P3, semana 5.

(a) El eje de las x se puede describir como la recta que pasa por el origen y tiene dirección $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, con lo cual nos queda

$$L_1: \left(\begin{array}{c} 0\\0\\0\end{array}\right) + \alpha \left(\begin{array}{c} 1\\0\\0\end{array}\right)$$

Además, sabemos que podemos elegir el vector director de L_2 como la resta de los dos puntos que nos entregan, así que tenemos la ecuación vectorial de L_2

$$L_2: \left(\begin{array}{c} 1\\2\\0 \end{array} \right) + \beta \left(\begin{array}{c} 2\\-1\\1 \end{array} \right)$$

Como L_3 debe ser perpendicular a ambas rectas, elegiremos su vector director d calculando

$$\left(\begin{array}{c} 1\\0\\0\end{array}\right)\times\left(\begin{array}{c} 2\\-1\\1\end{array}\right)=\left(\begin{array}{c} 0\\-1\\-1\end{array}\right)$$

con lo que tomamos $d = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

Llamemos $P = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}$ al punto de apoyo que usaremos para L_3 . Como L_3 intersecta a L_1 , deben existir un μ y un α tales que

$$P + \mu \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Reescribiendo esto componente a componente, nos queda

$$p_1 = \alpha$$

$$p_2 + \mu = 0$$

$$p_3 + \mu = 0$$

de donde obtenemos que $p_2 = p_3$.

Como L_3 también intersecta a L_2 , deben existir un μ' y un β tales que

$$P + \mu' \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

y reescribiendo componente a componente:

$$p_1 = 1 + 2\beta$$

$$p_2 + \mu' = 2 - \beta$$

$$p_2 + \mu' = \beta$$

Restando las últimas dos ecuaciones, nos queda que $\beta=1$, y reemplazando esto en la primera entonces $p_1=3$. De este modo, quedamos en que $P=\begin{pmatrix}3\\p_2\\p_2\end{pmatrix}$. ¿Cómo despejar la variable faltante? Es importante

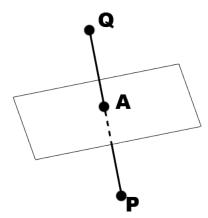
recordar que estamos buscando un punto cualquiera de la recta L_3 , y ésta tiene infinitos puntos posibles (al trasladar en múltiplos del vector director). Por lo tanto, cualquiera de ellos nos sirve. Observemos que

$$P = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + p_2 \cdot d$$

y por lo tanto P está determinado salvo una traslación en la dirección del vector director (lo cual es lo máximo que podemos esperar). Elegimos entonces $\begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$ como punto de apoyo, con lo que nos queda

$$L_3: \left(\begin{array}{c} 3\\0\\0 \end{array}\right) + \mu \left(\begin{array}{c} 0\\1\\1 \end{array}\right)$$

(b) Tenemos $\Pi: x+y+z=1$ y $P=\begin{pmatrix} 0\\0\\0 \end{pmatrix}$. Llamemos Q al punto reflejado de P respecto a Π y sea A el punto donde el trazo que une a P y Q corta a Π .



Notemos que, siendo Q el reflejo de P, A resulta ser el punto medio entre P y Q, entonces $A=\frac{1}{2}(P+Q)$. De aquí obtenemos que Q=2A-P.

¿Cómo calcular el punto A? Notar que el trazo que une P y Q debe ser perpendicular a $\Pi,$ por lo tanto A se puede calcular como la

proyección de
$$P$$
 (o de Q) sobre Π . Es decir, el punto $A = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

debe cumplir: (1) $A \in \Pi$, y (2) $(P - A) \perp \Pi$.

De la condición (1) obtenemos que a+b+c=1, de donde podemos

despejar
$$a = 1 - b - c$$
 y llevamos que $A = \begin{pmatrix} 1 - b - c \\ b \\ c \end{pmatrix}$.

De la condición (2) concluimos que (P-A) es normal a Π , es decir (P-A) es múltiplo de $n=\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ (el cual obtuvimos por inspección de la ecuación cartesiana de Π). Tenemos entonces

$$\left(\begin{array}{c} 0\\0\\0\end{array}\right) - \left(\begin{array}{c} 1-b-c\\b\\c\end{array}\right) = \alpha \left(\begin{array}{c} 1\\1\\1\end{array}\right)$$

y reescribiendo componente a componente:

$$\begin{array}{rcl} b+c-1 & = & \alpha \\ -b & = & \alpha \\ -c & = & \alpha \end{array}$$

de donde sacamos que b=c=1/3, y entonces $A=\begin{pmatrix} 1/3\\1/3\\1/3 \end{pmatrix}$ y entonces $Q=\begin{pmatrix} 2/3\\2/3\\2/3 \end{pmatrix}$.