unique risk-neutral measure allowing one to compute

prices of all contingent claims as the expected value of their discounted cash flows.
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This requires some regularity assumptions (see for example [38] or [15]). The equation

that describes the evolution of Y is given by a linear reflected BSDE coupled with

the forward equation for S.

Yt = (K − S1)
+ − ∫ 1

y
(rYs + (µ− r)Zs) ds + K1 −Kt −

∫ 1

t
ZsdBs,

St = S0 +
∫ t

0
µSsds +

∫ t

0
σSsdBs.

The increasing process K keeps the process Y above the barrier Lt = (St −K)+ (for

a call option) in a minimal way, that is Yt ≥ Lt, dKt ≥ 0 and

∫ 1

0

(Yt − Lt)dKt = 0.

The exercise random time is given by the following stopping time τ = inf{t; Yt−Lt <

0} that represents the exit time from market, for the investor. As usual we take

τ = 1 if Y never touch the boundary L. At τ he/she will buy the stock if τ < 1,

otherwise the investor do not exercise the option. In this problem, we are interested

in finding Yt, Zt, and τ . In the following table and picture we summarize the results

of a simulation for the American option.

n S0 = 80 S0 = 100 S0 = 120

1 20 11.2773 4.1187

2 22.1952 10.0171 3.8841

3 21.8707 10.7979 3.1489

4 22.8245 10.1496 3.9042
...

...
...

...

15 22.6775 10.8116 3.7119

16 22.6068 10.6171 3.6070

17 22.7144 10.7798 3.6811

18 22.6271 10.6125 3.6364

Real Values 21.6059 9.9458 4.0611

Table 1: Numerical Scheme for American Option with 18 steps, K = 100 r = 0.06,

σ = 0.4 and T = 0.5 and different values of S0.
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      Node

7.1 

      260,88728

     Node

6.1 

     222,35356  

    Node

5.1

Node

7.2 

    189,51137  188,266912

   Node 

4.1

Node

6.2 

   161,520055  160,459406  

Node 

3.1

Node

5.2

Node

7.3 

  137,663129  136,759141  135,861089

Node 

2.1

Node 

4.2

Node

6.3 

 117,3299316  116,559465  115,794058  

Node 

1.1 

Node 

3.2

Node

5.3

Node

7.4 

100  99,3433333  98,6909788  98,042908

Node 

2.2

Node 

4.3

Node

6.4 

 84,67006838  84,1140683  83,5617192  

Node 

3.3

Node

5.4

Node

7.5 

  71,6902048  71,2194391  70,7517648

   Node 

4.4

Node

6.5 

   60,7001454  60,3015478  

    Node

5.5

Node

7.6 

    51,3948546  51,0573618

     Node

6.6 

     43,5160586  

      Node

7.7 

      35,8450765

Figure 1: Binomial tree for 6 time steps, r = 0.06, σ = 0.4 and T = 0.5.
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