Calculo Numérico MA33A.-Primavera 2007

Prof.: Jaime Michelow

Aux.: Ignacio Trujillo-Hugo Ulloa

Guía de problemas propuestos Control 2.

Problema 1. (J.M)

La intuición nos dice que al aproximar una función cualquiera , f(x), por un polinomio para luego integrarlo, la diferencia entre el valor teórico $\int_a^b f(x)dx$ y el valor numérico $\int_a^b P_n(x)dx$ no debería divergir. Demuestre matemáticamente que existe una cota natural para la integral de una función f(x) cualquiera.

Problema 2. (J.M)

- a) Encuentre la fórmula de Newton-Cotes para una aproximación polinomial de ordén 4-
- b) Con el resultado de la parte anterior deduzca la fórmula para calcular la integral de una función cualquiera f(x).
- c) Considere la siguiente función:

$$f(x) = e^x \ln(2x)$$

Utilizando el método creado en la parte b) y el método de Simpson (con una partición equivalente para ambos métodos) calcule la integral de f(x) para el intervalo [1,9].

d) Explique por qué se dice que las fórmulas de Newton Cotes aproximan la integral por el área de un triangulo.

Problema 3.

Para calcular la integral de funciones en el intervalo [-1.1] se propone una fórmula numérica del tipo

$$\int_{-1}^{1} f(x)dx \approx I(f) = Af(0) + Bf(1) + Cf(-1) + D[f''(1) - f''(-1)]$$

Calcule los valores de las constates A, B, C y D de modo que la fórmula sea exacta para polinomios de grado inferior o igual a 4.

Problema 4 (J.M)

a) Use un método adecuado de cuadratura de Gauss para aproximar las integrales que siguen, para n = 2 en primera integral y n = 3 en la segunda.

$$\int_{-2}^{3} \frac{1}{(1+x^2)^2} dx \qquad \int_{0}^{1} \frac{\cos(\boldsymbol{p} \cdot x)}{\sqrt{(1+x^2)}} dx +$$

Hint: Considere: $\left\{ x_1^1 = -\frac{1}{\sqrt{3}}, x_2^1 = \frac{1}{\sqrt{3}} \right\}, \left\{ x_1^2 = -0.77459667, x_2^2 = 0, x_3^2 = 0.77459667 \right\}$

b) Demuestre que da lo mismo usar un polinomio de tercer grado en lugar de uno de segundo grado para deducir la fórmula de Simpson.

Problema 5.

Calcular la siguiente integral utilizando las fórmulas del Trapecio y de Simpson, con pasos h = p/4 y $h = \mathbf{p}/2$ respectivamente.

$$I = \frac{\mathbf{p}}{2} \int_{0}^{2\mathbf{p}} e^{\left(2 - \frac{1}{2}\sin(x)\right)} dx$$

Concluya sobre la precisión de cada método

Problema 6.

Consideremos la regla de cuadratura consistente en aproximar la integral en [a,b] de cualquier función f(x) (definida en ese intervalo e integrable en el mismo) por la del polinomio de menor grado, P(x), que interpola f(x) en n+1 puntos $x_i \in [a,b], i=0,...,n$, es decir:

$$I(f) \equiv \int_{a}^{b} f(x)dx \approx \int_{a}^{b} P(x)dx \equiv Q(f)$$

Donde $P(x_i) = f(x_i)$, $x_i \in [a, b], i = 0,..., n$ y P(x) de grado a lo sumo n.

Demostrar que existen unas constantes, llamadas pesos \mathbf{w}_i , i = 0,...,n de tal manera que para cualquier f(x)

$$Q(f) = \sum_{i=0}^{n} \mathbf{w}_{i} f(x_{i})$$

Verificándose necesariamente que

$$\sum_{i=0}^{n} \mathbf{w}_{i} = b - a$$

Problema 7 (J.M)

Sean los n puntos $(x_1, y_1), (x_2, y_2), (x_3, y_3), ..., (x_n, y_n)$ del plano, donde $x_1 < x_2 < ... < x_n$ y de paso constante $h=x_i-x_{i-1}=cte$. El polinomio de interpolación por Spline Cúbic es una función S(x) tal que:

- $\forall i = 1, 2, ..., n.$ S'(x) continua en [a, b]
- S'(a) = S'(b)
- S(x) polinomio de grado 3 en el intervalo $[x_i, x_{i+1}]$

Encuentre S(x)

Problema 8.

Se busca $S:[-2,2] \to \Re$ definida por dos polinomios $p,q \in P_3(\Re)$ de acuerdo a

$$S'(a) = S(x) = \begin{cases} p(x)si \ x \in [-2,0] \\ q(x)si \ x \in (0,2] \end{cases}$$

Que sea clase $C^2([-2,2])$ y que interpole a los datos $\{0,0,0,1,0\}$ en la malla $\{-2,-1,0,1,2\}$

- a) Haga un recuento del número de incógnitas escalares necesarias para conocer S(x). Escriba (sin resolver) las ecuaciones que permitirían determinar los valores de estas incógnitas.
- b) Sea a la derivada de S(x) en el origen (o ósea a = S'(0)). Encuentre las expresiones de p(x) y q(x) en función de a.
- c) Determine el valor de la constante a de modo que la función S(x) resultante satisfaga todas las propiedades requeridas. En este caso escriba explícitamente S(x) en el intervalo [-2,2]

Problema 9.

Encuentre la raíz de las ecuaciones siguientes en el intervalo (0,1.6). Determínelas con un error menor que 0.02 usando el método de bisección:

- a) $x \cos(x) = \ln x$,
- b) $2 x e^{-x} = 0$
- c) $e^{-2x} = 1 x$

Problema 10.

Use el método de Newton-Raphson para determinar la raíz distinta de cero de:

- a) $x = 1 e^{-2x}$
- b) $x \ln(x) 1 = 0$

con cuatro decimales correctos.

Problema 11.

Dadas las funciones: $f(x) = [(1 - e^{-2.3 x})(1 - x)]/2$, $g(x) = \cos(\pi x)$, utilice los métodos de Newton-Raphson y de la secante para encontrar el punto $x \in [0, 1]$ tal que f(x) = g(x), con una precisión del orden de $10^{-5}/2$.

Problema 12.

Un objeto cayendo verticalmente a través del aire está sujeto tanto a resistencia viscosa como a la fuerza de gravedad. Suponiendo que un objeto con masa m es dejado caer desde una altura y_0 , y que la altura del objeto después de t segundos es

$$y(t) = y_0 + \frac{mg}{k}t - \frac{m^2g}{k^2}(1 - e^{\frac{-kt}{m}})$$

Donde $g = -9.81356889 \text{ m/s}^2$ (en alguna parte de la Tierra) y k representa el coeficiente de resistencia del aire en kg-s/m. Suponga $y_0 = 1000 \text{ m}$, m = 1 kg, y k = 0.1 kg-s/m. Encuentre, con un error de hasta 0.01s, el tiempo que le toma a está masa tocar el suelo.

Problema 13

La formula Gaussiana tiene la forma $\int_{-1}^{1} w(x) y(x) dx \approx \sum_{i=1}^{n} A_i y(x_i)$ el caso especial con W(x)=1 lleva a la formula de Gauss-Legendre.

Sea el polinomio de Legendre es $P_n(x) = \frac{1}{2^n n!} \frac{d^n (x^2 - 1)^n}{dx^n}$.

Demostrar para k = 0,1,...,n-1

a) $\int_{-1}^{1} x^{k} P_{n}(x) dx = 0$ lo que hace a $P_{n}(x)$ ortogonal a cualquier polinomio de grado menor que n.

b) Demostrar que
$$\int_{-1}^{1} x^{n} P_{n}(x) dx = \frac{2^{n+1} (n!)^{2}}{(2n+1)!}$$

c) Demostrar que
$$\int_{-1}^{1} [P_n(x)]^2 dx = \frac{2}{2n+1}$$

Problema 14

Suponga N puntos seleccionados al azar sobre la periferia del círculo unitario. ¿Dónde se puede esperar que caiga el centro de gravedad?

Hint. Use el número aleatorio $X_{n+1} = 7^9 X_n$, hágalo variar entre 0 y $2\mathbf{p}$ al agregarle una coma delante del primer número y multiplicarlo por $2\mathbf{p}$. Luego use el método de Montecarlo.

Problema 15

Aproxime p por medio del método de Montecarlo, al lanzar una ficha a un círculo inscrito en un cuadrado.

Problema 16

Calcule una leve aproximación de la siguiente integral por el método de Montecarlo. $\int_{-6}^{8} e^{-x^2} sen(x) dx.$

Problema 17

Usa el método de bisección para aproximar la raíz de $f(x) = e^{-x^2} - 2x + 1$ comenzando en el intervalo [0.75,1] y hasta que $|\mathbf{e}_a| < 1\%$

Problema 18

Usa el método de la regla falsa para aproximar la raíz de $f(x) = \ln(x) + x^2 - 4$ comenzando en el intervalo [1,2] y hasta que $|\mathbf{e}_a| < 1\%$

Problema 19

Usa el método de la secante para aproximar la raíz de $f(x) = \arcsin(x) - e^{-2x}$ comenzando con $x_0 = 0, x_0 = 0.5$ y hasta que $|\mathbf{e}_a| < 1\%$

Problema 20

Usa el método de iteración del punto fijo para aproximar la raíz de $f(x) = \ln(x) + 2x - 4$ comenzando con $x_0 = 1.5$ y hasta que $|\mathbf{e}_a| < 1\%$

Obs: Los problemas planteados son de carácter propuesto y queda bajo su responsabilidad resolverlos, servirán para preparar los temas más importantes del control. Los problemas que comienzan con una sigla (J.M) pertenecen al profesor **Jaime Michelow**. Existen problemas mas importantes que otros (todos los que comienzan con J.M), como por ejemplo el problema 6, 8, 12 y 13