PROBLEMA 1

1. La varianza intergrupo es la varianza de las medias de los grupos ponderada por los efectivos de los grupos: $b = \frac{1}{27} \{(108.71 - 93.33)^2 + ...\} = 9192.07/27 = 340.45$

La varianza intra grupo es la media ponderada por los efectivos de la varianza por grupo: $w = \frac{1}{27}(7*s_1^2 + 10*s_2^2 + 10*s_3^2) = 5775.93/27 = 213.92$

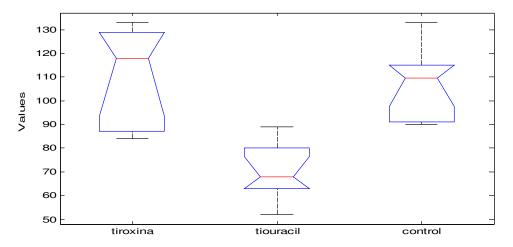
2. La razón de correlación es: $\frac{b}{b+w} = \frac{340.45}{340.45 + 213.92} = \frac{9192.07}{14968} = 0.61$

La que se interpreta que hay un cierto grado de relación funcional del tratamiento hacia la subida de peso.

3.

		1A	NOVA Tak	ole		
Source	SS	df	Ms	F	Prob>F	^
Groups	9192.07	2	4596.04	19.1	1.09018e-005	
Error	5775.93	24	240.66			
Total	14968	26				
						Y

El p-valor es muy pequeño, por lo cual se pude concluir que hay diferencia entre los tratamiento. El que muestra baja de peso es el tiouracil. Un boxplot ayudaría a confirmar esta conclusión.



PROBLEMA 2

1 El coeficiente de correlación lineal empírico es igual a: $r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$

Permite medir el grado de relación lineal que existe entre dos variables. Varia entre -1 y +1. Cuando vale +1, existe una relación lineal estricta entre las variables de pendiente positiva. Cuando es cercano a +1, existe una relación lineal aproximada entre las variables de pendiente positiva, si la muestra bivariada es homogenea (proviene de una misma poblacón), si no puede tener relación totalmente distinta o ninguna.

2. Se puede construir la matrix
$$X = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ . & . \\ . & 0 \\ 1 & 0 \end{pmatrix}$$
 , $X^t X = \begin{pmatrix} n & n_1 \\ n_1 & n_1 \end{pmatrix}$ y
$$(X^t X)^{-1} = \frac{1}{n_1 n_2} \begin{pmatrix} n_1 & -n_1 \\ -n_1 & n \end{pmatrix} \text{. Usando que } n \, \bar{y} = n_1 \bar{y}_1 + n_o \bar{y}_o \text{ , se deduce que } \hat{\beta}_0 = \bar{y}_o \text{ y}$$

$$\left(X^t X\right)^{-1} = \frac{1}{n_1 n_2} \begin{pmatrix} n_1 & -n_1 \\ -n_1 & n \end{pmatrix} . \text{ Usando que } n \, \overline{y} = n_1 \, \overline{y}_1 + n_o \, \overline{y}_o \text{ , se deduce que } \hat{\boldsymbol{\beta}}_0 = \overline{y}_o \text{ yellow}$$

 $\hat{\pmb{\beta}}_1 = \bar{y}_1 - \bar{y}_o$. Se llega al mismo resultado derivando la suma de los cuadrados de los errores: $\sum (y_i - \beta_o - \beta_1 x)^2$. Usando $E(y) = \hat{\beta}_o + \hat{\beta}_1 x$ y el hecho que x = 1 o 0, se obtiene

$$E(y) = \overline{y}_1$$
 si $x = 1$ y $E(y) = \overline{y}_o$ si $x = 0$.

PROBLEMA 3

1.
$$\frac{\sum \hat{\varepsilon}_i}{\sigma^2} \sim \chi_{n-r}^2$$

2.
$$\frac{\sum (\hat{Y}_i - \bar{Y})^2}{\sigma^2} \sim \chi_{r-1}^2$$

3.

Fuente de	g.l.:	SC: Suma de	CM:	F	p-valor
variablilidad	Grados	cuadrados	SC/g.l.		
	de				
	libertad				
Regresión	4	887994	222000	751.06	0.000
Error	<i>50</i>	14779	295.58		
Total	54	902773			
(centrado)					

Hay 55 parcelas.

 $F=751.06 \, \mathrm{con} \, 4 \, \mathrm{y} \, 54 \, \mathrm{grados} \, \mathrm{de} \, \mathrm{libertad}.$ El p-valor $P(F_{4,54}>751.06=0.00 \, \mathrm{es} \, \mathrm{nulo}.$ Se rechaza la hipótesis nula. Hay una cierta significación del modelo.

4.

Variable	Estimación	Desv. típica Estimación	t-Student	p-valor
Constante X ₁ X ₂ X ₃ X ₄	23.45	14.90	1.5738	0.122
	0.9321	0.08602	10.836	0.000
	0.7343	0.4721	1.5554	0.126
	-0.4982	0.1520	-3.2776	0.002
	3.486	2.274	1.533	0.132

El intervalo es: [-0.4982-2*0.1520, -0.4982+2*0.1520]=[-0.8022, -0.1942].

El intervalo de confianza no cubre el cero, lo que permite concluir que la variable correspondiente es significativa en el modelo. Esta confirmado también por el p-valor del test de Student para este coeficiente es muy pequeño.