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@ Most well known combinatorial optimization problem.
@ Simply stated, yet APP-complete.

@ It has been (is) the birthplace of most techniques for
MIP.

One of the biggest success of IP.

Vast research on this theme.

Natural sub-problem of many practical problems.
Based on the work of

o David Applegate, Robert Bixby, VaSek Chvatal and
William Cook.

@ “Finding Tours in the TSP”[ABCC95]

@ “Implementing the Dantzig-Fulkerson-Johnson
algorithm for large traveling salesman
problems”[ABCCO03]
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Problem Description

Definition:

Given a finite set of cities,
and travel costs between
each pair of cities, find a tour
that visits each city exactly
once and goes back to the
starting point.

More Precisely:

We will deal with problems where the costs are
symmetric, i.e. the cost of travel from city x to city y is the
same as to travel from city y to city x. Note also that the
condition to visit all cities implies that the problem can be
reduced to decide the order in which every city will be
visited.
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Introduction

Some History

@ First references date back from 1832. Practical guide for
travelling salesman persons.

@ Karl Menger, 1930, (Shortest Hamiltonian Path).

@ J.B. Robinson, “On the Hamiltonian game (a
traveling-salesman problem)”, 1949. First reference on
its modern form.

@ G. Dantzig, R. Fulkerson, and S. Johnson, “Solution
of a large-scale traveling-salesman problem”, 1954.
Exact solution of a 49-city problem (state capitals of the USA),
introduces cuts and B&B.

@ M. Held and R.M. Karp, “A dynamic programming
approach to sequencing problems”, 1962. introduction
of heuristics based on dynamic programming.

@ Lin and B.W. Kernighan, “An effective heuristic for the
traveling-salesman problem”, 1973.
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Introduction
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Record TSP over Time

Year Authors Cities

1954 Dantzig, Fulkerson, and Johnson 49
1971 Held and Karp 64
1975 Camerini, Fratta, and Maffioli 67
1977 Grotschel 120
1980 Crowder and Padberg 318
1987 Padberg and Rinaldi 532
1987 Grotschel and Holland 666
1987 Padberg and Rinaldi 2,392
1994 Applegate, Bixby, Chvatal, and Cook 7,397
1998 Applegate, Bixby, Chvatal, and Cook 13,509
2001 Applegate, Bixby, Chvatal, and Cook 15,112
2004 Applegate, Bixby, Chvatal, Cook, and Helsgaun24,978
2005 Cook et. al. 33,810
2006 Cook et. al. 85,900
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Record TSP over Time
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Introduction
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Some TSP Applications

@ Vehicle Routing. e —
@ Scholar bus.
Sguqletge&gl sgeslrlnasn problem
@ Emergency calls. i N

o thelin

@ Express mail.
@ Gene sequencing.

@ Watching the skies
(NASA).

@ Chip production.
@ World Tour.
@ Santa’s problem.

feaanaee

Ae448984
HAn
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Solving the TSP d the TSP
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Enumeration and Heuristics:

@ Could we enumerate?

10 cities: ~ 10°° posibilities.

@ 100 cities: ~ 10%6 posibilities.

@ 1,000 cities: ~ 10%°%5 posibilities.

@ 33,810 cities: ~ 10138441 posibilities.
]

*)

Universe age: ~ 10'8 seconds.
Atoms in the universe: < 101,
o Limited capability.

@ Held-Karp has guarantee n?2" in worst case.

@ On euclidean instances, Christofides heuristic has
guarantee 3.

@ On euclidean instances, Lin-Kernigan variantes
achives in practice less than 1% GAP.

@ Can we obtain better warranties?
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Solving the TSP
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Enumeration and Heuristics:

Looking for good solutions

@ Practical interest.
@ Key ingridient in any branch and bound approach.
@ A lot of research in the area.

@ We will focus on looking for near-optimal solutions in
a short time period.

@ Compare other common heuristic approaches.
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Solving the TSP

ation and Heuristics:

Heuristics and its limits

@ If P # NP, there is no polynomial time heuristic for
the TSP that guarantee A(l)/OPT (1) < 2" for all
instances | [SG76].

@ If P # NP, there exists £ > 0 such that no polynomial
heuristic for the TSP has a guarantee
A(l)/OPT (1) < 1 + ¢ for all instances | with costs
satisfying the triangular inequality [ALM*92].

@ There exists an algorithm A that, given an euclidian
instance for the TSP, and a constant ¢ > 0, it runs on
time n®®/4) and gurantees
A(l)/OPT (1) < 1 + ¢ [Aro96].
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Solving the TSP IP and the TSP
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Enumeration and Heuristics:

Nearest Neighbour (NN)

@ Initialization k = 1, randomly choose an initial city

ik € {1,...,n}.
@ Loop while k # n, letk = k 4+ 1, and choose

ik €{1,...,n}\{i1,...,ik_1} minimizing c(ix_1, ix)-
@ Finish return the tour (iy, . .., in).
@ Notes:

@ Running time is O(n?).
@ Worst-case guarantee

NN(1)/OPT (1) < 3([logy(n)] + 1).
@ Worst-known instances NN (1)/OPT (I) =~ ©(log(n)).
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Solving the TSP

Enumeration and Heuristics:

Greedy heuristic (GR)

@ Initialization Sort edges e € V x V by cost in
increasing order ey, ...,ey, and assign m = k = 0.

@ Loop Whilek #n,letk =k +1ym=m+ 1, while

{e1,...,ex_1} U{en} can not be extended to a tour,
letm =m + 1. Assign ex = en,.

@ Finish return the tour described by {es,...,en}.

@ Notes:

@ Running time is O(n?log(n)).
@ Worst-case guarantee
NN(1)/OPT (1) < 3(llog,(n)] + 1).
@ Worst-known instances
NN(1)/OPT(l) ~ ©(log(n)/3log(log(n))).
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Solving the TSP

Enumeration and Heuristics:

Christofides (CHR)

@ Step 1 Build a minimum weight spanning tree T in
G=(V,E),whereV ={1,....,n}andE =V x V;
note that c(T) < c*.

@ Step 2 Build a matching M ammong the odd degree
nodes in T; note that c(M) < 3c*.

@ Step 3 Note that M U T is connected and eulerian,
thus exist an ordering of the nodes that induces a
tour with cost less thanc(M U T).

@ Notes:

@ Ejecucion es O(n3).
e Garantia NN(1)/OPT(I) < 3.
o Existen instancias tal que NN(1)/OPT (1) ~ ©(3).
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Solving the TSP

Enumeration and Heuristics:

Comparing Heuristics

Random euclidean instances (SEP GAP)
N 10° 10% 10* 10° 10°
NN 256 26.0 243 23.6 23.3
GR 195 17.0 16.6 14.9 14.2
CHR 95 97 99 099 -

Random instances (SEP GAP)
N 10 10° 10* 10° 10°
NN 130 240 360 - -
GR 100 170 250 - -

Daniel Espinoza TSP and Integer Programming



Solving the TSP

ation and Heuristics:

K-Opt heuristics

Local improvement idea.
Exchange 2 edges
Exchange 3 edges
how to reconnect?
Exchange k edges.
Lin-Kernighan uses
2-edge exchanges.
@ Lin-Kernigham-Helsgun
uses 5-edge exchanges.
@ Don't provide good
bounds.

© © 6 6 ¢ ¢

2998656
0 51290496

Daniel Espinoza TSP and Integer Programming



Solving the TSP

Enumeration and Heuristics:

K-opt limits:

@ If P # NP, no heuristic that at every
local-improvement iteration runs in polynomial time,
satisfies A(1)/OPT (i) < C for any constant C, even if
we allow exponential-sized neighbourhood.

@ Even if P = NP, no heuristic with polynomial size
neighborhoods that do not depend on | can find the
optimal solution of I.

@ 2 —opt(l)/OPT(I) > z+/n for instances where the
triangular inequality holds for the cost matrix.
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Solving the TSP

Enumeration and Heuristics:

K-opt limits:

@ 3 —opt(l)/OPT(I) > 1/n for instances where the
triangular inequality holds for the cost matrix.

@ k —opt(1)/OPT (1) > % 3/n for instances where the
triangular inequality holds for the cost matrix.

@ k —opt(l)/OPT (I) ~ O(log(n)) for euclidean
instances.

@ There are euclidean instances where
k —opt(l1)/OPT(I) = ©(log(n)/ log(log(n))).
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Solving the TSP

Enumeration and Heuristics:

Comparing Heuristics

Random euclidean instances (SEP GAP)
N 10> 10° 10* 10° 10°
GR 195 17.0 16.6 14.9 14.2
CHR 95 97 99 99 -
2-Opt 45 49 50 4.9 4.9
3-Opt 25 31 30 30 3.0

Random instances (SEP GAP)
N 10> 10° 10* 10° 10°
GR 100 170 250 - -
2-Opt 34 70 125 - -
3-Opt 10 33 63 - -
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Solving the TSP

Enumeration and Heuristics:

Can we do any better?

@ Try larger k-opt values.
o Takes really long.
@ Experiments suggest that
gain is negligible.
@ How to program a 10-opt
heuristic?
@ Any k-opt move can be
represented as a sequence of
2-opt moves.

@ Explore promising partial
moves.

@ Basic idea behind
Lin-Kernighan’s heuristic.
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Solving the TS

Lin-Kernighan

Lin-Kernighan Heuristic

@ Basic Idea: improve one edge at a
time.
@ Ask for c(a,n(a)) —c(n(a),n(b)) >0
@ Such nodes called promising
@ Basic Algorithm:
QA0
© while 3 promising nodes.
© Choose b promising,
A — A +c(a,n(a)) +c(b,n(b)) —
c(a,b) —c(n(a),n(b)).
@ do flip(n(a),b).
© If A > 0 return current tour.
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Solving the TS

Lin-Kernighan

Lin-Kernighan Refinements

® How do we choose b? @ Basic Algorithm:

@ Maximize c(b,n(b)) — @Ar—o0
c(n(a), n(b)). © while 3 promising
@ Only consider k closest -
neighbors of n(b). o Choose b
@ What if we do not promising, A —
Succeed? A+ C(a’ n(a)) +
@ Allow backtracking. c(b,n(b)) —
@ More at lower levels. c(a,b) —
o Try also to replace c(n(a),n(b)).
(p(a),a). @ doflip(n(a), b).
@ Sort promising nodes by @ If A > Oreturn
c(n(a),n(b)). current tour.
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Lin-Kernighan Refinements

@ How do we choose a?
@ Set all nodes as marked.
@ While there are marked nodes.
@ Calll k_search(v, T) for some marked node v.
@ if unsuccessful, unmark v.
@ if successful, mark all endpoints in the flip sequence.
@ Can we do better?
@ While there is available time, generate a new initial
tour T, calll i n_ker ni ghan(T), keep best tour.
@ Called repeated Lin-Kernighan.
@ Best approach up to 1991.
@ Introduction of the kick concept.
@ lIdea is to look harder close to good tours.
@ Called chained Lin-Kernighan.
@ Usual kick is the 4-bridge perturbation.
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Solving the TS

Implementation Issues

Basic Routines
@ flip(a,b) -inverts the segment from a to b.
@ next (a) -returns node after a in the tour.
@ prev(a) -returns node before a in the tour.

@ sequence(a, b, c) -returns 1if b lies in the
segment a — c of the tour.

Instances

Name Size Target tour
pcb3038 3038 139070
usal3509 13509 20172983
pla85900 85900 143564780
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Implementation Issues

Number of operations

Function pcb3038 usal3509 pla85900
['i n_kerni ghan 141 468 1842
I i n_kerni ghan winers 91 261 1169
average number of fli p 61 99 108
| k_search 19,855 95,315 376,897
| K_sear ch winers 1,657 9,206 29,126
flip 180,073 1,380,545 5,110,340
undoflip 172,396 1,336,428 4,925,574
size of flip 75 195 607
flipsize<5 67,645 647,293 1,463,090
next 662,436 6,019,892 14,177,723
prev 715,192 4,817,483 13,758,748

sequence 89,755 773,750 2,637,757
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Implementation Issues

Implementations:

Implementation Instance % total time

pch usa pla flip% n/p% seq%
arrays 7.2 246.6 104225 97 1 1
A+ RB 1.6 21.6 265.9 85 1 1
list 50.8 5929.4 >50000 0 93 6
L + 2-search 15.7 426.7 24047.9 0 55 44
L +index+n/p 1.8 65.6 697.3 92 1 1
L + 3 levels 2.3 18.5 81.4 38 19 4
L + 2 layers 1.2 10.1 43.9 26 6 1
Binary Tree 1.4 12.6 52.9 17 24 6
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Introduction Solving the TSP

Getting Bounds

@ How do we Obtam_ 15,112 cities in Germany, 0.74%
bounds or warranties? optimality GAR

@ Assign disjoint circles to ®,
every city. ‘ :

@ Assign disjoint moats to
set of cities.

@ Add two times each
ratio and band-width to
get a valid bound.

@ How do we find each
circle and moat width?
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Solving the TS

Previous Definitions:
V' Set of cities.

E Set of allowed connections between cities, i.e.
E={(a,b):a,beV,a+#b}.
c Cost of each edge.

9(S) Edges crossing the boundary of set S, i.e.
i(S)={(a,b)e E:acS,beV\S}.
IP Formulation:

min ) (CeXe : € € E)
Y (xe:e€d(fv}) =2 WweV
st Y (xe:e€d(S) =2 WCSCV
Xe € {0,1} VeeE




Solving the TS

An IP formulation for the TSP

Some problems of the IP formulation:
@ Just as hard as counting possible permutations.
@ Number of variables is [V |(|V| —1)/2.
@ No efficient algorithm is known.

Continuous Relaxation (SEP):
min > (CeXe i€ €E)
st. Y (Xe:ee€d({v})) =2 YW eV ()
Y (Xe:€€0(S))>2 VOCSCV (Ws)
Xe € [0,1] VeecE

Can be solved efficiently (Ellipsoid method).
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Solving the TSP

An IP formulation for the TSP

Bounds from the SEP relaxation:
0.69% GAP for instance chiIe5445J

WA
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Solving the TSP

Cutting plane Algorithm

IP through LP

First proposed by Dantzig,
Fulkerson and Johnson (1954)
for the TSP.

© Consider continuous
relaxation.

@ Let x* be the continuous
optimal solution.

@ Is x* integer?, then finish.

© Find valid inequality for
integer points.

@ Add it to our LP formulation.

© Go backto 2.
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Solving the TS

Cuts for the TSP

(Some) structural cuts for the TSP

Sub-tour (separable)

Blossom (Edmonds 1965)(separable)

Combs (Chvatal 1973, Grotschel y Padberg 1979)
Clique-Tree (Grotschel y Pulleyblank 1986)

Star, Path (Fleischmann 1988, Cornuéjols et al.
1985)

Bipartition (Boyd y Cunningham 1991)
Binested (Nadeff 1992)

Double Deckers (Applegate et. all 1994)
Domino Parity (Letchford 2000)(planar)
K-Parity (Cook et. al. 2004)(planar)
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Solving the TSP

Cuts for the TSP

How do they relate?

Double Deckers

Blossom

[

Sub-Tour

Bipartition

Super K-Parith
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Cuts for the TSP

General IP Cuts
Local Cuts for the TSP

@ Idea: get cuts automatically.
@ Base: use a simplified version of the problem.
@ Example: Gomory-Chvéatal cuts (1958).
@ Consider a single (basic) constraint with a fractional
integer variable.
@ Rounding of the constraint give us a valid cut.
@ In theory, can solve any IP problem.

| N @ X, €7Z,% € RT

@ P = {(X1,X2) : X3 + X2 < 4.5}

@ X1 +X<45x,>0=x%x,<45
o X <4,

O R, N W b
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Solving the TS

Cuts for the TSP

Non-structured cuts

Local Cuts for the TSP: = ==0s
@ Shrink to a small

GTSP (16-48 cities). — X =10

@ Separate on small s

problem.

@ If successful, add
expanded cut to
original problem.

@ Numerical issues.
@ Extension to MIP.

@ What if everything X e P ? Let {vx : k
fails, what do we do? 1,...,K} extreme points of P

P polyhedron:
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Solving the TS

Cuts for the TSP

Between enumeration and Lineal

Programming

Strong Branching (divide to con-

quer) .
@ Create easier sub-problems.

@ Fix variables upper/lower
bounds.

@ Solve each resulting
sub-problem.

@ Choose biggest impact.

@ Together with cutting plane
approach at each node.
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Solving the TS

Numerical examples

Numerical Examples on chile5445
Optimal Solution: 40011.091Km

Conf. Value Time GAP (%)
Subtour 39755.198 134 0.639
Heuristic separation  39846.738 25518 0.470
Local Cuts (24) 39994.941 14509 0.040
Domino Parity 40001.294 10863 0.024
DP +LC 24 40002.578 14160 0.021
DP + LC 32 40003.294 21159 0.019
DP + LC 40 40004.291 60269 0.017
DP + LC + Branching 40008.475 +3 dias 0.007
LKH 40031.459 46 -0.051
First solution 44594.459 3 -11.455
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Numerical examples

Solving the TS

Numerical Results (Closed GAP over SEP)

100

Conf. (%)
Heuristic separation 35.773
Local Cuts (24) 93.689
Domino Parity 96.171
DP +LC 24 96.673
DP + LC 32 96.953
DP + LC 40 97.343
DP + LC + Branching 98.978
LKH 107.960
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IP and the TSP
©0000

Some final comments

Conclusions

4

TSP offers a reference for IP in general.
Strategy depends on the real objective:

@ Find feasible solution.
@ Find good solution.
@ Optimality.

@ Most important techniques for IP where (are) born in
the TSP.

Importance of having good bounds.
@ Numerical Issues.
Looking for general cuts for MIP (local cuts).

(]

(]

¢
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IP and the TSP
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Some final comments

Thanks for your patience!
Questions?
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IP and the TSP
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