Matroids and the Greedy Algorithm

Dpto. Ingeniería Industrial, Universidad de Chile

IN73P, Tópicos de Optimización Discreta

October 8, 2007

Outline	Introduction	Matroids	Matroid Intersection

Outline

Matroids Matroi

Matroid Intersection

The Minimum Spanning Tree

Kruskal's Algorithm

The Problem (MST):

Given a connected undirected graph G(V, E), and $c \in \mathbb{R}^{E}$, find a spanning tree $T \subseteq E$ of maximum weight c(T).

The Algorithm:

- 1: Set $T \leftarrow \emptyset$.
- 2: while $\exists e \in E \setminus T : \{e\} \cup T$ is a forest do
- 3: Choose such e with c_e maximum
- $4: \quad T \leftarrow T \cup \{e\}.$
- 5: end while

	ine	

Matroids

Matroid Intersection

The Minimum Spanning Tree

Some cosmetic changes:

- Let's define $\mathcal{I} := \{J : J \subset E, J \text{ is a forest in } G\}$, we will call \mathcal{I} the set of *independent* sets.
- Then we can re-write our algorithm as:

The Greedy Algorithm (GA):

- 1: Set $T \leftarrow \emptyset$.
- 2: while $\exists e \notin T, c_e > 0$ and $T \cup \{e\} \in \mathcal{I}$ do
- Choose such e with ce maximum 3:
- 4: $T \leftarrow T \cup \{e\}$.
- 5: end while

The Minimum Spanning Tree

Is there anything else?

- We will see that the greedy algorithm solves MST.
- Are there other families \mathcal{I} for which the greedy algorithm solves the asociated problem?

An Example:

Consider *I* the set of all matchings in *G*(*V*, *E*).

- Families for which GA return the optimal solution are called matroids.
- Can we characterize them?

Dpto. Ingeniería Industrial, Universidad de Chile Matroids and the Greedy Algorithm

Matroids Matro

Axioms

Basic Definitions

Matroid:

Given a ground set *S* and $\mathcal{I} \subseteq \mathcal{P}(S)$ (called the set of independet sets), we say that $M = (S, \mathcal{I})$ is a matroid if: MO $\emptyset \in \mathcal{I}$.

- M1 If $J' \subseteq J \in \mathcal{I}$, then $J' \in \mathcal{I}$.
- M2 For every $A \subset S$, every maximal independet set contained in *A* has the same cardinality.

0	utl	lin	
U	นแ		e

Axioms

Understanding the Axioms:

- It's clear that M0 and M1 are necessary for the correctness of the GA.
- To see necesity of M2 note that:
 - Let $c_e \in \{0, 1\}$, $A = \{e \in S : c_e = 1\}$, $\Rightarrow c(J) = |A \cap J|$.
 - The GA will begin with J = Ø, the GA will finish with a maximal independent set contained in A, but M2 ensure that it will be of maximum weight.

Some more Terminology

Given A ⊆ S, any maximal J ⊆ A, J ∈ I is called a basis of A; and define rank of A ⊆ S as r(A) = max{|J| : J ∈ I, J ⊆ A}.

Examples

Some Examples:

The forest of a graph define a matroid:

- M0 The empty set is a forest.
- M1 If J is a forest, any subset of it is a forest.
- M2 Let $A \subseteq S$, and J a basis of A.
 - \Rightarrow *J* is a maximal forest in *G*' = (*V*, *A*).
 - \Rightarrow *J* is a spanning tree in every componen of *G*'.
 - Let $\{V_i\}_{i=1}^k$ be each connected component in G'.
 - \Rightarrow $|J| = \sum_{i=1}^{k} (|V_i| 1) = |V| k$, which is independent of *J*.

Some Examples:

Linear Matroids:

Let *K* be a field, and $N \in K^{n \times S}$, for some set *S*. Let $\mathcal{I} = \{J \subseteq S : \text{columns indexed by } J \text{ are linearly independent (l.i.)}\}.$

M0 By convention the empty set of columns is l.i.

- M1 If $J \in \mathcal{I}$, then any subset of columns of J is l.i.
- M2 Given $A \subseteq S$, for any basis J of A, $F := \langle N_i : i \in A \rangle = \langle N_i : i \in J \rangle$, and all basis of F have the same cardinality (basic linear algebra theorem).

Examples

Some Examples:

Uniform Matroids:

Given a set *S* and $k \in \mathbb{N}$, we define

$$\mathcal{I} = \{ \boldsymbol{J} : \boldsymbol{J} \subseteq \boldsymbol{S}, |\boldsymbol{J}| \leq k \}.$$

MO Clearly $\emptyset \in \mathcal{I}$.

M1 If
$$J \in \mathcal{I}$$
, and $J' \subseteq J$, then $|J'| \le |J| \le k$.

M2 Given $A \subseteq S$, and J a basis of A, then $|J| = |J \cap A| = \min\{k, |A|\}$, which is independent of J. Examples

Some Examples:

We saw that given G = (V, S), the GA fail to optimize over the set $\mathcal{I} = \{J : J \subseteq S, J \text{ is a matching }\}$. However we still can define a matroid related to Matchings:

A matching-related matroid:

Let G = (V, E) be a graph, S = V, and $\mathcal{I} = \{J \subseteq S :$ there is a matching M in G covering all elements in $J\}$. Proof: M0 and M1 trivially holds. Let $A \subseteq S$ and J_1, J_2 two basis with $|J_1| < |J_2|$; let M_1, M_2 be the related matchings in G. Decompose $G' = (V, M_1 \Delta M_2)$ in cycles and paths. $|J_1| < |J_2|$ implies that \exists a path starting in $v \in J_2 \setminus J_1$ and ending in $w \notin J_1$. By swapping edges in this path, we obtain a matching M'_1 covering $J_1 \cup \{v\}, \Rightarrow \Leftarrow$. Correctess of The Greedy Algorithm

Correctness of the Greedy Algorithm:

The results is due to Rado [1957], and rediscovered by Edmonds [1970]

Theorem

For any matroid $M = (S, \mathcal{I})$, and any $c \in \mathbb{R}^{S}$, the GA finds a maximum-weight independent set.

Proof.

By contradiction.

• Let $J = \{e_1, \ldots, e_m\}$ be the solution reported by the GA, where the order is given by the order in which the algorithm choose the elements. We can see that $c_{e_i} \ge c_{e_{i+1}}, i = 1, \ldots, m-1$.

Matroids

Matroid Intersection

Correctess of The Greedy Algorithm

Correctness of the Greedy Algorithm:

Proof.

- Let $J' = \{q_1, \ldots, q_l\}$ be a maximum-weight independent set, where $c_{q_i} \ge c_{q_{i+1}}, i = 1, \ldots, l+1$.
- Let $k = \min\{i : c_{e_i} < c_{q_i}\}$ (use $c_{e_{m+1}} = -\infty$).
- Then the GA did not choose any of $\{q_i\}_{i=1}^k$ in step *k*.
- Whatever GA choose at step k has weight $< c_{q_k}$.
- Then $\forall i = 1, ..., k$, $q_i \in \{e_j\}_{j=1}^{k-1}$ or $\{e_j, q_i\}_{j=1}^{k-1} \notin \mathcal{I}$.
- Then $J_{k-1} := \{e_j\}_{j=1}^{k-1}$ is a basis of $Q := J_{k-1} \cup J'_k$.
- But this contradicts M2, since J'_k is also a basis of Q.

Outline

Introduction

Correctess of The Greedy Algorithm

Some Consecuences:

- We say that $M = (S, \mathcal{I})$ is an independent system (IS) if it satisfies M0 and M1.
- We could apply the GA to $M = (S, \mathcal{I})$ an IS.
- Let *M* be an IS that does not satisfies M2, let A ⊆ S violating M2.
- Let J_1, J_2 be two basis of A with $|J_1| < |J_2|$ and set $c(e) = \mathbb{I}_A(e) + \varepsilon \mathbb{I}_{J_1}(e)$, where $\varepsilon < \frac{1}{|J_1|}$.
- Then the GA will return J_1 , which is not a maximal weight independent set in M.

Theorem

Let (S, \mathcal{I}) be an IS. Then the GA finds an optimal independent set $\forall c \in \mathbb{R}^S \Leftrightarrow (S, \mathcal{I})$ is a matroid.

Outline

Matroid Algorithms

Complexity of the GA

- We would like to claim that the GA is efficient.
 - How we estimate the work involved in deciding $Q: J \cup \{e\} \in \mathcal{I}$?
 - If Q can be answered in polynomial time (PT), then the GA can be implemented in PT.
 - The GA can be implemented in polynomial time if and only if Q can be answered in PT.
 - Each matroid is given by an oracle that answers Q.
 - We say that a matroid algorithm is PT, if the number of oracle questions is bounded by a polynomial in |S|and all other work is polynomially bounded on |S| and the size of the rest of the input.
 - The GA is PT.

Outline	

Matroid Algorithms

Do we need all this?

- Could we measure the complexity of matroid algorithms in a different way?
- We would need a general way to describe matroids.
- If we describe \mathcal{I} as a list, can be exponential in |S|.
- Given n = |S|, there is $g(n) = \Theta(e^n)$, such that the number of matroids in $S \ge 2^{g(n)}$ (Welsh [1976]). Then would need exponential encodigs for each matroid!

Outline	

Matroids

Matroid Intersection

Matroid Polytopes

Matroid Polytopes

Observation

Given a matroid $M = (S\mathcal{I})$ with rank function $r, J \in \mathcal{I}$ and x^{o} its characteristic vector, then

$$x^{o}(A) = |J \cap A| \leq r(A)$$

A valid I P bound

Consider the following LP:

(P) max CX s.t. $x(A) \leq r(A) \quad \forall A \subseteq S$ $x_{e} > 0 \quad \forall e \in S$

Another proof of the correctness of GA

Theorem (Edmonds, 1970)

Let $M = (S, \mathcal{I})$ be a matroid with rank function $r, c \in \mathbb{R}^{S}$, and x° be the characteristic vector of J found by the GA. Then x° is an optimal solution to (P).

Proof.

Note that the dual of (P) is

$$\begin{array}{lll} \text{(D)} \ \ \text{min} & \sum (r(A)y_A: A\subseteq S) \\ s.t. & \sum (y_A: e\in A\subseteq S)\geq c_e \quad \forall e\in S \\ & y_A\geq 0 \quad \forall A\subseteq S \end{array}$$

Another proof of the correctness of GA

(continued).

The complementary slackness conditions are:

$$\begin{array}{ll} \mathbf{C1} & \mathbf{x}_{\mathsf{e}} > \mathbf{0} \Rightarrow \sum (\mathbf{y}_{\mathsf{A}} : \mathbf{e} \in \mathbf{A} \subseteq \mathbf{S}) = \mathbf{c}_{\mathsf{e}}, \forall \mathbf{e} \in \mathbf{S} \\ \mathbf{C2} & \mathbf{y}_{\mathsf{A}} > \mathbf{0} \Rightarrow \mathbf{x}(\mathbf{A}) = \mathbf{r}(\mathbf{A}), \forall \mathbf{A} \subseteq \mathbf{S} \end{array}$$

We build *y* as follows:

- Order $\{e_i\}_{i \in S}$ such that $c_{e_i} \ge c_{e_{i+1}}, i = 1, \dots, n$
- Define $T_i = \{e_j\}_{j=1}^i$, and let m such that $c_{e_m} > 0 \ge c_{e_{m+1}}$. • Let $y_A^o = \begin{cases} c_{e_i} - c_{e_{i+1}} & A = T_i, i = 1, \dots, m-1 \\ c_{e_m} & A = T_m \\ 0 & \text{otherwise} \end{cases}$

Dpto. Ingeniería Industrial, Universidad de Chile

Another proof of the correctness of GA

(continued).

- Note that $\sum (y_A^o : e_j \in A \subseteq S) = 0, \forall j > m$.
- Also $\sum_{i=j} (y_A^o : e_j \in A \subseteq S) = \sum_{i=j}^m y_{T_i}^o$ = $\sum_{i=j}^{m-1} c_{e_i} - c_{e_{i+1}} + c_{e_m} = c_{e_j}, \forall j \leq m.$
- Then y^o is feasible for (D) and satisfy C1.
- Finally, if y^o_A > 0 ⇒ A = T_i. Then is enough to proof that x(T_i) = r(T_i).
- By contradiction, if not, then ∃e_k ∈ T_i \ J such that (J ∩ T_i) ∪ {e_k} ∈ I. But e_k was not added to J during the GA, contradiction.

Some consecuences:

Theorem (Convex hull of independent set)

Let M = (S, I) be a matroid with rank function r. The convex hull of all independent sets is

 $\{x \in \mathbb{R}^s : x \ge 0, x(A) \le r(A), \forall A \subseteq S\}$

Theorem

Let $M = (S, \mathcal{I})$ be a matroid, let $c \in \mathbb{R}^S$, and let $J \in \mathcal{I}$. Then J is a maximum-weight independent set w.r.t. c if and only if

- $e \in J$ implies $c_e \ge 0$.
- $e \notin J$, $J \cup \{e\} \in \mathcal{I}$ implies $c_e \leq 0$.
- $e \notin J, f \in J, (J \cup \{e\}) \setminus \{f\} \in \mathcal{I} \text{ implies } c_e \leq c_f.$

Properties, Axioms, Constructions

Properties, Axioms, Constructions

Definition (Circuits):

Given an independent system (S, \mathcal{I}), $C \subseteq S$ is a circuit if $\forall e \in C, C \setminus \{e\} \in \mathcal{I}$ (i.e. C is a minimal dependent set).

Theorem (Unicity of circuits)

Let (S.I) be a matroid, $J \in I$, $e \in S$. Then $J \cup \{e\}$ contains at most one circuit.

Proof.

- Assume not, let C₁, C₂ ⊂ J ∪ {e} two circuits, and J minimal (C₁ ∪ C₂ = J ∪ {e}).
- $\exists a \in C_1 \setminus C_2, b \in C_2 \setminus C_1 \Rightarrow$ (by minimality of *J*) $J' = C_1 \cup C_2 \setminus \{a, b\} \in \mathcal{I}.$
- \Rightarrow J', J basis of $C_1 \cup C_2$ contradiction.

Matroid Intersection

Properties, Axioms, Constructions

Properties, Axioms, Constructions

Posible characterizations of Matroids:

We can characterize a matroid through its Independet Sets, Rank function, Set of Circuits, or its Basis.

Matroids by Circuits:

A set $C \subseteq \mathcal{P}(S)$ is the set of circuits of a matroid iff: C0 $\emptyset \notin C$. C1 If $C_1, C_2 \in C$, and $C_1 \subseteq C_2$, then $C_1 = C_2$.

C2 If $C_1, C_2 \in C$, $C_1 \neq C_2$, and $e \in C_1 \cup C_2$, then $\exists C \in C, C \subseteq (C_1 \cup C_2) \setminus \{e\}.$ Properties, Axioms, Constructions

Properties, Axioms, Constructions

Proof.

- Necesity: let C the circuit family of matroid (S, I).
 - Then C0 and C1 are obvious.
 - If C2 does not hold, then J = (C₁ ∪ C₂) \ {e} ∈ I, but then J contains two circuits!
- Suficiency: let $\mathcal{I} = \{J \subseteq S : C \nsubseteq J, \forall C \in C\}$, we will show that $M = (S, \mathcal{I})$ is a matroid:
 - Clearly M0 and M1 holds.
 - If M2 does not hold, let J_1, J_2 be basis of $A \subseteq S$ with $|J_1| < |J_2|$ and with $|J_1 \cap J_2|$ maximal.
 - Note that $\exists e \in J_1 \setminus J_2$ (if not J_1 is not maximal).
 - Now $\exists ! C \in C : C \subseteq J_2 \cup \{e\}$ (if not, contradict C2).
 - $C \nsubseteq J_1$, $\Rightarrow \exists f \in C \setminus J_1$, $\Rightarrow J_3 = (J_2 \cup \{e\}) \setminus \{f\} \in \mathcal{I}$.
 - But $|J_3| > |J_1|$ and $|J_3 \cap J_1| > |J_2 \cap J_1|$, contradiction!

Properties, Axioms, Constructions

On oracles and non-equivalences:

- We have seen that there are different characterization of matroids.
- Could we use different oracles for matroids?
 - We have the independent set oracle (\mathcal{O}_l).
 - Consider the cycle oracle (\mathcal{O}_C).
 - The problem of decidyng if S ∈ I is in P if we use O_I, but is exponential if we use O_C.
- Conclusions:
 - Not all oracles for matroids are as powerfull.
 - There are stronger oracles than O₁ (for example: given A ⊆ S, return largest cycle in A).
 - We choose \mathcal{O}_l because of aplications.

Outline	Introduction	Matroids ○○○○○○○○○○○○○○○○○○○○○○○	Matroid Intersection
Properties, Axioms, Con	structions		
Construc	ctions:		

- If (S, I) is a matroid, and $B \subset S$, then $M \setminus B := M' = (S', I')$, where $S' = S \setminus B$ and $I' = \{J \in I : J \subseteq J'\}$, is a matroid.
- If (S, I) is a matroid, and $k \in \mathbb{N}_+$, then (S, I'), where $I' = \{J \in I : |J| \le k\}$, is a matroid.
- If $M_i = (S_i, \mathcal{I}_i)$ i = 1, 2 are matroids, $S_1 \cap S_2 = \emptyset$, then $M_1 \oplus M_2 := M' = (S', \mathcal{I}')$, where $S' = S_1 \cup S_2$ and $\mathcal{I}' = \{J_1 \cup J_2 : J_1 \in \mathcal{I}_1, J_2 \in \mathcal{I}_2\}$, is a matroid.
- If (S, I) is a matroid, $B \subseteq S$, J basis of B, then M/B := M' = (S', I'), where $S' = S \setminus B$ and $I' = \{J' \subseteq S' : J' \cup J \in I\}$, is a matroid.

0	ut	н.	20
υ	uτ	ш	ie

Matroids

Matroid Intersection

Properties, Axioms, Constructions

Constructions:

An Aplication:

If $M = (S, \mathcal{I})$ is a matroid, $B \subseteq S$, then $M' = M/B \oplus M \setminus \overline{B}$ is a matroid on *S*, and its bases are the bases of *M* that intersect *B* in a basis of *B*.

Theorem (Nested Bases)

Let $\{T_i\}_{i=0}^l + 1 \subseteq \mathcal{P}(S)$ such that $T_o = \emptyset$, $T_{l+1} = S$ and $T_i \subseteq T_{i+1} : i = 0, ..., l$. The bases of T_l in M that intersect T_i in a basis of T_i for i = 1, ..., l are the bases of T_l in $N = N_o \oplus N_1 \oplus ... \oplus N_l$, where $N_i = (M/T_i) \setminus \overline{T_{i+1}}$.

Outline	Introduction	Matroids	Matroid Intersection
The Problem			
The Pro	oblem		

Given M_1 , M_2 two matroids defined on the same set *S*, we want to find a maximum weight common independent set.

An Example

Maximum weight matching in bipartite graphs: Let $G = (S_1 \cup S_2, E)$ be a bipartite graph ($E \subseteq S_1 \times S_2$). Define $M_v = (S_v, \mathcal{I}_v)$ where $S_v = \delta v$ and $\mathcal{I} = \{J \subseteq S_v : |J| = 1\}$. Then M_v is a matroid, and $M_{S_i} = \bigoplus_{v \in S_i} M_v$ is also a matroid. Thus a maximum weight matching in *G* is the maximum weight of a common independent set in M_{S_i} .

Outline	

Matroids

Matroid Intersection

The Theorem

Looking for a min-max relation

- Let $J \in \mathcal{I}_1 \cap \mathcal{I}_2$ and $A \subseteq S$.
- Then $J \cap A \in \mathcal{I}_1$ and $J \cap \overline{A} \in \mathcal{I}_2$
- Then $|J| = |J \cap A| + |J \cap \overline{A}| \le r_1(A) + r_2(\overline{A})$.

Theorem (Matroid Intersection Theorem) For matroids M_1, M_2 on S

 $\overline{r} = \max\{|J| : J \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min\{r_1(A) + r_2(\overline{A}) : A \subseteq S\} = \underline{r}$

- Note that Köning's theorem follows directly from the matroid intersection theorem.
- We denote $r_{12}(A) = r_1(A) + r_2(\overline{A})$.

The Theorem

A Proof of the matroid intersection theorem:

Proof.

• The \leq part is done. By induction on |S|.

- If $\nexists e \in S : \{e\} \in \mathcal{I}_1 \cap \mathcal{I}_2$, then $\overline{r} = 0$, and $\forall e \in S$ $\{e\} \notin \mathcal{I}_1$ or $\{e\} \notin \mathcal{I}_2$
- Let $A = \{e : r_1(\{e\}) = 0\}, \Rightarrow \underline{r} \le r_{12}(A) = \overline{r}.$
- Let $k = \underline{r}$, and $\{e\} \in \mathcal{I}_1 \cap \mathcal{I}_2$. If $\exists A \subseteq S' = S \setminus \{e\}$ such that $k = r_1(A) + r_2(S' \setminus A)$ we are done.
- If $M'_i = M_i / \{e\}$ and $k 1 \le \min\{r'_{12}(B) : B \subseteq S'\}$, then $\exists J' \in M'_1 \cap M'_2, |J'| \ge k - 1$, then $J' \cup \{e\} \in \mathcal{I}_i$ and we are done.
- Note that if $\exists A \subseteq S' : r_1(A) + r_2(S' \setminus A) \le k 1$ and $B \subseteq S' : r_1(B \cup \{e\}) 1 + r_2((S' \setminus B) \cup \{e\}) 1 \le k 2$.
- By subaditivity of $r_i r_{12}(A \cup B \cup \{e\}) + r_{12}(A \cap B) \leq 2k-1$
- But then $k = \underline{r} \le k 1$ contradiction!

		Matroids	Matroid Intersection
The Matroid Intersection A	lgorithm		
The Idea			

We will generalize the alternating path algorithm for bipartite matchings:

- We will have $J \in \mathcal{I}_1 \cap \mathcal{I}_2$.
- The algorithm will look for larger *J* or for *A* such that $r_{12}(A) = |J|$.
- In the case of a bipartite matching, an augmenting path e₁, f₁,..., e_m, f_m, e_{m+1} satisfies:
 - $\mathbf{e}_i \notin \mathbf{J}, f_i \in \mathbf{J}.$
 - $J \cup \{e_1\} \in \mathcal{I}_2, J \cup \{e_{m+1}\} \in \mathcal{I}_1.$
 - $(J \cup \{e_i\}) \setminus \{f_i\} \in \mathcal{I}_1, (J \cup \{e_{i+1}) \setminus \{f_i\} \in \mathcal{I}_2.$

Outline

Introduction

Matroids

Matroid Intersection

The Matroid Intersection Algorithm

Some previous definitions:

• Let $G = G(M_1, M_2, J)$ be a directed graph where:

- $V(G) = S \cup \{r, s\}.$
- $es \in E \forall e \in S \setminus J : J \cup \{e\} \in \mathcal{I}_1.$
- $re \in E \forall e \in S \setminus J : J \cup \{e\} \in \mathcal{I}_2.$
- $ef \in E \forall e \in S \setminus J, f \in J : J \cup \{e\} \notin I_1,$ $(J \cup \{e\}) \setminus \{f\} \in I_1.$
- $fe \in E \forall e \in S \setminus J, f \in J : J \cup \{e\} \notin I_2,$ $(J \cup \{e\}) \setminus \{f\} \in I_2.$

Matroids

Matroid Intersection

The Matroid Intersection Algorithm

The Augmenting Path Theorem:

Theorem

- If there is no (r, s)-dipath in G, then J is maximum; in fact, if $A \subseteq S$ and $\delta(A \cup \{r\}) = \emptyset$, then $|J| = r_{12}(A)$.
- If there exists an (r, s)-dipath in G, then J is not maximum; in fact, if r, e₁, f₁,..., e_m, f_m, e_{m+1}, s is the node-sequence of a chordless (r, s)-diapth, then J∆{e₁, f₁,..., e_m, f_m, e_{m+1}} ∈ I₁ ∩ I₂.

Consider G_1 , G_2 two forest matroids, J is the set of black edges, and we present $G(M_1, M_2, J)$, J is maximum.

Outline

Introduction

Matroid Intersection

The Matroid Intersection Algorithm

Another Example

Consider G_1 , G_2 two forest matroids, J is the set of black edges, and we present $G(M_1, M_2, J)$, J is not maximum.

Outline

Introduction

Matroids

Matroid Intersection

The Matroid Intersection Algorithm

Matroid Intersection Algorithm (MIA):

- 1: Set $J = \emptyset$.
- 2: loop
- 3: Construct $G = G(M_1, M_2, J)$.
- 4: **if** \exists (*r*, *s*)-dipath *P* in *G* **then**
- 5: Let $r, e_1, f_1, \ldots, e_m, f_m, e_{m+1}, s = P$ a chordless (r, s)-dipath.

6: Let
$$J \leftarrow J\Delta\{e_1, f_1, \ldots, e_m, f_m, e_{m+1}\}$$
.

7: **else**

- 8: Let $A = \{e \in S : \exists P, (r, e) \text{dipath in } G\}.$
- 9: stop
- 10: **end if**
- 11: end loop

Matroids Ma

Matroid Intersection

The Matroid Intersection Algorithm

Some Notes on the Algorithm:

- Note that if there is no (r, s)-dipath, A satisfies the condition of |J| = r₁(J ∩ A) + r₂(J ∩ A).
- the proof comes from the fact that *J* ∩ *A* is an *M*₁-basis for *A*; also *J* ∩ *A* is an *M*₂-basis for *A*.
- The condition of chordless path is essential.
- If there exists a path, there exists a chordless path.
- Note we will need at most n := |S| aughmentations.
- G(M₁, M₂, J) can be constructed in O(n²) oracle calls.
- Finding an (*r*, *s*)-dipath is polynomial.
- MIA is a polynomial-time matroid algorithm.

L)	utl	In	e

Matroids

Matroid Intersection

The Weighted Case:

Weighted matroid interesction problem:

The Problem:

Given two matroids $M_1 = (S, \mathcal{I}_1)$ and $M_2 = (S, \mathcal{I}_2)$ and $c \in \mathbb{R}^S$, find

$$(WMIP) \max c(J)$$

s.t. $J \in \mathcal{I}_1 \cap \mathcal{I}_2$

• We have solved this problem in two special cases:

•
$$c_e = 1 \ \forall e \in S.$$

•
$$\mathcal{I}_1 = \mathcal{I}_2$$

Outline

Matroids

Matroid Intersection

The Weighted Case:

Matroid Intersection Polyhedra

 Is clear that the following gives a valid upper bound for WMIP:

$$egin{aligned} (\textit{MIP}) & \max cx \ x(A) \leq r_1(A) \ orall A \subseteq S \ x(A) \leq r_2(A) \ orall A \subseteq S \ x_e \geq 0 \ orall e \in S \end{aligned}$$

Theorem (Matroid Intersection Polytope Theorem) The convex hull of all common independent sets is the set described by MIP.

Outline	Introduction	Matroids	Matroid Intersection
The Weighted Case:			
Some No	tes:		

- Note that if P_i is the convex hull of all independent sets in I_i, then MIP=P₁ ∩ P₂, i.e. the common vertices of P_i are the vertices of the intersection of P_i.
 - This is quite surprising!
 - In general, intersection generate many new vertices.
- How does the polytope look for the case of bipartite matching?

The Weighted Case:

Towards a proof:

• Consider the dual of MIP.

$$\begin{array}{ll} \textbf{(DMIP)} & \min \sum (r_1(A)y_A^1 + r_2(A)y_A^2 : A \subseteq S) \\ \text{s.t.} & \sum (y_A^1 + y_A^2 : A \subseteq S, e \in A) \ge c_e \quad \forall e \in S \\ & y_A^1, y_A^2 \ge 0 \quad \forall A \subseteq S \end{array}$$

- Let $(\overline{y}^1, \overline{y}^2)$ an optimal solution to DMIP.
- Let $c_e^1 := \sum (y_A^1 : A \subseteq S, e \in A)$ and $c^2 = c c^1$.
- Note that y
 ⁱ is an optimal dual solution to P_i with objective cⁱ (i.e. to max cⁱx : x(A) ≤ r_i(A), A ⊆ S).
- The converse is also true (i.e. if \overline{y}_i is dual optimal to P_i , then $(\overline{y}_1, \overline{y}_2)$ is optimal for DMIP).

The Weighted Case:

Towards a proof:

- $c^1 + c^2 = c$ is call a weight splitting.
- If exists J ∈ I_i such that J is optimal for P_i, then J is optimal for MIP (c(J) = c¹(J) + c²(J) ≥ c¹(J') + c²(J') = c(J') for all J' ∈ I₁ ∩ I₂).
- In fact such a weight splitting and J always exists (consecuence of the matroid intersection theorem).
- The proof comes from total dual integrality of MIP
 - Idea of Proof:
 - given $c \in \mathbb{Z}^{S}$, an optimal solution $(\overline{y}_{1}, \overline{y}_{2})$, define c^{i} .
 - get optimal dual solution defined by GA.
 - Then prove that constraint matrix restricted to non-zero dual variables is TDI (structure is triangular).
 - from here we conclude that MIP is integral

Outline

Introduction

Matroids

Matroid Intersection Algorithms:

A Primal Dual Algorithm:

1:
$$k = 0, J_k = \emptyset$$
.

2: **loop**

3: Construct
$$G = G(M_1, M_2, J_k, c)$$

4: **if**
$$\exists$$
 (*r*, *s*)-dipath in *G* **then**

5: Find least cost
$$(r, s)$$
-dipath *P* of minimal cardinality.

6: Aument
$$J_k$$
 using P to obtain J_{k+1} .

7:
$$k \leftarrow k+1$$
.

8: **else**

9: Choose
$$J = J_p$$
 such that $c(J) \ge c(J_i), \forall i = 1, ..., k$.

- 10: stop.
- 11: end if
- 12: end loop