Guía de ejercicios No. 5

MA36A Funciones de una variable compleja

Prof.: J. Dávila 25 de noviembre de 2007

- 1. Determine si los siguientes productos convergen o no, y si la convergencia es absoluta.

- a) $\prod_{n=1}^{\infty} \frac{(n+1)^2}{n^2 + 2n}$, b) $\prod_{n=1}^{\infty} (-1)^n \frac{n}{2n+1}$, c) $\prod_{n=1}^{\infty} [1 + (-1)^n n^{-3/2}]$, d) $\prod_{n=1}^{\infty} \cos(1/n)$, e) $\prod_{n=1}^{\infty} n^{1/n}$, f) $\prod_{n=1}^{\infty} \left[1 + \frac{(-1)^n}{n(\log n)^2}\right]$.
- 2. Determine para cuáles valores de $z\in\mathbb{C}$ el producto siguientes converge: a) $\prod_{n=1}^{\infty}(1+z^n)$, b) $\prod_{n=1}^{\infty}z^{1/n}$.
- 3. Pruebe la identidad

$$\frac{1}{1-z^2} = \prod_{n=1}^{\infty} \left(1 + z^{2^n}\right) \quad \forall |z| < 1.$$

- **4.** Muestre que $\prod_{n=2}^{\infty} (1 n^{-2}) = 1/2$
- **5.** Sea $\lambda > 0$. Muestre que el producto $\prod_{n=2}^{\infty} \left(1 + (-1)^n n^{-\lambda}\right)$ converge absolutamente cuando $\lambda > 1$, converge cuando $1/2 < \lambda \le 1$ y diverge cuando $0 < \lambda \le 1/2$. Indicación: En el caso $0 < \lambda \le 1/2$ verifique que:

$$\prod_{n=2}^{2N} \left(1 + (-1)^n n^{-\lambda} \right) \to 0 \text{ si } N \to \infty$$

- **6.** Muestre que el producto infinito $\prod_{n=1}^{\infty} exp(n^{-z} \operatorname{Log}(z))$ converge uniformemente sobre compactos contenidos en $U = \{z : \text{Re}(z) > 1\}$, e identifique la función que este producto define.
- 7. Suponga que G es un abierto y $\{f_n\}$ una sucesión de funciones holomorfas en G tales que $f(z) = \prod f_n(z)$ converge uniformemente en compactos de G.
- a) Muestre que $\sum_{k=1}^{\infty} \left[f'_k(z) \prod_{n \neq k} f_n(z) \right]$ converge uniformemente en compactos de G y es igual a f'(z).
- b) Suponga que f no es idénticamente nula y sea $K \subset G$ un compacto tal que $f \neq 0$ en K. Muestre que

$$\frac{f'(z)}{f(z)} = \sum_{n=1}^{\infty} \frac{f'_n(z)}{f_n(z)}$$

y que la convergencia es uniforme en K.

- 8. Encuentre una función entera tal que $f(n+in)=0 \quad \forall n\in\mathbb{Z}$. Muestre la más elemental de tales funciones. Ahora realice lo mismo para una función entera que cumpla $f(m+in)=0 \quad \forall m,n\in\mathbb{Z}$.
- 9. Muestre que

Res
$$(\Gamma, -n) = \frac{(-1)^n}{n!}$$
 $n = 0, 1, 2, ...$

10. Obtenga la representación

$$\Gamma(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(z+n)} + \int_1^{\infty} t^{z-1} e^{-t} dt \quad \forall z \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}.$$

11. Para x > 0, pruebe que:

$$\Gamma(x) = \sqrt{2\pi} x^{x - \frac{1}{2}} e^{-x} e^{\frac{\theta(x)}{12x}}$$

$$con 0 < \theta(x) < 1$$

- 12. Definamos $\Psi = \frac{\Gamma'}{\Gamma}$. Pruebe lo siguiente: a) Ψ es meromorfa en $\mathbb C$ con polos simples en $0,-1,\ldots$ y residuos $\mathrm{Res}(\Psi;n)=-1 \quad \forall n\in\mathbb N.$
 - b) $\Psi(1) = -\gamma$ (la constante de Euler). c) $\Psi'(z) = \sum_{n=0}^{\infty} \frac{1}{(z+n)^2}$ d) $\Psi(1+z) \Psi(z) = z^{-1}$ e) $\Psi(1-z) \Psi(z) = \pi \cot(\pi z)$
- **13.** Sea $f(z) = \Psi(z) + \Psi(z+1/2) 2\Psi(2z)$ para $z \in \mathbb{C} \setminus \{0, -1/2, -1, -3/2, \ldots\}$. Pruebe que f es constante y deduzca que $\Gamma(z)\Gamma(z+1/2)=e^{az+b}\Gamma(2z)$. Encuentre a y b y pruebe la fórmula de duplicación de Legendre

$$\Gamma(2z) = \pi^{-1/2} 2^{2z-1} \Gamma(z) \Gamma(z+1/2).$$

- 14. Muestre que el conjunto de los números primos es infinito. Indicación: Considere la función ζ (zeta de Riemann).
- **15.** Muestre que para Re(z) > 1 se cumplen:
- a) $\zeta^2(z) = \sum_{n=1}^{\infty} \frac{d(n)}{n^z}$, donde d(n) es el número de divisores de n.
- b) $\zeta(z)\zeta(z-1)=\sum_{n=1}^{\infty}\frac{\sigma(n)}{n^z}$, donde $\sigma(n)$ es la suma de los divisores de n