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  2.2  Laplace transform

Let us first state a few important points about the application of Laplace transform in solving
differential equations (Fig. 2.1). After we have formulated a model in terms of a linear or
linearized differential equation, dy/dt = f(y), we can solve for y(t). Alternatively, we can transform
the equation into an algebraic problem as represented by the function G(s) in the Laplace domain
and solve for Y(s). The time domain solution y(t) can be obtained with an inverse transform, but
we rarely do so in control analysis.

What we argue (of course it is true) is that the Laplace-domain function Y(s) must contain the
same information as y(t). Likewise, the function G(s) contains the same dynamic information as
the original differential equation. We will see that the function G(s) can be "clean" looking if the
differential equation has zero initial conditions. That is one of the reasons why we always pitch a
control problem in terms of deviation variables.1  We can now introduce the definition.

The Laplace transform of a function f(t) is defined as

   
L[f(t)] = f(t) e–st dt

0

∞

(2-4)

where s is the transform variable.2  To complete our definition, we have the inverse transform

    
f(t) = L–1[F(s)] =

1
2πj

F(s) est ds
γ– j∞

γ+ j∞
(2-5)

where γ is chosen such that the infinite integral can converge.3 Do not be intimidated by (2-5). In
a control class, we never use the inverse transform definition. Our approach is quite simple. We
construct a table of the Laplace transform of some common functions, and we use it to do the
inverse transform using a look-up table.

     An important property of the Laplace transform is that it is a linear operator, and contribution
of individual terms can simply be added together (superimposed):

  L[a f1(t) + b f2(t)] = a L[f1(t)] + b L[f2(t)] = aF1(s) + bF2(s) (2-6)

Note:
The linear property is one very important reason why we can do partial fractions and
inverse transform using a look-up table. This is also how we analyze more complex, but
linearized, systems.  Even though a text may not state this property explicitly, we rely
heavily on it in classical control.

We now review the Laplace transform of some common functions—mainly the ones that we
come across frequently in control problems. We do not need to know all possibilities. We can
consult a handbook or a mathematics textbook if the need arises. (A summary of the important
ones is in Table 2.1.) Generally, it helps a great deal if you can do the following common ones

                                                

1 But! What we measure in an experiment is the "real" variable. We have to be careful when we
solve a problem which provides real data.

2   There are many acceptable notations of Laplace transform. We choose to use a capitalized letter,
and where confusion may arise, we further add (s) explicitly to the notation.

3 If you insist on knowing the details, they can be found on our Web Support.
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without having to look up a table. The same applies to simple algebra such as partial fractions and
calculus such as linearizing a function.

1. A  constant

f(t) = a,  F(s) =
a
s

(2-7)

The derivation is:

    L[a] = a e– st dt
0

∞
= – a

s e– st

0

∞
= a 0 + 1

s = a
s

slope a

Exponential decay Linear ramp

Figure 2.2. Illustration of exponential and ramp functions.

2. An  exponential function (Fig. 2.2)

f(t) = e–at with a > 0,  F(s) =
1

(s + a)
(2-9)

    L[e– at] = a e– at e– st dt
0

∞
= – 1

(s + a)
e– (a + s)t

0

∞
= 1

(s + a)

3. A ramp function (Fig. 2.2)

f(t) = at  for t ≥ 0 and a = constant,  F(s) =
a

s2 (2-8)

    L[at] = a t e– st dt
0

∞
= a – t 1

s e– st
0

∞
+ 1

s e– st dt
0

∞
= a

s e– st dt
0

∞
= a

s2

4. Sinusoidal functions

f(t) = sinωt,   F(s) =
ω

(s2 + ω2)
(2-10)

f(t) = cosωt,   F(s) =
s

(s2 + ω2)
(2-11)

We make use of the fact that   sin ωt = 1
2j (e jωt – e– jωt)  and the result with an exponential function

to derive
    L[sin ωt] = 1

2j
(e jωt – e– jωt) e– st dt

0

∞
= 1

2j
e– (s – jω)t dt

0

∞
– e– (s + jω)t dt

0

∞

= 1
2j

1
s – jω – 1

s + jω = ω
s2 + ω2

The Laplace transform of cosωt is left as an exercise in the Review Problems. If you need a review
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on complex variables, our Web Support has a brief summary.

5. Sinusoidal function with exponential decay

f(t) = e–at sinωt,   F(s) =
ω

(s + a)2 + ω2
(2-12)

Making use of previous results with the exponential and sine functions, we can pretty much do
this one by inspection. First, we put the two exponential terms together inside the integral:

   sin ωt e– (s+ a)t dt
0

∞
= 1

2j e– (s + a – jω)t dt
0

∞
– e– (s + a + jω)t dt

0

∞

= 1
2j

1
(s + a) – jω – 1

(s + a) + jω

The similarity to the result of sinωt should be apparent now, if it was not the case with the LHS.

6. First order derivative, df/dt,    L df
dt = sF(s) – f(0) (2-13)

    and the second order derivative,
    L d2f

dt2 = s2F(s) – sf(0) – f'(0) (2-14)

We have to use integration by parts here,

    L df
dt = df

dt e– st dt
0

∞
= f(t)e– st

0
∞ + s f(t) e– st dt

0

∞
= – f(0) + sF(s)

and
    

L d2f
dt2 = d

dt
df
dt e– st dt

0

∞
= df

dt e– st

0

∞
+ s df

dt e– st dt
0

∞
= – df

dt 0
+ s sF(s) – f(0)

We can extend these results to find the Laplace transform of higher order derivatives. The key is
that if we use deviation variables in the problem formulation, all the initial value terms will drop
out in Eqs. (2-13) and (2-14). This is how we can get these “clean-looking” transfer functions later.

7. An  integral,
  L f(t) dt

0

t
=

F(s)
s (2-15)

We also need integration by parts here

   
f(t) dt

0

t
e– st dt

0

∞
= – 1

s e– st f(t) dt
0

t

0

∞
+

1
s

f(t) e– st dt
0

∞
= F(s)

s
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Figure 2.3. Depiction of unit step, time delay, rectangular, and impulse functions.

 2.3  Laplace transforms common to control problems

We now derive the Laplace transform of functions common in control analysis.

1. Step function

f(t) = Au(t), F(s) = 
A
s

 (2-16)

We first define the unit step function (also called the Heaviside function in mathematics) and
its Laplace transform:1

 u(t) = 1 t > 0
0 t < 0 ; L[u(t)] = U(s) = 

1
s

  (2-17)

The Laplace transform of the unit step function  (Fig. 2.3) is derived as follows:

    L u(t) = lim
ε → 0 +

u(t) e– st dt
ε

∞
= e– st dt

0 +

∞
= – 1

s e– st
0

∞
= 1

s

With the result for the unit step, we can see the results of the Laplace transform of any step
function f(t) = Au(t).

 f(t) = A u(t) = A t > 0
0 t < 0 ; L[Au(t)] = 

A
s

  

The Laplace transform of a step function is essentially the same as that of a constant in (2-7).
When you do the inverse transform of A/s, which function you choose depends on the context of
the problem. Generally, a constant is appropriate under most circumstances.

                                                

1 Strictly speaking, the step function is discontinuous at t = 0, but many engineering texts
ignore it and simply write u(t) = 1 for t ≥ 0.
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2. Dead time function  (Fig. 2.3)

 f(t – to),   L f(t – to) = e– sto F(s) (2-18)

The dead time function is also called the time delay, transport lag, translated, or time
shift function (Fig. 2.3). It is defined such that an original function f(t) is "shifted" in time to,
and no matter what f(t) is, its value is set to zero for t < to. This time delay function can be

written as:

 
f(t – to) = 0 , t – to < 0

f(t – to) , t – to > 0
= f(t – to) u(t – to)

     The second form on the far right is a more concise way to say that the time delay function f(t –
to) is defined such that it is zero for t < to. We can now derive the Laplace transform.

    L f(t – to) = f(t – to) u(t – to) e– st dt
0

∞
= f(t – to) e– st dt

to

∞

and finally,

   f(t – to) e– st dt
to

∞
= e– sto f(t – to) e– s(t – to ) d(t – to)

to

∞
= e– sto f(t') e– st' dt'

0

∞
= e– sto F(s)

where the final integration step uses the time shifted axis t' = t – to.

3. Rectangular pulse function  (Fig. 2.3)

 
f(t) =

0 t < 0
A 0 < t < T
0 t > T

= A u(t) – u(t – T)  ,   L f(t) = A
s 1 – e– sT (2-19)

The rectangular pulse can be generated by subtracting a step function with dead time T from a step
function. We can derive the Laplace transform using the formal definition

    
L f(t = f(t) e– st dt

0

∞
= A e– st dt

0 +

T
= A – 1

s e– st
0

T
= A

s 1 – e– sT

or better yet, by making use of the results of a step function and a dead time function

  L f(t = L A u(t) – A u(t – T) = A
s – e– sTA

s

4. Unit rectangular pulse function

 
f(t) =

0 t < 0
1/T 0 < t < T
0 t > T

= 1
T u(t) – u(t – T)  ,   L f(t) = 1

sT 1 – e– sT (2-20)

This is a prelude to the important impulse function. We can define a rectangular pulse such that
the area is unity. The Laplace transform follows that of a rectangular pulse function

  L f(t = L 1
T u(t) – 1

T u(t – T) = 1
T s 1 – e– sT
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5. Impulse function  (Fig. 2.3)

L[δ(t)] = 1,  and  L[Aδ(t)] = A (2-21)

The (unit) impulse function is called the Dirac (or simply delta) function in mathematics.1 If we
suddenly dump a bucket of water into a bigger tank, the impulse function is how we describe the
action mathematically. We can consider the impulse function as the unit rectangular function in
Eq. (2-20) as T shrinks to zero while the height 1/T goes to infinity:

  δ(t) = lim
T → 0

1
T u(t) – u(t – T)

The area of this "squeezed rectangle" nevertheless remains at unity:

  lim
T → 0

(T 1
T) = 1 , or in other words    δ(t) dt = 1

– ∞

∞

The impulse function is rarely defined in the conventional sense, but rather via its important
property in an integral:

   f(t) δ(t) dt = f(0)
– ∞

∞
, and      f(t) δ(t – to) dt = f(to)

– ∞

∞
(2-22)

The Laplace transform of the impulse function is obtained easily by taking the limit of the unit
rectangular function transform (2-20) with the use of L'Hospital's rule:

   L δ(t = lim
T → 0

1 – e– sT

T s = lim
T → 0

s e– sT

s = 1

From this result, it is obvious that L[Aδ(t)] = A.

  2.4  Initial and final value theorems

We now present two theorems which can be used to find the values of the time-domain function at
two extremes, t = 0 and t = ∞, without having to do the inverse transform. In control, we use the
final value theorem quite often. The initial value theorem is less useful. As we have seen from our
very first example in Section 2.1, the problems that we solve are defined to have exclusively zero
initial conditions.

Initial Value Theorem:   lim
s–> ∞

[sF(s)] = lim
t–> 0

f(t) (2-23)

Final Value Theorem:   lim
s–> 0

[sF(s)] = lim
t–> ∞

f(t) (2-24)

The final value theorem is valid provided that a final value exists. The proofs of these theorems are
straightforward. We will do the one for the final value theorem. The proof of the initial value
theorem is in the Review Problems.

Consider the definition of the Laplace transform of a derivative. If we take the limit as s
approaches zero, we find

                                                

1 In mathematics, the unit rectangular function is defined with a height of 1/2T and a width of 2T
from –T to T. We simply begin at t = 0 in control problems. Furthermore, the impulse function is
the time derivative of the unit step function.
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lim
s → 0

df(t)
dt e– st dt

0

∞
= lim

s → 0
s F(s) – f(0)

If the infinite integral exists,1 we can interchange the limit and the integration on the left to give

   lim
s → 0

df(t)
dt e

– st
dt

0

∞
= df(t)

0

∞
= f(∞) – f(0)

Now if we equate the right hand sides of the previous two steps, we have

  f(∞) – f(0) = lim
s → 0

s F(s) – f(0)

We arrive at the final value theorem after we cancel the f(0) terms on both sides.

✎  Example 2.1: Consider the Laplace transform  F(s) = 6 (s – 2) (s + 2)
s (s + 1) (s + 3) (s + 4) . What is f(t=∞)?

  lim
s → 0

s 6 (s – 2) (s + 2)
s (s + 1) (s + 3) (s + 4) = 6 (– 2) ( 2)

( 3) ( 4) = – 2

✎  Example 2.2: Consider the Laplace transform  F(s) = 1
(s – 2) . What is f(t=∞)?

Here, f(t) = e2t. There is no upper bound for this function, which is in violation of the existence of
a final value. The final value theorem does not apply. If we insist on applying the theorem, we
will get a value of zero, which is meaningless.

✎  Example 2.3: Consider the Laplace transform  F(s) = 6 (s2 – 4)
(s3 + s2 – 4s – 4)

. What is f(t=∞)?

Yes, another trick question. If we apply the final value theorem without thinking, we would get a
value of 0, but this is meaningless. With MATLAB, we can use

roots([1 1 -4 -4])

to find that the polynomial in the denominator has roots –1, –2, and +2. This implies that f(t)
contains the term e2t, which increases without bound.

As we move on, we will learn to associate the time exponential terms to the roots of the
polynomial in the denominator. From these examples, we can gather that to have a meaningful,
i.e., finite bounded value, the roots of the polynomial in the denominator must have negative real
parts. This is the basis of stability, which will formerly be defined in Chapter 7.

                                                

1 This is a key assumption and explains why Examples 2.2 and 2.3 do not work. When a
function has no bound—what we call unstable later—the assumption is invalid.
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 2.5  Partial fraction expansion

Since we rely on a look-up table to do reverse Laplace transform, we need the skill to reduce a
complex function down to simpler parts that match our table. In theory, we should be able to
"break up" a ratio of two polynomials in s into simpler partial fractions. If the polynomial in the
denominator, p(s), is of an order higher than the numerator, q(s), we can derive 1

  F(s) =
q(s)
p(s) =

α 1
(s + a1) +

α 2
(s + a2) + ...

α i
(s + ai)

+ ...
α n

(s + an) (2-25)

where the order of p(s) is n, and the ai are the negative values of the roots of the equation p(s) = 0.

We then perform the inverse transform term by term:

   
   f(t) = L–1[F(s)] = L–1 α 1

(s + a1)
+ L–1 α 2

(s + a2)
+ ... L–1 α i

(s + ai)
+ ... L–1 α n

(s + an) (2-26)

This approach works because of the linear property of Laplace transform.

The next question is how to find the partial fractions in Eq. (2-25). One of the techniques is the
so-called Heaviside expansion, a fairly straightforward algebraic method. We will illustrate
three important cases with respect to the roots of the polynomial in the denominator: (1) distinct
real roots, (2) complex conjugate roots, and (3) multiple (or repeated) roots. In a given problem,
we can have a combination of any of the above. Yes, we need to know how to do them all.

✑  2.5.1 Case 1: p(s) has distinct, real roots

✎  Example 2.4: Find f(t) of the Laplace transform  F(s) = 6s2 – 12
(s3 + s2 – 4s – 4)

.

From Example 2.3, the polynomial in the denominator has roots –1, –2, and +2, values that will
be referred to as poles later. We should be able to write F(s) as

  6s2 – 12
(s + 1) (s + 2) (s – 2) =

α 1
(s + 1) +

α 2
(s + 2) +

α 3
(s – 2)

The Heaviside expansion takes the following idea. Say if we multiply both sides by (s + 1), we
obtain

  6s2 – 12
(s + 2) (s – 2) = α 1 +

α 2
(s + 2) (s + 1) +

α 3
(s – 2) (s + 1)

which should be satisfied by any value of s. Now if we choose s = –1, we should obtain

  α 1 = 6s2 – 12
(s + 2) (s – 2) s = –1

= 2

Similarly, we can multiply the original fraction by (s + 2) and (s – 2), respectively, to find

  α 2 = 6s2 – 12
(s + 1) (s – 2) s = –2

= 3

and

                                                

1 If the order of q(s) is higher, we need first carry out "long division" until we are left with a
partial fraction "residue." Thus the coefficients αi are also called residues. We then expand this

partial fraction. We would encounter such a situation only in a mathematical problem. The models
of real physical processes lead to problems with a higher order denominator.
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  α 3 = 6s2 – 12
(s + 1) (s + 2) s = 2

= 1

Hence,  F(s) = 2
(s + 1) + 3

(s + 2) + 1
(s – 2) , and using a look-up table would give us

 f(t) = 2e– t + 3e– 2t + e2t

When you use MATLAB to solve this problem, be careful when you interpret the results. The
computer is useless unless we know what we are doing. We provide only the necessary
statements.1 For this example, all we need is:

[a,b,k]=residue([6 0 -12],[1 1 -4 -4])

✎  Example 2.5: Find f(t) of the Laplace transform  F(s) = 6s
(s3 + s2 – 4s – 4)

.

Again, the expansion should take the form

  6s
(s + 1) (s + 2) (s – 2) =

α 1
(s + 1) +

α 2
(s + 2) +

α 3
(s – 2)

One more time, for each term, we multiply the denominators on the right hand side and set the
resulting equation to its root to obtain

   α 1 = 6s
(s + 2) (s – 2) s = – 1

= 2 ,   α 2 = 6s
(s + 1) (s – 2) s = – 2

= – 3  , and   α 3 = 6s
(s + 1) (s + 2) s = 2

= 1

The time domain function is

 f(t) = 2e– t – 3e– 2t + e2t

Note that f(t) has the identical functional dependence in time as in the first example. Only the
coefficients (residues) are different.

The MATLAB statement for this example is:

[a,b,k]=residue([6 0],[1 1 -4 -4])

✎  Example 2.6: Find f(t) of the Laplace transform  F(s) = 6
(s + 1) (s + 2) (s + 3) .

This time, we should find

 
  α 1 = 6

(s + 2) (s + 3) s = – 1
= 3 ,   α 2 = 6

(s + 1) (s + 3) s = – 2
= – 6  ,   α 3 = 6

(s + 1) (s + 2) s = – 3
= 3

The time domain function is

                                                

1 Starting from here on, it is important that you go over the MATLAB sessions. Explanation of
residue() is in Session 2. While we do not print the computer results, they can be found on our
Web Support.
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 f(t) = 3e– t – 6e– 2t + 3e– 3t

The e–2t and e–3t terms will decay faster than the e–t term. We consider the e–t term, or the pole
at s = –1, as more dominant.

We can confirm the result with the following MATLAB statements:

p=poly([-1 -2 -3]);

[a,b,k]=residue(6,p)

Note:
(1) The time dependence of the time domain solution is derived entirely from the roots

of the polynomial in the denominator (what we will refer to later as the poles). The
polynomial in the numerator affects only the coefficients α i. This is one reason

why we make qualitative assessment of the dynamic response characteristics
entirely based on the poles of the characteristic polynomial.

(2) Poles that are closer to the origin of the complex plane will have corresponding
exponential functions that decay more slowly in time. We consider these poles
more dominant.

(3) We can generalize the Heaviside expansion into the fancy form for the coefficients

  α i = (s + ai)
q(s)
p(s) s = – a i

but we should always remember the simple algebra that we have gone through in
the examples above.

✑  2.5.2 Case 2: p(s) has complex roots 1

✎  Example 2.7: Find f(t) of the Laplace transform  F(s) = s + 5
s2 + 4s + 13

.

We first take the painful route just so we better understand the results from MATLAB. If we have to
do the chore by hand, we much prefer the completing the perfect square method in Example 2.8.
Even without MATLAB, we can easily find that the roots of the polynomial s2 + 4s +13 are –2 ±
3j, and F(s) can be written as the sum of

  s + 5
s2 + 4s + 13

= s + 5
s – ( – 2 + 3j) s – ( – 2 – 3j)

= α
s – ( – 2 + 3j) + α *

s – ( – 2 – 3j)

We can apply the same idea formally as before to find

  α = s + 5
s – ( – 2 – 3j) s = – 2 + 3j

=
(– 2 + 3j) + 5

(– 2 + 3j) + 2 + 3j =
(j + 1)

2j = 1
2 (1 – j)

and its complex conjugate is

  α* = 1
2 (1 + j)

The inverse transform is hence

                                                

1 If you need a review of complex variable definitions, see our Web Support. Many steps in
Example 2.7 require these definitions.
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 f(t) = 1
2 (1 – j) e( – 2 + 3j)t + 1

2 (1 + j) e( – 2 – 3j)t

= 1
2 e– 2t (1 – j) e j 3t + (1 + j) e– j 3t

We can apply Euler's identity to the result:

 f(t) = 1
2 e– 2t (1 – j) (cos 3t + j sin 3t) + (1 + j) (cos 3t – j sin 3t)

= 1
2 e– 2t 2 (cos 3t + sin 3t)

which we further rewrite as

  f(t) = 2 e– 2t sin (3t + φ) where φ= tan– 1(1) = π/4 or 45°

The MATLAB statement for this example is simply:

[a,b,k]=residue([1 5],[1 4 13])

Note:
(1) Again, the time dependence of f(t) is affected only by the roots of p(s). For the

general complex conjugate roots –a ± bj, the time domain function involves e–at

and (cos bt + sin bt). The polynomial in the numerator affects only the constant
coefficients.

(2) We seldom use the form (cos bt + sin bt). Instead, we use the phase lag form as in
the final step of Example 2.7.

✎  Example 2.8: Repeat Example 2.7 using a look-up table.

In practice, we seldom do the partial fraction expansion of a pair of complex roots. Instead, we
rearrange the polynomial p(s) by noting that we can complete the squares:

 s2 + 4s + 13 = (s + 2)2 + 9 = (s + 2)2 + 32

We then write F(s) as

 F(s) = s + 5
s2 + 4s + 13

= (s + 2)
(s + 2)2 + 32 + 3

(s + 2)2 + 32

With a Laplace transform table, we find

 f(t) = e– 2t cos 3t + e– 2t sin 3t

which is the answer with very little work. Compared with how messy the partial fraction was in
Example 2.7, this example also suggests that we want to leave terms with conjugate complex
roots as one second order term.

✑  2.5.3 Case 3: p(s) has repeated roots

✎  Example 2.9: Find f(t) of the Laplace transform  F(s) = 2
(s + 1)3 (s + 2)

.

The polynomial p(s) has the roots –1 repeated three times, and –2. To keep the numerator of each
partial fraction a simple constant, we will have to expand to
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  2
(s + 1)3 (s + 2)

=
α 1

(s + 1) +
α 2

(s + 1)2 +
α 3

(s + 1)3 +
α 4

(s + 2)

To find α3 and α4 is routine:

  α 3 = 2
(s + 2) s = – 1

= 2 ,  and     α 4 = 2
(s + 1)3

s = – 2

= – 2

The problem is with finding α1 and α2. We see that, say, if we multiply the equation with (s+1)
to find α1, we cannot select s = –1. What we can try is to multiply the expansion with (s+1)3

  2
(s + 2) = α 1(s + 1)2 + α 2(s + 1) + α 3 +

α 4(s + 1)3

(s + 2)

and then differentiate this equation with respect to s:

  – 2
(s + 2)2 = 2 α 1(s + 1) + α 2 + 0 + α 4 terms with (s + 1)

Now we can substitute s = –1 which provides α2 = –2.

We can be lazy with the last α4 term because we know its derivative will contain (s + 1) terms
and they will drop out as soon as we set s = –1. To find α1, we differentiate the equation one more

time to obtain

  4
(s + 2)3 = 2 α 1 + 0 + 0 + α 4 terms with (s + 1)

which of course will yield α1 = 2 if we select s = –1. Hence, we have

 2
(s + 1)3 (s + 2)

= 2
(s + 1) + – 2

(s + 1)2 + 2
(s + 1)3 + – 2

(s + 2)

and the inverse transform via table-lookup is

 f(t) = 2 1 – t + t2

2 e– t – e– 2t

We can also arrive at the same result by expanding the entire algebraic expression, but that actually
takes more work(!) and we will leave this exercise in the Review Problems.

The MATLAB command for this example is:

p=poly([-1 -1 -1 -2]);

[a,b,k]=residue(2,p)

Note:
In general, the inverse transform of repeated roots takes the form

   L– 1 α 1
(s + a) +

α 2

(s + a)2 + ...
α n

(s + a)n = α 1 + α 2t +
α 3
2! t2 + ...

α n
(n – 1)! tn – 1 e– at

The exponential function is still based on the root s = –a, but the actual time dependence will
decay slower because of the (α2t + …) terms.
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