TSP and Integer Programming

Daniel Espinoza

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial

August 6, 2007

Outline

Introduction	
Why the TSP?	

- Most well known combinatorial optimization problem.
- Simply stated, yet \mathcal{NP} -complete.
- It has been (is) the birthplace of most techniques for MIP.
- One of the biggest success of IP.
- Vast research on this theme.
- Natural sub-problem of many practical problems.
- Based on the work of
 - David Applegate, Robert Bixby, Vašek Chvátal and William Cook.
 - "Finding Tours in the TSP"[ABCC95]
 - "Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems"[ABCC03]

Definition:

Given a finite set of *cities*, and travel costs between each pair of cities, find a tour that visits each city exactly once and goes back to the starting point.

More Precisely:

We will deal with problems where the costs are *symmetric*, i.e. the cost of travel from city x to city y is the same as to travel from city y to city x. Note also that the condition to visit *all cities* implies that the problem can be reduced to decide the order in which every city will be visited.

Introduction	Solving the TSP
○○●○○○	000000000000000000000000000000000000
Some History	

• First references date back from 1832. Practical guide for travelling salesman persons.

IP and the TSP

- Karl Menger, 1930, (Shortest Hamiltonian Path).
- J.B. Robinson, "On the Hamiltonian game (a traveling-salesman problem)", 1949. First reference on its modern form.
- G. Dantzig, R. Fulkerson, and S. Johnson, "Solution of a large-scale traveling-salesman problem", 1954.
 Exact solution of a 49-city problem (state capitals of the USA), introduces cuts and B&B.
- M. Held and R.M. Karp, "A dynamic programming approach to sequencing problems", 1962. introduction of heuristics based on dynamic programming.
- Lin and B.W. Kernighan, "An effective heuristic for the traveling-salesman problem", 1973.

Introduction

IP and the TSP

INGENIERIA INDUSTRIAL

Record TSP over Time

	line		
Year	Authors	Cities	
1954	Dantzig, Fulkerson, and Johnson	49	
1971	Held and Karp	64	
1975	Camerini, Fratta, and Maffioli	67	
1977	Grötschel	120	
1980	Crowder and Padberg	318	
1987	Padberg and Rinaldi	532	
1987	Grötschel and Holland	666	
1987	Padberg and Rinaldi	2,392	
1994	Applegate, Bixby, Chvátal, and Cook	7,397	
1998	Applegate, Bixby, Chvátal, and Cook	13,509	
2001	Applegate, Bixby, Chvátal, and Cook	15,112	
2004	Applegate, Bixby, Chvátal, Cook, and H	elsgaun24,978	
2005	Cook et. al.	33,810	
2006	Cook et. al.	85,900	
		UNIVERSIDAD DE CH PACUETAD DE CERRO PISICAS T MATEMATI	HILE TAS ICAS

Record TSP over Time

Some TSP Applications

- Vehicle Routing.
 - Scholar bus.
 - Emergency calls.
 - Express mail.
- Gene sequencing.
- Watching the skies (NASA).
- Chip production.
- World Tour.
- Santa's problem.

Enumeration and Heuristics:

- Could we enumerate?
 - 10 cities: $\approx 10^{5.5}$ posibilities.
 - 100 cities: $\approx 10^{156}$ posibilities.
 - 1,000 cities: $\approx 10^{2,565}$ posibilities.
 - 33,810 cities: $\approx 10^{138,441}$ posibilities.
 - Universe age: $\approx 10^{18}$ seconds.
 - Atoms in the universe: $< 10^{100}$.
 - Limited capability.
- Held-Karp has guarantee $n^2 2^n$ in worst case.
- On euclidean instances, Christofides heuristic has guarantee ³/₂.
- On euclidean instances, Lin-Kernigan variantes achives in practice less than 1% GAP.
- Can we obtain better warranties?

Enumeration and Heuristics:

Looking for good solutions

- Practical interest.
- Key ingridient in any branch and bound approach.
- A lot of research in the area.
- We will focus on looking for near-optimal solutions in a short time period.
- Compare other common heuristic approaches.

IP and the TSP

Enumeration and Heuristics:

Heuristics and its limits

- If *P* ≠ *NP*, there is no polynomial time heuristic for the TSP that guarantee *A*(*I*)/*OPT*(*I*) ≤ 2ⁿ for all instances *I* [SG76].
- If P ≠ NP, there exists ε > 0 such that no polynomial heuristic for the TSP has a guarantee
 A(I)/OPT(I) ≤ 1 + ε for all instances I with costs
 satisfying the triangular inequality [ALM⁺92].
- There exists an algorithm A that, given an euclidian instance for the TSP, and a constant ε > 0, it runs on time n^{O(1/ε)} and gurantees A(I)/OPT(I) < 1 + ε [Aro96].

Enumeration and Heuristics:

Nearest Neighbour (NN)

- Initialization k = 1, randomly choose an initial city $i_k \in \{1, ..., n\}$.
- Loop while $k \neq n$, let k = k + 1, and choose $i_k \in \{1, \ldots, n\} \setminus \{i_1, \ldots, i_{k-1}\}$ minimizing $c(i_{k-1}, i_k)$.
- Finish return the tour (i_1, \ldots, i_n) .
- Notes:
 - Running time is $\mathcal{O}(n^2)$.
 - Worst-case guarantee $NN(I)/OPT(I) \le \frac{1}{2}(\lfloor \log_2(n) \rfloor + 1).$
 - Worst-known instances $NN(I)/OPT(I) \approx \Theta(\log(n))$.

IP and the TSP

Enumeration and Heuristics:

Greedy heuristic (GR)

- Initialization Sort edges e ∈ V × V by cost in increasing order e₁,..., e_M, and assign m = k = 0.
- Loop While $k \neq n$, let k = k + 1 y m = m + 1, while $\{e_1, \ldots, e_{k-1}\} \cup \{e_m\}$ can not be extended to a tour, let m = m + 1. Assign $e_k = e_m$.
- Finish return the tour described by $\{e_1, \ldots, e_n\}$.
- Notes:
 - Running time is $\mathcal{O}(n^2 \log(n))$.
 - Worst-case guarantee $NN(I)/OPT(I) \le \frac{1}{2}(\lfloor \log_2(n) \rfloor + 1).$
 - Worst-known instances NN(I)/OPT(I) ≈ ⊖(log(n)/3log(log(n))).

IP and the TSP

Enumeration and Heuristics:

Christofides (CHR)

- Step 1 Build a minimum weight spanning tree T in G = (V, E), where $V = \{1, ..., n\}$ and $E = V \times V$; note that $c(T) \le c^*$.
- Step 2 Build a matching *M* ammong the odd degree nodes in *T*; note that *c*(*M*) ≤ ¹/₂*c*^{*}.
- Step 3 Note that *M* ∪ *T* is connected and eulerian, thus exist an ordering of the nodes that induces a tour with cost less than *c*(*M* ∪ *T*).
- Notes:
 - Ejecución es $\mathcal{O}(n^3)$.
 - Garantía $NN(I)/OPT(I) \leq \frac{3}{2}$.
 - Existen instancias tal que NN(I)/OPT(I) ≈ Θ(³/₂).

IP and the TSP

Enumeration and Heuristics:

Comparing Heuristics

Random euclidean instances (SEP GAP)					
Ν	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
NN	25.6	26.0	24.3	23.6	23.3
GR	19.5	17.0	16.6	14.9	14.2
CHR	9.5	9.7	9.9	9.9	-

Random instances (SEP GAP)

Ν	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
NN	130	240	360	-	-
GR	100	170	250	-	-

IP and the TSP

Enumeration and Heuristics:

K-Opt heuristics

- Local improvement idea.
- Exchange 2 edges
- Exchange 3 edges
- how to reconnect?
- Exchange k edges.
- Lin-Kernighan uses 2-edge exchanges.
- Lin-Kernigham-Helsgun uses 5-edge exchanges.
- Don't provide good bounds.

IP and the TSP

Enumeration and Heuristics:

K-opt limits:

- If *P* ≠ *NP*, no heuristic that at every local-improvement iteration runs in polynomial time, satisfies *A*(*I*)/*OPT*(*i*) ≤ *C* for any constant *C*, even if we allow exponential-sized neighbourhood.
- Even if P = NP, no heuristic with polynomial size neighborhoods that do not depend on *I* can find the optimal solution of *I*.
- $2 opt(I)/OPT(I) \ge \frac{1}{4}\sqrt{n}$ for instances where the triangular inequality holds for the cost matrix.

Enumeration and Heuristics:

K-opt limits:

- $3 opt(I) / OPT(I) \ge \frac{1}{4}\sqrt[6]{n}$ for instances where the triangular inequality holds for the cost matrix.
- $k opt(I) / OPT(I) \ge \frac{1}{4} \sqrt[2^k]{n}$ for instances where the triangular inequality holds for the cost matrix.
- *k* − opt(*I*)/OPT(*I*) ≈ O(log(*n*)) for euclidean instances.
- There are euclidean instances where k – opt(I)/OPT(I) ≈ Θ(log(n)/log(log(n))).

IP and the TSP

Enumeration and Heuristics:

Comparing Heuristics

Rando	m eucl	idean i	nstanc	es (SEF	P GAP)
Ν	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
GR	19.5	17.0	16.6	14.9	14.2
CHR	9.5	9.7	9.9	9.9	-
2-Opt	4.5	4.9	5.0	4.9	4.9
3-Opt	2.5	3.1	3.0	3.0	3.0

Random instances (SEP GAP)					
Ν	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
GR	100	170	250	-	-
2-Opt	34	70	125	-	-
3-Opt	10	33	63	-	-

Enumeration and Heuristics:

Can we do any better?

• Try larger k-opt values.

- Takes really long.
- Experiments suggest that gain is negligible.
- How to program a 10-opt heuristic?
- Any k-opt move can be represented as a sequence of 2-opt moves.
- Explore promising partial moves.
- Basic idea behind Lin-Kernighan's heuristic.

IP and the TSP

Lin-Kernighan

Lin-Kernighan Heuristic

- Basic Idea: improve one edge at a time.
 - Ask for c(a, n(a)) − c(n(a), n(b)) > 0
 - Such nodes called promising
- Basic Algorithm:
 - $\mathbf{0}\to\Delta$
 - 2 while \exists promising nodes.
 - Choose b promising,
 - $\Delta \leftarrow \Delta + c(a, n(a)) + c(b, n(b)) c(a, b) c(n(a), n(b)).$
 - do flip(n(a), b).
 - If $\Delta > 0$ return current tour.

IP and the TSP

Lin-Kernighan

Lin-Kernighan Refinements

- How do we choose b?
 - Maximize c(b, n(b)) c(n(a), n(b)).
 - Only consider k closest neighbors of n(b).
- What if we do not succeed?
 - Allow backtracking.
 - More at lower levels.
 - Try also to replace (*p*(*a*), *a*).
 - Sort promising nodes by c(n(a), n(b)).

- Basic Algorithm:
 - $\mathbf{0} \to \Delta \quad \mathbf{0}$
 - While ∃ promising nodes.
 - Shoose *b* promising, $\Delta \leftarrow \Delta + c(a, n(a)) + c(a, n(a))$
 - c(b, n(b)) -
 - c(a,b) c(n(a), n(b)).
 - do flip(n(a), b).

3 If $\Delta > 0$ return

current tour.

Lin-Kernighan

Lin-Kernighan Refinements

• How do we choose a?

- Set all nodes as marked.
- While there are marked nodes.
- Call lk_search(v,T) for some marked node v.
 - if unsuccessful, unmark v.
 - if successful, mark all endpoints in the flip sequence.
- Can we do better?
 - While there is available time, generate a new initial tour *T*, call lin_kernighan(T), keep best tour.
 - Called repeated Lin-Kernighan.
 - Best approach up to 1991.
 - Introduction of the kick concept.
 - Idea is to look harder close to good tours.
 - Called chained Lin-Kernighan.
 - Usual kick is the 4-bridge perturbation.

Implementation Issues

Basic Routines

- flip(a,b) inverts the segment from a to b.
- next(a) returns node after a in the tour.
- prev(a) returns node before *a* in the tour.
- sequence(a,b,c) returns 1 if b lies in the segment a c of the tour.

Instances

Name	Size	Target tour
pcb3038	3038	139070
usa13509	13509	20172983
pla85900	85900	143564780

IP and the TSP

Implementation Issues

Number of operations

Function	pcb3038	usa13509	pla85900
lin_kernighan	141	468	1842
lin_kernighan winers	91	261	1169
average number of flip	61	99	108
lk_search	19,855	95,315	376,897
lk_search winers	1,657	9,206	29,126
flip	180,073	1,380,545	5,110,340
undo flip	172,396	1,336,428	4,925,574
size of flip	75	195	607
flip size ≤ 5	67,645	647,293	1,463,090
next	662,436	6,019,892	14,177,723
prev	715,192	4,817,483	13,758,748
sequence	89,755	773,750	2,637,757

IP and the TSP

Implementation Issues

Implementations:

Implementatio	n	Instan	се	%	total tim	ne
	pcb	usa	pla	flip%	n/p%	seq%
arrays	7.2	246.6	10422.5	97	1	1
A + RB	1.6	21.6	265.9	85	1	1
list	50.8	5929.4	>50000	0	93	6
L + 2-search	15.7	426.7	24047.9	0	55	44
L + index + n/p	1.8	65.6	697.3	92	1	1
L + 3 levels	2.3	18.5	81.4	38	19	4
L + 2 layers	1.2	10.1	43.9	26	6	1
Binary Tree	1.4	12.6	52.9	17	24	6

IP and the TSP

Getting Bounds

- How do we obtain bounds or warranties?
- Assign disjoint circles to every city.
- Assign disjoint moats to set of cities.
- Add two times each ratio and band-width to get a valid bound.
- How do we find each circle and moat width?

15,112 cities in Germany, 0.74% optimality GAP

An IP formulation for the TSP

Previous Definitions:

- V Set of cities.
- *E* Set of allowed connections between cities, i.e.

$$\boldsymbol{E} = \{(\boldsymbol{a},\boldsymbol{b}): \boldsymbol{a},\boldsymbol{b} \in \boldsymbol{V}, \boldsymbol{a} \neq \boldsymbol{b}\}.$$

c Cost of each edge.

 $\begin{aligned} \delta(S) \ \ & \text{Edges crossing the boundary of set } S, \text{ i.e.} \\ \delta(S) = \{(a,b) \in E : a \in S, b \in V \setminus S\}. \end{aligned}$

IP Formulation:

$$\begin{array}{ll} \min & \sum \left(c_{e}x_{e}:e\in E\right) \\ & \sum \left(x_{e}:e\in \delta(\{v\})\right) = 2 \quad \forall v\in V \\ \text{s.t.} & \sum \left(x_{e}:e\in \delta(S)\right) \geq 2 \quad \forall \emptyset \subsetneq S \subsetneq V \\ & x_{e}\in \{0,1\} \quad \forall e\in E \end{array}$$

Some problems of the IP formulation:

- Just as hard as counting possible permutations.
- Number of variables is |V|(|V| 1)/2.
- No efficient algorithm is known.

Continuous Relaxation (SEP):

$$\begin{array}{ll} \min & \sum \left(c_e x_e : e \in E\right) \\ \text{s.t.} & \sum \left(x_e : e \in \delta(\{v\})\right) = 2 & \forall v \in V & (r_v) \\ & \sum \left(x_e : e \in \delta(S)\right) \geq 2 & \forall \emptyset \subsetneq S \subsetneq V & (W_S) \\ & & x_e \in [0, 1] & \forall e \in E \end{array}$$

Can be solved efficiently (Ellipsoid method).

IP and the TSP

An IP formulation for the TSP

Bounds from the SEP relaxation: 0.69% GAP for instance chile5445

Cutting plane Algorithm

Solving the TSP

IP and the TSP

IP through LP

First proposed by Dantzig, Fulkerson and Johnson (1954) for the TSP.

- Consider continuous relaxation.
- Let x* be the continuous optimal solution.
- Is x* integer?, then finish.
- Find valid inequality for integer points.
- Add it to our LP formulation.
 - Go back to 2.

IP and the TSP

Cuts for the TSP

(Some) structural cuts for the TSP

- Sub-tour (separable)
- Blossom (Edmonds 1965)(separable)
- Combs (Chvátal 1973, Grötschel y Padberg 1979)
- Clique-Tree (Grötschel y Pulleyblank 1986)
- Star, Path (Fleischmann 1988, Cornuéjols et al. 1985)
- Bipartition (Boyd y Cunningham 1991)
- Binested (Nadeff 1992)
- Double Deckers (Applegate et. all 1994)
- Domino Parity (Letchford 2000)(planar)
- K-Parity (Cook et. al. 2004)(planar)

Introduction

Solving the TSP

IP and the TSP

UNIVERSIDAD DE CHIL FACULTAD DE CIENCIA FISICAS Y MATEMATICA INGENIERIA INDUSTRIA

Cuts for the TSP

How do they relate?

Cuts for the TSP

General IP Cuts

- Idea: get cuts automatically.
- Base: use a simplified version of the problem.
- Example: Gomory-Chvátal cuts (1958).
 - Consider a single (basic) constraint with a fractional integer variable.
 - Rounding of the constraint give us a valid cut.
 - In theory, can solve any IP problem.

- $x_2 \in \mathbb{Z}, x_1 \in \mathbb{R}^+$
- $P = \{(x_1, x_2) : x_1 + x_2 \le 4.5\}.$
- $x_1 + x_2 \le 4.5, x_1 \ge 0 \Rightarrow x_2 \le 4.5$
- $x_2 \le 4$.

IP and the TSP

Cuts for the TSP

Non-structured cuts

Local Cuts for the TSP:

- Shrink to a small GTSP (16-48 cities).
- Separate on small problem.
- If successful, add expanded cut to original problem.
- Numerical issues.
- Extension to MIP.
- What if everything fails, what do we do?

$$x^* \in P$$
? Let $\{v_k : k = 1, \ldots, K\}$ extreme points of P .

IP and the TSP

Cuts for the TSP

Between enumeration and Lineal Programming

Strong Branching (divide to conquer)

- Create easier sub-problems.
- Fix variables upper/lower bounds.
- Solve each resulting sub-problem.
- Choose biggest impact.
- Together with cutting plane approach at each node.

IP and the TSP

Numerical examples

Numerical Examples on chile5445

Optimal Solution: 40011.091Km					
Conf.	Value	Time	GAP (%)		
Subtour	39755.198	134	0.639		
Heuristic separation	39846.738	25518	0.470		
Local Cuts (24)	39994.941	14509	0.040		
Domino Parity	40001.294	10863	0.024		
DP + LC 24	40002.578	14160	0.021		
DP + LC 32	40003.294	21159	0.019		
DP + LC 40	40004.291	60269	0.017		
DP + LC + Branching	40008.475	+3 dias	0.007		
LKH	40031.459	46	-0.051		
First solution	44594.459	3	-11.455		

IP and the TSP

Numerical examples

Numerical Results (Closed GAP over SEP)

Conf.	(%)	%
	(70)	100 — вк
Heuristic separation	35.773	90 - LC24
Local Cuts (24)	93.689	80 -
Domino Parity	96.171	
DP + LC 24	96.673	70 +
-		60 -
DP + LC 32	96.953	
DP + LC 40	97.343	50 -
DP + LC + Branching	98.978	40 – _{сн}
•		30 -
LKH	107.960	00
		20 +

10 0 Some final comments

Conclusions

- TSP offers a reference for IP in general.
- Strategy depends on the real objective:
 - Find feasible solution.
 - Find good solution.
 - Optimality.
- Most important techniques for IP where (are) born in the TSP.
- Importance of having good bounds.
- Numerical Issues.
- Looking for general cuts for MIP (local cuts).

Some final comments

Thanks for your patience! Questions?

IP and the TSP ○○●●●

References

References I

- David Applegate, Robert E. Bixby, Vašek Chvátal, and William Cook, *Finding cuts in the TSP (a preliminary report)*, Tech. Report 95-05, DIMACS, Rutgers University, New Brunswick, NJ, 1995.
- _____, Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems, Math. Prog. 97 (2003), 91–153.

IP and the TSP ○○●●●

References

References II

- S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, *Proof verification and hardness of approximation problems*, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Los Alamitos, CA), IEEE Computer Society Press, 1992, pp. 12–23.
- S. Arora, Polynomial time approximation schemes for euclidean TSP and other geometric problems, Proceedings 37th Annual Symposium on Foundations of Computer Science (Los Alamitos, CA), IEEE Computer Society Press, 1996, pp. 2–11.

IP and the TSP ○○●●●

References

References III

S. Shani and T. Gonzalez, *P-complete approximation problems*, Journal of the Association for Computing Machinery 23 (1976), 555–565.

