Clase Auxiliar Algebra Lineal 4 Octubre 2007

Profesor: María Leonor Varas

Auxiliares: Sebastián Astroza & Diego Morán

P1 Considere la matriz

$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

Sea $\varphi: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ la transformación lineal cuya representación matricial, con respecto a las bases canónicas sea la matriz A.

- a) Encontrar la fórmula general de φ .
- b) Encontrar una base de $\mathbb{K}er\varphi$ y de $\mathbb{I}m\varphi$.

 $\mathbf{P2}$ a) Dado $\theta \in \mathbb{R}$ se define la función $\mathcal{R}_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ como

$$\mathcal{R}_{\theta}(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$$

Calcule el determinante de alguna matriz representante de \mathcal{R}_{θ} , con respecto a bases elegidas de alguna manera por Ud. ¿Depende el valor del determinante de las bases que Ud escogió?¿Porqué? Demuéstrelo.

b) Sea $A \in M_{n \times n}$ una matriz antisimétrica (ie, $A^t = -A$). Pruebe que si A es invertible, entonces n es par.

HINT: Use de alguna manera creativa el determinante $(det(\cdot))$.

P3 Calcule

$$\det \left(\begin{bmatrix} \frac{1+i}{3} & \frac{1-2i}{3} & \frac{1+i}{3} \\ \frac{1-2i}{3} & \frac{1+i}{3} & \frac{1+i}{3} \\ \frac{1+i}{3} & \frac{1+i}{3} & \frac{1-2i}{3} \end{bmatrix} \right)$$

HINT: Use las conocidas y famosísimas propiedades del determinante para simplificar los cálculos.

- **P4** Un compañero de otra sección le presenta una transformación $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ definida sobre toda matriz cuadrada de 2×2 con coeficientes reales A por $T(A) = M\cdot A + A\cdot M$, donde $M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - (a) Pruebe que T es lineal.
 - (b) Encuentre la matriz representante de T con respecto a la base canónica de $M_{2\times 2}(\mathbb{R})$.

 $\textit{HINT}: \text{Su amigo tiene escrito en su cuaderno: } T \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} b+c & a+d \\ a+d & b+c \end{bmatrix}$

- (c) Calcular una base y la dimensión de Ker(T) e Im(T). Su compañero asegura que T no es inyectiva ni epiyectiva ¿Qué puede decir usted al respecto?
- (d) Por último su compañero le confiesa que aún no entiende lo que es una suma directa. Para ayudarlo demuestre que $Ker(T)\oplus Im(T)=M_{2\times 2}(\mathbb{R})$

HINT:
$$\frac{x+y}{2} + \frac{x-y}{2} = x$$
 y $\frac{x+y}{2} - \frac{x-y}{2} = y$

P5 Sea $\varphi: \mathbb{R}^3 \to \mathbb{R}^4$, transformación lineal cuya matriz representante con respecto a las bases canónicas es:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ -1 & 4 & 1 \\ 2 & -8 & -2 \end{bmatrix}$$

- a) Encontrar una base de $\mathbb{K}er\varphi$ y de $\mathbb{I}m\varphi$. ¿Es φ inyectiva?.
- b) Considere $\beta_3,\,\beta_4$ las bases canónicas de \mathbb{R}^3 y $\mathbb{R}^4,$ respectivamente. Se define

$$\beta_{3}^{'} = \{e_1 + e_2 - 2e_3, e_1 + e_2 + 2e_3, -e_1 + e_2\}$$

donde $e_i \in \beta_3, i = 1, 2, 3.$

Pruebe que β_3' es base de \mathbb{R}^3 .

- c) Sea $\psi: \mathbb{R}^3 \to \mathbb{R}^4$ la función lineal representada por la matriz A, con respecto a las bases β_3' y β_4 , es decir, $\mathcal{M}(\psi)_{\beta_3'\beta_4} = A$. Verifique que $\varphi \neq \psi$. ¿Porqué ocurre esto, aún cuando sabemos que ambas transformaciones tienen a A como matriz representante?.
- d) Ahora suponga que $\varphi : \mathbb{R}^3 \to M_{2 \times 2}(\mathbb{R})$ y que $\mathcal{M}(\psi)_{\beta_3 \beta_4} = A$, con β_3 , β_4 las bases canónicas respectivas. Encuentre una fórmula explícita para φ .