MA38B Análisis. Semestre 2007-02

Profesor: Roberto Cominetti Auxiliares: Cristóbal Guzmán y Felipe Olmos

Guía 1

24 de Agosto de 2007

P1.- Caracterización de los Abiertos de \mathbb{R}

Sea Θ un abierto de \mathbb{R} (con la topología usual). Para cada $x \in \Theta$ definimos:

$$b_x := \sup\{b : (x, b) \subseteq \Theta\}, \ a_x := \inf\{a : (a, x) \subseteq \Theta\}$$

- 1. Demuestre que los conjuntos $\{b:(x,b)\subseteq\Theta\},\ \{a:(a,x)\subseteq\Theta\}$ son no vacíos.
- 2. Demuestre que $(a_x, b_x) \subseteq \Theta$.
- 3. Demuestre que $a_x \notin \Theta$ y $b_x \notin \Theta$.
- 4. Concluya que existe una colección numerable de intervalos abiertos disjuntos $\{(a_k, b_k) : k \in \mathbb{N}\}$ tales que $\Theta = \bigcup_{k=0}^{\infty} (a_k, b_k)$.

P2.- Recomendamos hacer los ejercicios :

- 1. Problema 2 , Trabajo Dirigido 1 2006
- 2. Problema 2, Trabajo Dirigido 2 2006
- 3. Parte I, Control 1 2001

P3.- La recta de Sorgenfrey

Considere la siguiente familia de subconjuntos de \mathbb{R} :

$$\mathcal{B} = \{ [a, b) : a, b \in \mathbb{R}, a < b \}$$

- 1. Verifique que \mathcal{B} es base de una topología τ sobre \mathbb{R} . Llamamos a (\mathbb{R}, τ) la recta de Sorgenfrey.
- 2. Muestre que la topología de Sorgenfrey es estrictamente más fina que la topología usual.
- 3. Muestre que τ no es discreta.
- 4. Caracterice la convergencia de sucesiones en τ .
- 5. Muestre que la recta de Sorgenfrey es un espacio separable que satisface el primer axioma de numerabilidad pero no el segundo. Basta usar sucesiones para caracterizar la convergencia?
- 6. Concluya que este espacio no es metrizable (es decir, no existe una métrica que induzca su topología).

P4.- Topologías en $C([0,1],\mathbb{R})$

Considere el conjunto $C=C([0,1],\mathbb{R})$ de las funciones continuas reales valuadas en [0,1]. Definamos para $f\in C$ y $\epsilon\geq 0$:

$$M(f,\epsilon) = \{ g \in C : \int_0^1 |f - g| \le \epsilon \}$$

$$U(f,\epsilon) = \{ g \in C : \sup_{x} |f(x) - g(x)| \le \epsilon \}$$

- 1. Pruebe que la familia $\{M(f,\epsilon): f\in C, \epsilon\geq 0\}$ es base de alguna topología $\mathcal M$ en C. Explique brevemente por qué la familia $\{U(f,\epsilon): f\in C, \epsilon\geq 0\}$ es base para una topología $\mathcal U$ en C.
- 2. Pruebe que ambas topologías son distintas (Hint: use las funciones x^n $n \in \mathbb{N}$). Más aún, pruebe que $\mathcal{M} \subset \mathcal{U}$.
- 3. Considere ahora, para $f \in C$, $\epsilon \geq 0$ y un conjunto finito $x_1, x_2, \ldots, x_n \in [0, 1]$:

$$L_{(x_1,x_2,...,x_n,\varepsilon)}(f) = \{g \in C : |f(x_i) - g(x_i)| \le \varepsilon, i = 1,...,n\}$$

Pruebe que:

- a) Estas vecindades forman una base de alguna topología \mathcal{L} en C.
- b) $\mathcal{L} \subset \mathcal{U}$
- c) \mathcal{L} y \mathcal{M} no están incluídas una en la otra.

P5.- Sea $X = \mathbb{N} \times \mathbb{N}$. Para $(m, n) \in X$ definimos

$$B_{(n,m)} = \left\{ \begin{array}{ll} \{(m,n)\} & \text{si}(m,n) \neq (0,0) \\ \{V \subseteq \mathbb{N} \times \mathbb{N} : (0,0) \in V \ \forall \ \exists n_0 \in \mathbb{N}, \ \forall n \geq n_0 \ \text{el conjunto} \ \{k \in \mathbb{N} : (n,k) \in V\} \ \text{es finito} \} \end{array} \right. \\ \text{si}(m,n) \neq (0,0)$$

Pruebe que :

- 1. $\{B_{(m,n)}\}_{(m,n)\in X}$ es una base de vecindades de alguna topología τ en X
- 2. (X, τ) es Hausdorff
- 3. Ninguna sucesión en $X \setminus \{(0,0)\}$ converge a (0,0)
- 4. Existe una sucesión en $X \setminus \{(0,0)\}$ que tiene a (0,0) como punto de acumulación

Recuerde/Decimos que :

- \bullet Una sucesi'onen un espacio Xes una funcion desde $\mathbb N$ a X
- Una sucesión $(x_n)_{n\in\mathbb{N}}\subseteq X$ converge hacia un punto $x_0\in X$ si $\forall\,V\in\mathcal{N}_{x_0},\,\exists\,n_0\,\mathrm{tq}\,\forall n\geq n_0\,x_n\in V$
- Un punto x es punto de acumulación de una sucesión $(x_n)_{n\in\mathbb{N}}\subseteq X$ si $\forall\,V\in\mathcal{N}_{x_0}\,\forall\,N\,\exists n\geq N\,x_n\in V$

P6.- Sea $D=\{0,2\}^{\mathbb{N}}$ con la topología producto y $\varphi_2,\varphi_3:D\to[0,1]$ definidas por

$$\varphi_2(a) = \sum_{i \in \mathbb{N}} \frac{a_i}{2^{i+2}}$$
$$\varphi_3(a) = \sum_{i \in \mathbb{N}} \frac{a_i}{3^{i+1}}$$

- 1. Pruebe que φ_2 y φ_3 son contínuas , con φ_2 sobreyectiva y φ_3 inyectiva
- 2. Sea $C = \varphi_3(D)$ (que se llama *Conjunto de Cantor*). Probar que C es compacto (es decir cerrado y acotado) y que $\varphi_3: D \to C$ es homeomorfismo. Deduzca que existe $h: C \to [0,1]$ contínua y sobreyectiva. Es tal h un homeomorfismo?
- 3. Probar que para todo $k \in \mathbb{N}$ el espacio D es homeomorfo a D^k y deducir que $h: C \to [0,1]^k$ contínua y sobreyectiva. Generalizar al Cubo de Hilbert $I^{\infty} = [0,1]^{\mathbb{N}}$ dotado de la topología producto.
- 4. Sea $H = \prod_{n \in \mathbb{N}} \left[-\frac{1}{n}, \frac{1}{n} \right] \subseteq \ell^2$ con la topología traza. Probar que I^{∞} y H son homeomorfos, y que H tiene interior vacío en ℓ^2 .
- **P7.-** Decimos que una topología satisface la *Condición de la cadena numerable (CCN)* sí y solo sí toda familia disjunta de abiertos es numerable o finita. Demuestre que todo espacio separable satisface CCN

Sea X un conjunto no numerable, definimos la topolog'ia del complemento numerable en X como sigue :

$$\tau = \{ A \subseteq X : |A^c| \le \aleph_0 \} \cup \{ X, \emptyset \}$$

- 1. Demuestre que τ es una topología
- 2. Demuestre que es T_1 y que no es Haussdorf.
- 3. Demuestre que no es separable y que satisface CCN

Consideremos ahora $Y = \{0,1\}$ con la topología indiscreta Σ . Demuestre que $(X \times Y, \tau \otimes \Sigma)$ no es T_0