MA46B Ecuaciones de la Física Matemática. Semestre 2007-2

Profesor: Juan Peypouquet Auxiliares: Manuel Larenas, Gustavo Navarro

Fecha de entrega: Control 1

TAREA 2

3 de septiembre de 2007

P1.- Resolver usando el método de las características el problema:

$$\begin{cases} (y-u)u_x + (u-x)u_y &= x-y & \text{en } \mathbf{R}^2 \\ u &= 0 & \text{sobre } \{(x,y): xy=1\} \end{cases}$$

P2.- Sea $P = \sum_{|\alpha| \le m} a_{\alpha} \partial^{\alpha}$ un operador diferencial a coeficientes constantes en $\Omega \subseteq \mathbf{R}^N$ abierto.

(a) Sea Ω_1 abierto acotado de Ω , se define:

$$E = \{ u \in L^2(\Omega_1) : Pu = 0 \text{ en } \mathcal{D}'(\Omega_1) \}$$

Muestre que E es subespacio cerrado de $L^2(\Omega_1)$.

(b) Supongamos que P verifica la siguiente propiedad:

$$\forall \ \omega \text{ abierto en } \Omega, \text{ si } Pu = 0 \text{ en } \mathcal{D}'(\omega), \text{ entonces } u \in \mathcal{C}^{\infty}(\omega)$$

Ahora, sea $\Omega_2 \subset\subset \Omega_1$. Muestre que existe una constante C>0 tal que $\forall u\in E$:

$$\|\nabla u\|_{L^2(\Omega_2)} \le C\|u\|_{L^2(\Omega_1)}$$

Indicación: pruebe usando el Teorema del Grafo Cerrado que la aplicación $u\mapsto \frac{\partial u}{\partial x_j}$ definida de E en $L^2(\Omega_2)$ es continua.

P3.- Sea $T \in \mathcal{D}'(\Omega)$,

(a) Pruebe que si $T \in \mathcal{E}'(\Omega)$ entonces existe una cantidad finita de funciones continuas f_{α} tales que:

$$T = \sum_{\alpha} D^{\alpha} T_{f_{\alpha}}$$

- (b) Pruebe que para cada multi-índice α existe una función continua g_{α} de manera que:
 - $\circ\,$ cada compacto intersecta los soportes de una cantidad finita de g_{α} 's, y
 - $\circ \ T = \textstyle \sum_{\alpha} D^{\alpha} T_{g_{\alpha}}$

Indicación: elija un recubrimiento de Ω y considere una partición de la unidad.

P4.- Definición: un conjunto $A \subseteq \mathcal{D}'(\mathbf{R}^N)$ se dirá Álgebra de Convolución si cumple:

- $\delta \in \mathcal{A}$
- $S, T \in \mathcal{A} \Rightarrow S * T \in \mathcal{A}$

Sea $\mathcal{D}_{+}(\mathbf{R}) = \{ T \in \mathcal{D}'(\mathbf{R}) : \operatorname{sop} T \subseteq \mathbf{R}_{+} \cup \{0\} \}.$

- (a) Muestre que $\mathcal{D}_{+}(\mathbf{R})$ es álgebra de convolución.
- (b) Si $T \in \mathcal{D}_{+}(\mathbf{R})$, se denota por T^{-1} a la distribución X tal que $T * X = \delta$. Calcular H^{-1} , $(\delta')^{-1}$ y $(\delta' \lambda \delta)^{-1}$.
- (c) Sea P(D) un operador diferencial (polinomio a coeficientes constantes) y $z_1 \dots z_n$ ceros de P(z). Pruebe que $[P(D)\delta]^{-1} = H(x)e^{z_1x} * \dots * H(x)e^{z_nx}$ y deduzca que todo operador diferencial a coeficientes constantes en \mathbf{R} admite solución elemental.

P5.- El objetivo de este problema es determinar una función $E(x,y,t): \mathbf{R}^2 \times \mathbf{R} \to \mathbf{R}$ tal que:

$$\frac{\partial E}{\partial t}(x, y, t) - \frac{1}{4\pi} \triangle E(x, y, t) = \delta(x, y, t) \text{ en } \mathcal{D}'(\mathbf{R}^2 \times \mathbf{R}_+).$$

(a) Definamos: $f: \mathbf{R}^2 \times \mathbf{R}_+ \to \mathbf{R}$ dada por:

$$f(x, y, t) = \frac{1}{t}e^{-\frac{\pi r^2}{t}}.$$

Calcule $g(\xi, \eta, t) = \Phi(f(x, y, t))(\xi, \eta) \quad \forall (\xi, \eta) \in \mathbf{R}^2$.

(b) Determine el siguiente límite en $\mathcal{S}'(\mathbf{R}^2)$:

$$\lim_{t\to 0} g(\xi,\eta,t).$$

(c) Calcule el producto de convolución para $t_1, t_2 \in \mathbf{R}^2$:

$$g(\cdot, \cdot, t_1) * g(\cdot, \cdot, t_2) \in \mathcal{S}(\mathbf{R}^2).$$

(d) Sea $T \in \mathcal{D}'(\mathbf{R}^2)$ a soporte compacto. Se pide calcular:

$$\lim_{t \to 0} \frac{g(\cdot, \cdot, t) * T - T}{t} \text{ en } \mathcal{D}'(\mathbf{R}^2).$$

Indicación: puede serle útil determinar primero el límite en $\mathcal{S}'(\mathbf{R}^2)$ siguiente:

$$\lim_{t \to 0} \frac{g(\cdot, \cdot, t) - \delta}{t},$$

siendo $\delta \in \mathcal{D}'(\mathbf{R}^2)$.

(e) Definamos $F(x,y,t) = Y(t) \frac{1}{t} e^{-\frac{\pi r^2}{t}}$, donde:

$$Y(t) = \begin{cases} 1 & t > 0 \\ 0 & t \le 0 \end{cases}$$

Pruebe que $F \in \mathcal{D}'(\mathbf{R}^3)$.

(f) Sea $\epsilon > 0$, $F_{\epsilon}(x, y, t) = F(x, y, t + \epsilon)$. Calcule en $\mathcal{D}'(\mathbf{R}^2 \times \mathbf{R}_+)$:

$$4\pi \frac{\partial F_{\epsilon}}{\partial t} - \triangle F_{\epsilon}.$$

(g) Encuentre una solución fundamental en $\mathbb{R}^2 \times \mathbb{R}_+$ de:

$$\frac{\partial}{\partial t} - \frac{1}{4\pi} \triangle$$
.

2