P1, semana 3.

(a) Sea $A = \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}$. Observar que la forma de que el sistema Ax = 0 tenga solución única es

que al escalonar el sistema aumentado [A|0] nos queden todos los pivotes no nulos. Como escalonar un vector de 3 ceros es innecesario, escalonaremos simplemente A en lugar de [A|0].

Partimos entonces de A, y aplicamos las operaciones $E_{12}(-a)$, $E_{13}(-a^2)$. Nos queda

$$\left(\begin{array}{cccc}
1 & 1 & 1 \\
0 & b-a & c-a \\
0 & b^2-a^2 & c^2-a^2
\end{array}\right)$$

y finalmente utilizamos $E_{23}(-(b+a))$, con lo cual llegamos a

$$\left(\begin{array}{cccc}
1 & 1 & 1 \\
0 & b-a & c-a \\
0 & 0 & (c-a)(c-b)
\end{array}\right)$$

de donde es claro ver que debe cumplirse que $a \neq b$, $a \neq c$ y $b \neq c$, pues los pivotes deben ser no nulos.

(b) Debemos encontrar condiciones sobre α, β para que el sistema con lado derecho nulo tenga solución única. Sabemos que para esto basta escalonar e imponer que los pivotes sean no nulos. La matriz del sistema es

$$\left(\begin{array}{cccc}
-1 & 0 & \alpha & \beta \\
0 & 1 & \alpha & \beta \\
\alpha & \beta & 0 & 0 \\
\beta & \beta & \alpha & 0
\end{array}\right)$$

la cual escalonaremos directamente ya que no vale la pena escalonar el vector de ceros.

Partimos con $E_{13}(\alpha)$ y $E_{14}(\beta)$:	$\left(egin{array}{cccc} -1 & 0 & lpha & eta \ 0 & 1 & lpha & eta \ 0 & eta & lpha^2 & lphaeta \ 0 & eta & lpha(1+eta) & eta^2 \end{array} ight)$
Luego aplicamos $E_{23}(-\beta)$ y $E_{24}(-\beta)$:	$ \begin{pmatrix} -1 & 0 & \alpha & \beta \\ 0 & 1 & \alpha & \beta \\ 0 & 0 & \alpha(\alpha - \beta) & \beta(\alpha - \beta) \\ 0 & 0 & \alpha & 0 \end{pmatrix} $
Para evitar hacer suposiciones adelantadas sobre α y β intercambiaremos las filas 3 y 4 para seguir escalonando:	$ \left(\begin{array}{ccccc} -1 & 0 & \alpha & \beta \\ 0 & 1 & \alpha & \beta \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & \alpha(\alpha - \beta) & \beta(\alpha - \beta) \end{array} \right) $
y aplicamos $E_{34}(-(\alpha - \beta))$:	$ \left(\begin{array}{cccc} -1 & 0 & \alpha & \beta \\ 0 & 1 & \alpha & \beta \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \beta(\alpha - \beta) \end{array}\right) $

De donde vemos que las condiciones para que el sistema tenga solución única son: $\alpha \neq 0$, $\beta \neq 0$ y $\alpha \neq \beta$.

DVD