CÁLCULO DIFERENCIAL E INTEGRAL

Aux 2, Jueves 9 de Agosto

Problema 1. Sean $f, g : [0,1] \to [0,1]$ funciones contínuas y epiyectivas. Demuestre que existe $c \in [0,1]$ tal que: f(c) = g(c)

Problema 2. Sea $f: \mathbb{R} \to \mathbb{R}$ contínua, tal que $\forall x \in \mathbb{R}, \ f(x) \geq |x|$. La idea del problema es demostrar que f tiene un mínimo global. O sea:

$$\exists a \in \mathbb{R} \ \forall x \in \mathbb{R} \ f(a) \le f(x)$$

Para esto, proceda como sigue:

- (a) Sea I = [-f(0), f(0)]. Demuestre que $\forall x \in \mathbb{R} \setminus I, f(x) > f(0)$
- (b) Concluya que f tiene un mínimo global (en todo \mathbb{R}).

Problema 3. Sea $f: \mathbb{R} \to \mathbb{R}$ contínua. Sea (a_n) una sucesión en [a, b], no necesariamente convergente, tal que $\lim_{n \to \infty} f(a_n) = l$. Demuestre que existe $\overline{x} \in [a, b]$ tal que $l = f(\overline{x})$

Problema 4. Sea $h: \mathbb{R}_+^* \to \mathbb{R}$ que satisface:

$$h(x \cdot y) = h(x) + h(y)$$

Muestre que si h es contínua en x = 1, entonces h es contínua en todo su dominio. Concluya que $h(x) = log_a(x)$, con a = h(1)

Problema 5. Demuestre que toda función contínua de [0,1] en [0,1] tiene al menos un punto fijo.

Problema 6. Un conductor demora 5 horas en recorrer los (aproximadamente) 500 kms. que separan Santiago y Concepción. Pruebe que existe un tramo del viaje, de una longitud de 100 kms., que es recorrido en exactamente 1 hora.

Problema 7. Considere:

$$f(x) = \begin{cases} \frac{x \log(x)}{x - 1} & \text{si } x > 0, x \neq 1\\ \alpha & x = 1 \end{cases}$$

- (a) Encuentre α para que f sea contínua.
- (b) Analice la existencia de f'(x > 0). Calculela.
- (c) Determine la continuidad de f' en $0, \infty$)
- (d) Asuma que $f^{(n)}$ existe para $n \geq 2$ y que es contínua en 1. Calcule una recurrencia para $f^{(n)}(1)$ utilizando la fórmula de Leibnitz para (x-1)f(x)
- (e) Encuentre el Taylor de orden 3 para f entorno a 1.