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This paper, motivated by the experiences of a major U.S.-based broadcast television network, presents algorithms and
heuristics to schedule commercial videotapes. Major advertisers purchase several slots to air commercials during a given
time period on a broadcast network. We study the problem of scheduling advertiser’s commercials in the slots it purchased
when the same commercial is to be aired multiple times. Under such a situation, the advertisers typically want the airings
of a commercial to be as evenly spaced as possible. Thus, our objective is to schedule a set of commercials in a set of
available slots such that multiple airings of the same commercial are as evenly spaced as possible. A natural formulation of
this problem is a mixed-integer program that can be solved using third-party solvers. We also develop a branch-and-bound
algorithm based on a problem-specific bounding scheme. Both approaches fail to solve larger problem instances within
a reasonable time frame. We present an alternative mixed-integer program that lends itself to an efficient solution. For
solving even larger problems, we present multiple heuristics.
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1. Introduction
The objective of this paper is to develop heuristics and
algorithms for scheduling commercial videotapes in broad-
cast television. Our work is motivated by the problem faced
by the National Broadcasting Company (NBC), one of the
leading firms in the television industry. Major advertisers
such as Procter & Gamble and General Motors buy hun-
dreds of time slots to air commercials on a network during
any broadcast season. The actual commercials to be aired
in these slots are decided at a later stage. During the broad-
cast season the clients ship videotapes of the commercials
to be aired in the slots that they had purchased. Each tape
has a single commercial, which has a code written on it
for identification. These codes are called Industry Standard
Commercial Identification (ISCI) codes. The commercials
are scheduled by their ISCI codes by the TV network per-
sonnel according to the instructions given by the advertiser.
The advertisers most often specify the following guideline.
Whenever a commercial is to be aired multiple times within
a specified period (for example: a month), the advertiser
wants these airings to be evenly spaced as much as pos-
sible over that time period. Thus, a client has a certain
number of advertising slots that it had purchased during
a specified time period. It also has a set of commercials
to be scheduled in its time slots. The question naturally

arises: how to schedule the commercials in the available
advertising slots such that two airings of the same commer-
cial are as evenly spaced as possible. We propose to study
this problem.
Stated in more formal terms, we have N balls (com-

mercials), out of which n1 are of color 1 (ISCI code 1),
n2 are of color 2 (ISCI code 2), and so on. We want to
put the N balls into N slots such that balls of any one
color are as evenly spaced as possible; i.e., the distance
between subsequent balls of color c is as close as possi-
ble to N/nc. This paper presents algorithms and heuristics
for accomplishing this. We will call this problem to be the
basic ISCI rotator problem or, simply, the ISCI problem.
To motivate the discussion, we provide the following data
from the said firm. Table 1a shows the individual commer-
cials of an advertiser, with their ISCI codes and the number
of times each commercial is to be aired. In this example,
N = 17, the total number of slots, while n1 = n5 = 3� n2 =
5, and n3 = n4 = n6 = 2. Table 1b shows the 17 advertise-
ment slots purchased by the advertiser between May 11
and May 27, 2000 on the Pax Network, which is partially
owned by NBC. The column labeled Pod refers to a com-
mercial break within a program. Thus, the first entry in the
table denotes that the client purchased an advertising slot in
the 5th commercial break (Pod 5) for Touched by an Angel
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Table 1a. The individual commercials
to be aired.

ISCI code Airings

TOPS9016 3
MABH7503 5
TOPS9004 2
MABT6903 2
MAIT0206 3
MAGM0205 2

on May 11. The last column, labeled Schedule, represents
an “optimal” solution.
The literature on scheduling problems in the television

industry mainly deals with scheduling programs (rather
than commercials) for television to optimize some speci-
fied criteria (the viewership ratings or a network’s share of
audiences). Typical examples are Goodhardt et al. (1975),
Headen et al. (1979), Henry and Rinnie (1984), Webster
(1985), and Rust and Echambadi (1989). Reddy et al.
(1998) describe strategies for optimal prime-time TV pro-
gram scheduling. Strategies for scheduling advertisements
(though not necessarily the television commercials) have
also been studied in marketing literature. This literature is
concerned with whether the advertising should be steady
or pulsed (i.e., turned on and off), so that the effectiveness
of the advertising is maximized. Some examples are Simon
(1982) and Mahajan and Muller (1986). Lilien et al. (1992)
provides a review of these models.
There is a vast array of operations research-based liter-

ature on scheduling. Lawler et al. (1993) provides a com-
prehensive review of this literature. The work that comes
closest to our current work is the problem of obtaining
optimal-level schedules for mixed model assembly lines in
just-in-time (JIT) systems studied by Miltenburg (1989) and
Kubiak and Sethi (1991). They consider C products with
demands n1� n2� � � � � nC to be produced during a specified

Table 1b. Slots purchased by an advertiser plus “optimal” schedule.

Show Day of week Air date Air time Pod Schedule

Touched by an Angel THU 5/11/2000 9:00:00 PM 5 TOPS9004
Touched by an Angel FRI 5/12/2000 9:00:00 PM 2 MAIT0206
Twenty-One SAT 5/13/2000 9:00:00 PM 2 MAGM0205
Pax Three-Hanky Movie SAT 5/13/2000 10:00:00 PM 2 MABH7503
Christy SUN 5/14/2000 5:00:00 PM 3 TOPS9016
Shop ’til You Drop MON 5/15/2000 6:30:00 PM 4 MABT6903
Scarecrow & Mrs. King TUE 5/16/2000 4:00:00 PM 2 MABH7503
Treasures in Your Home TUE 5/16/2000 11:35:00 PM 3 MAIT0206
Dr Quinn Medicine Woman WED 5/17/2000 3:00:00 PM 3 TOPS9004
It’s a Miracle THU 5/18/2000 8:00:00 PM 3 MABH7503
It’s a Miracle FRI 5/19/2000 8:00:00 PM 2 TOPS9016
Diagnosis Murder FRI 5/19/2000 10:00:00 PM 3 MAGM0205
Diagnosis Murder MON 5/22/2000 10:00:00 PM 5 MABH7503
Jack Hanna TUE 5/23/2000 5:30:00 PM 2 MAIT0206
It’s a Miracle WED 5/24/2000 11:05:00 PM 3 MABT6903
Eight is Enough SAT 5/27/2000 6:00:00 PM 2 MABH7503
D Jack Hanna SAT 5/27/2000 8:00:00 PM 2 TOPS9016

time horizon. Each product takes a unit of time to be pro-
duced, so that the specified time horizon is N =∑C

c=1 nc.
Define rc = nc/N . The objective is to keep the proportion of
cumulative production of product c to the total production
as close to rc as possible. Miltenburg (1989) proposes a
quadratic integer programming formulation of the problem
and several approximate solutions to it. Kubiak and Sethi
(1991) show that the same problem can be transformed
into an assignment problem and, hence, can be solved effi-
ciently. We differ from these studies in the following way.
In the ISCI problem there is no fixed demand schedule
determined by rc. Rather than minimizing the deviation
from this fixed demand schedule, the placement of a ball in
the ISCI problem is based on the deviation of the distance
of subsequent balls of the same color to the ideal distance.
Nevertheless, to compare our work with the literature, we
describe a heuristic solution based on the work by Kubiak
and Sethi (1991) in §4.
It is evident from the previous discussion that while

scheduling programs and the effectiveness of various adver-
tising policies are well studied, actual scheduling of com-
mercials in the time slots purchased by a client has
received very little attention in the literature. Recently,
Bollapragada et al. (2002b) have developed a mathemati-
cal programming-based algorithm to rapidly generate near-
optimal sales plans that meet advertiser requirements. A
sales plan consists of a complete schedule of commercials
to be aired for an advertiser to meet its requirements. The
requirements include budget goals, audience demographics,
and the mix of shows, commercial lengths, and the weeks
that the client is interested in during the broadcast year.
They implemented the sales planning and demand predic-
tion algorithms in a system that is currently being used by
NBC, generating more than $50 million in additional rev-
enues annually. They also introduced the ISCI problem and
presented a simple heuristic. The objective of our work is
to analyze the ISCI problem by using a formal optimization
framework.
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Note that the focus of this paper is to provide efficient
solutions for the scheduling problem discussed. In line with
our observations in the industry, we treat the objective (i.e.,
to have airings of the same commercial evenly spaced) as
given. Thus, we are not concerned with whether this is the
best advertising strategy for the advertiser.
The remainder of this paper is organized as follows.

Section 2 describes an intuitive approach based on a mixed-
integer programming formulation. In §2.1, we present a
branch-and-bound algorithm based on a problem-specific
bounding scheme. In §3, we develop an alternative mixed-
integer programming model for the ISCI problem. We
explore several heuristic solutions for large ISCI instances
in §4. All computational results are presented in §5, while
the summary and the conclusions are presented in §6.

2. Model Formulation
Consider a set of N balls out of which n1 are of color 1,
n2 are of color 2, and so on. We want to place these N
balls into N slots such that the balls of any one color are
as evenly spaced over the slots as possible. We define the
following notation to formulate our first “intuitive” model.

2.1. Notation

c= index on color, c= 1�2� � � � �C.
nc = number of balls of color c.
N = total number of balls=∑

c nc, also equals the total
number of slots.
ic = index on balls of color c, ic = 1�2� � � � � nc ∀ c.
j� k= index on slots, j , k= 1�2� � � � �N .
qc = ideal distance between any two balls of color c =

N/nc.
Zic

= slot number of ball i of color c (decision variable).

Yick =
{
1� if ball i of color c is assigned to slot k,

0� otherwise.
We formulate the basic ISCI rotator problem as an inte-

ger program with nonlinear objective function.

Problem P1

Minimize
∑
c

∑
ic

�Zic
−Zi−1c − qc� (1)

subject to

Zi−1c �Zic
− 1 ∀ ic� c� (2)∑

ic � k

Yick = nc ∀ c� (3)

Zic
=∑

k

kYick ∀ ic� c� (4)

∑
ic � c

Yick = 1 ∀k� (5)

∑
k

Yick = 1 ∀ ic� c� (6)

1�Zic
�N� Yick binary� (7)

Note that we defined qc to be the ideal distance between
any two balls of color c so that the balls of color c
are evenly spaced over the slots. This distance need not
be an integer. However, the slot numbers (indexed by k�
are always integers. Our objective is to have the spacing
between any two balls of color c be as close to qc as pos-
sible. The quantity �Zic

−Zi−1c − qc� is the deviation of the
distance between the �i− 1�th and ith ball of color c from
its ideal spacing. The objective function (1) in the above
formulation, thus, is the sum of deviations from the ideal
spacing for each ball of each color. Constraint (2) ensures
an ordered arrangement of the balls. Constraint (3) ensures
that all balls are used. Constraint (5) ensures that a slot
can hold only one ball, while (6) ensures that each ball can
be placed in only one slot. Note that the integrality of the
variables Zic

is guaranteed through constraint (4), which
describes the relationship between the Y and Z variables.
The nonlinear objective of P1 can be transformed to a lin-
ear problem using a standard technique described below.

Problem P2

Minimize
∑
c

∑
ic

��ic
+ �ic � (8)

subject to

constraints �2�� �3�� �4�� �5�� �6�

�ic
− �ic =Zic

−Zi−1c − qc ∀ ic� c� (9)

�ic
� 0� �ic � 0 ∀ i� c� (10)

In the above formulation we have introduced two addi-
tional sets of variables � and � to accommodate the posi-
tive and negative parts of the distance calculation. Together
with the right direction of � and � in the objective function,
we transformed the nonlinear � · � (absolute value) function
into a linear representation. Corollary 1 follows directly
from our model.

Corollary 1. Problem P2 can be solved trivially when
nc = n ∀ c, i.e., when we have the same number of balls of
each color.

The proof follows trivially. Consider an arrangement
of balls in which the sequence of colors 1�2� � � � �C are
repeated n times. This is an optimal arrangement, as it gives
rise to an objective function value of zero. In other words,
when nc = n ∀ c, we can obtain the optimal arrangement of
balls for an N -slot problem by solving a problem with N/n
slots (containing one ball of each color) and repeating the
arrangement n times. Under such a situation, we say that
solving a problem of size N/n is equivalent to solving a
problem of size N . However, a generalization of Corollary 1
is not possible. We state this result as Corollary 2.

Corollary 2. If there is a common factor, � (with �> 1�,
among the ncs, then solving a problem of size N/� is not
necessarily equivalent to solving a problem of size N.
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Table 2. Test problems.

ID N C Color details ID N C Color details

1 8 2 5R, 3B 21 50 3 21R, 16B, 13W
2 8 3 4R, 2B, 2W 22 50 4 26R, 12B, 10W, 2G
3 10 3 5R, 3B, 2W 23 60 3 25R, 23B, 12W
4 11 3 6R, 3B, 2W 24 75 4 27R, 25B, 14W, 9G
5 12 3 6R, 4B, 2W 25 100 5 33R, 25B, 21W, 15G, 6Y
6 12 4 4R, 3B, 3W, 2G 26 100 4 39R, 35B, 17W, 9G
7 14 3 6R, 4B, 4W 27 150 5 31R, 31B, 30W, 29G, 29Y
8 15 3 6R, 5B, 4W 28 200 4 77R, 67B, 53W, 3G
9 16 4 8R, 3B, 3W, 2G 29 200 5 61R, 47B, 39W, 30G, 23Y
10 17 3 7R, 6B, 4W 30 250 5 91R, 63B, 54W, 31G, 11Y
11 20 3 8R, 7B, 5W 31 300 4 191R, 83B, 17W, 9G
12 20 4 8R, 7B, 3W, 2G 32 300 5 102R, 95B, 77W, 19G, 7Y
13 20 5 5R, 5B, 5W, 4G, 1Y 33 325 5 72R, 68B, 65W, 62G, 58Y
14 25 4 8R, 6B, 6W, 5G 34 350 5 99R, 81B, 63W, 54G, 53Y
15 25 5 7R, 6B, 5W, 4G, 3Y 35 400 4 135R, 102B, 92W, 71G
16 30 4 10R, 8B, 7W, 5G 36 400 5 229R, 149B, 11W, 8G, 3Y
17 30 5 9R, 7B, 6W, 5G, 3Y 37 425 5 126R, 107B, 86W, 73G, 33Y
18 40 4 17R, 10B, 8W, 5G 38 450 5 138R, 95B, 82W, 79G, 56Y
19 45 3 16R, 15B, 14W 39 500 4 170R, 150B, 90W, 90G
20 50 3 25R, 13B, 12W 40 500 5 143R, 112B, 111W, 70G, 64Y

Note. Key: R= red, B= blue, W=white, G= green, Y= yellow.

Proof. The proof is by construction. Consider the follow-
ing example: N = 14, with n1 = 6� n2 = n3 = 4. Here,
�= 2, q1 = 2�33, q2 = q3 = 3�5. We want to show that the
optimal arrangement of balls for this problem cannot be
obtained by solving a problem with N = 7, and n1 = 3,
n2 = n3 = 2. It can be verified (using any commercial MIP
solver) that the optimal objective value for the original
problem with N = 14 is 4.67. Also note that in any feasi-
ble solution to this problem, the contribution to the objec-
tive function of Equation (7) from the balls of colors 2
and 3 will be at least 1.5 each (because q2 = q3 = 3�5,
any arrangement of a ball of color 2 or color 3 will
contribute at least 0�5 × �4 − 1� = 1�5 to the objec-
tive). Thus, in an optimal arrangement, the contribution
to the objective function from color 1 balls will be, at
most, 1.67. Note that q1 = 2�33. This means that contri-
bution to the objective function from color 1 balls will
be minimum when the spacing between the balls is 2.
Thus, we can have only four possible arrangements of color
1 balls in the slots: �1�3�5�7�9�11�� �2�4�6�8�10�12��
�3�5�7�9�11�13�� and �4�6�8�10�12�14�� each of which
will give a contribution of 1.67 to the objective function.
Therefore, in an optimal solution, we must have one of
these four arrangements for color 1 balls. Note, however,
that none of these arrangements can be obtained by juxta-
posing optimal solutions for the problem with N = 7 twice
(as none of the four arrangements of color 1 balls are sym-
metric at halfway). Therefore, it is not possible to find the
optimal arrangement of balls for the original problem of
size 14 by solving a problem of size 7. �

We implemented the mixed-integer programming (MIP)
Model P2 in GAMS (see Brooke et al. 1988) and solved
with MIP solver GAMS/CPLEX (2002). The implementa-
tion details are discussed in §5. We used 40 test problems

with sizes ranging from 8 slots to 500 slots to test our
model. The test problems are presented in Table 2 and are
discussed at length in §5. Problems with 20–50 slots are
typical in the broadcast industry. Such problems need to be
solved in a few minutes, as schedulers use the algorithm in
an interactive mode to schedule videotapes for each of the
several hundred clients sequentially. Using GAMS/CPLEX
on Model P2, we were only able to solve 13 test problems
within one minute. Twenty-four out of the 40 test cases
did not solve to optimality in 10 minutes of CPU time.
We therefore explored alternative solution methodologies
to obtain optimal or close-to-optimal solutions. In the next
subsection, we present an algorithm that takes advantage of
the structure of the problem to obtain the optimal solution.

2.2. A Modified Branch-and-Bound Algorithm

The linear programming relaxation of P2 at the nodes of
the branch-and-bound tree does not result in tight lower
bounds. As a result, we developed a customized branch-
and-bound algorithm that solves a logic-based formulation
of the problem (Bollapragada et al. 2001 have shown that
logic-based methods that branch directly on logical disjunc-
tions can solve substantially larger problems than mixed-
integer programming for some problems). We refer to this
algorithm as the modified branch-and-bound algorithm.
This algorithm constructs the solution by placing one ball

at a time, starting with the first slot. At the root node, we
decide the color of the ball to be assigned to slot 1. Because
there are C colors, there are at most C branches emanat-
ing from this node, one for each color ball. At level 2,
we decide the ball to be placed in slot 2, given that slot 1
is already filled. Thus, the depth of the complete tree to be
evaluated is N . Let S = �s1� s2� � � � � sN � be the vector of



Bollapragada, Bussieck, and Mallik: Scheduling Commercial Videotapes in Broadcast Television
Operations Research 52(5), pp. 679–689, © 2004 INFORMS 683

assignments of balls in the slots. Thus, sk = c implies
that a ball of color c is placed in slot k �sk = 0 implies
that slot k is empty, with no balls assigned). Also, let
M= �m1�m2� � � � �mC� denote the vector of yet-unassigned
balls. Thus, mc = � implies that there are � number of
color c balls yet to be assigned to slots. At level i of the
search tree, all sk for which k < i are fixed and a deci-
sion on si has to be made. Visiting all nodes in the tree is
equivalent to evaluating all the feasible solutions. However,
if we can compute a good lower bound on the solution at
each node, the search space could be pruned. We use the
following scheme to obtain the lower bounds.

2.2.1. Computing the Lower Bound. At level i of the
search tree:
• Set current lower bound (LB) equal to the objective

function contribution from the first i− 1 slots.
• For each color c:
Step 1. Place the remaining mc balls in the remaining

N − i open slots to achieve spacing as close to qc as
possible between these balls (i.e., assume that all of the
remaining N − i slots are available to each color). Let OBc

be the contribution to the objective function from these
mc balls.
Step 2. Update lower bound by setting LB= LB+OBc.

2.2.2. The Algorithm. Let Obj(S) and LB(S) denote,
respectively, the objective function value and the lower
bound (calculated using the procedure described in §2.1.1)
for a vector of assignments S. The modified branch-and-
bound algorithm involves the following steps.
Step 1. Start with any feasible solution. This initial fea-

sible solution could be obtained using any of the heuristics
described in §4. Let B denote the current best objective
value.
Step 2. Set sk = 0, k= 1�2� � � � �N .
Step 3. At any branch level k, k= 1�2� � � � �N − 1:
(a) For any color c with mc > 0, set sk = c.
(b) If LB�S� < B, then set B=Obj�S�. Set k= k+ 1

(i.e., go to the next level of the tree). Continue. Otherwise,
go to Step 3(a), repeat for the next color c with mc > 0.
The modified branch-and-bound algorithm runs signif-

icantly faster than GAMS/CPLEX can solve Model P2
at the cost of exchanging an “off-the-self” product with
a custom-built branch-and-bound code. The number of
instances solved to optimality increases from 16 to 20 when
the greedy heuristic described in §4.1 is used to obtain
an initial solution. (Refer to §5 for the full computational
results.) However, the algorithm failed to solve the last 20
test problems within 10 minutes and does not produce near-
optimal solutions. The run time of the algorithm may be
improved by using one of the heuristics in §4 to obtain bet-
ter upper bounds at some of the intermediate nodes. How-
ever, we developed an alternative and less intuitive integer
programming model for the ISCI problem that lends itself
to a more efficient solution. We call this model the flow
formulation of the ISCI problem. We describe this model
in the next section.

3. Flow Formulation of the ISCI Problem
We define the following notation in addition to our notation
of §2:

pcj =
{
1 if ball of color c is assigned to slot j�

0 otherwise�

fcjk =



1 if ball of color c is shipped

from slot j to slot k�

0 otherwise�

Problem P3

Minimize
∑
c

∑
0<j<k�N

�k− j − qc� fcjk (11)

subject to ∑
c

pcj = 1 ∀ j� (12)

∑
1�j�N

pcj = nc ∀ c� (13)

∑
0�k<j

fckj =
∑

j<k�N

fcjk + fc� j�0 ∀ c� j� (14)

∑
0<k�N

fc�0� k = 1 ∀ c� (15)

∑
j<k

fcjk + fc� j�0 = pcj ∀ c� j� (16)

f �p binary� (17)

In the above formulation, for each color c we have a set
of arcs as shown in Figure 1. Slot 0 represents an artificial
source and sink in the network. Arcs go from slot j (includ-
ing 0) to all other slots k, j < k � N , as well as back
from j to 0. The network arcs f �c� j� k� “ship” one ball of
color c from slot 0 through a number of slots back to 0.
At each slot, and for each color, the flow conservation con-
straint holds (Equation (14)). In addition, a flow-carrying
arc f �c� j� k� can leave position j if and only if position j is

Figure 1. The underlying graph of flow formulation P3.

0 1 2 3 4 N
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Table 3. Evolution and comparison of optimal solution strategies.

Solution method Optimal solution Integer solution Comment

GAMS/CPLEX P2 Up to 25 slots Up to 100 slots Typical size of a broadcast
television industry
problem 20–50 slots

Modified B&B Up to 50 slots N/A

GAMS/CPLEX P3 Up to 60 slots Up to 200 slots Solves larger problems
meeting most real-world
needs, forms basis for
heuristic solutions

colored c (Equation (16)). This, coupled with (13), ensures
that the chain of arcs carrying a ball of color c goes through
exactly nc slots. Equation (12) ensures that a slot is occu-
pied by only one ball, while (15) ensures that only one
ball of each color leaves the source 0. Traversing an arc
f �c� j� k� represents the placement of consecutive balls of
color c in positions j and k; hence, we have a cost of
�k − j − qc�for using that arc. The objective in (11) is to
find flows of minimum cost that obey the constraints of the
problem.
The number of variables in Formulation P3 is much

larger than the number of variables in Formulation P2. The
main advantage of this formulation, as the reader will see
in §5, is that the relaxation provides a decent bound on the
problem.
Note that the underlying graph of this formulation

(Figure 1) is very dense, as we have arcs going out from
every slot j to every other node k (with k > j) and back
to slot 0, resulting in a model with a large number of vari-
ables. Arcs that are unlikely to carry flow may be removed
(at the risk of losing the optimal solution for P3) to reduce
the size of the model. Good candidates for removal are
arcs jk with cost �k − j − qc� � �c. Choosing appropriate
small values of � that make the graph sparse but retain the
optimal solution is the main challenge in this approach.
Using Formulation P3, we were able to solve more than

half of the test problems to optimality within one minute
using GAMS/CPLEX. We were also able to solve three
more problems to optimality within 10 minutes of CPU
time and found feasible solutions for five more problems.
Table 3 describes the evolution of our optimal solution
strategies for the ISCI problem and compares them. While
our best optimal solution technique (solving P3 using
GAMS/CPLEX) was able to solve the problems we usually
encountered at NBC, the gap between quickly solvable and
unsolvable is extremely small (e.g., compare instances 23
and 24 in Table 4). Therefore, we explored several heuristic
solutions described in the next section.

4. Heuristic Solutions for the ISCI
Problem

We describe four heuristics for the ISCI problem in this
section. The first heuristic is based on a simple greedy

search algorithm, while the second and third utilize the
efficiency of the Flow Formulation P3 described earlier.
The fourth heuristic is motivated by the work of Kubiak
and Sethi (1991). All computation results will be presented
in §5.

4.1. Greedy Heuristic

Under a greedy heuristic we fill the slots sequentially. For
each slot, we choose the ball color (from the pool of avail-
able balls of different colors) that gives the least contribu-
tion to the objective function defined by Equation (1). The
specific steps are described below.
Step 1. Place a ball of color 1 (or of any other color) in

slot 1.
Step 2. Update the number of balls left for the current

color.
Step 3. Proceed to the next slot. Among the available

balls, select the color that gives the minimum contribution
to the objective function based on the arrangement thus far.
Step 4. Stop if this is the last slot, else go to Step 2.

4.2. P3 Delta Heuristic

The P3 Delta Heuristic is directly derived from the Flow
Model P3 with a sparse underlying network. Arcs with high
costs (i.e., �k− j−qc�� �c =max�20�0�05 ·qc�) have been
removed from the network.

4.3. P3 Batching Heuristic

We developed this heuristic with the large problems in
mind. We divide a large problem into several smaller
subproblems (or batches) so that each batch can be solved
efficiently by using Formulation P3. The specific steps are
described below.
Step 1. Divide a problem into several batches whenever

N > 60. Therefore, a problem with N � 60 is solved in
one batch, while a problem with 60 < N � 120 is solved
in two batches, and so on. For example, our test problem
36 consists of 400 balls with 229 red, 149 blue, 11 white,
8 green, and 3 yellow balls. This problem will be divided
into seven batches.
Step 2. Distribute the balls of each color evenly over

the batches. For the example discussed above, the first
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five batches will have 33 red balls each and the remain-
ing batches will have 32 red balls each. Similarly, the first
two batches will have 22 blue balls each and the remain-
ing batches will have 21 blue balls each. The first batch
will have two green balls, while the remaining batches will
have only one. Only batches 2, 4, and 7 will have one yel-
low ball each. Finally, batches 1, 2, 4, and 6 will have two
white balls each, while batches 3, 5, and 7 will have one
white ball each. A simple GAMS program accomplishes
this distribution.
Step 3. Solve Model P3 using a sparse network with
�c =max�20�0�2 · qc� in the following steps:
(a) Solve P3 for the first 60 slots using the first batch

of balls only.
(b) Solve Model P3 for the first 120 slots using balls

from batch 2 and the solution for the first 60 slots obtained
from Step 3a. Treat the solution for the first 60 slots as
fixed (unchangeable).

(c) Next, solve Model P3 for the first 180 slots and
treat the solution for the first 120 slots as fixed. Repeat
until we have covered all slots.
The philosophy of this heuristic is similar to that of

divide and conquer. The choice of the batch size 60 is
driven by the trade-off of avoiding many batches and being
able to solve each batch efficiently.

4.4. Assignment Heuristic

Miltenberg (1989) and Kubiak and Sethi (1991) consider
the problem of obtaining optimal-level schedules for mixed
model assembly lines in JIT systems. We have defined their
problem in §1. Letting xck denote the total cumulative pro-
duction of product c in periods 1 through k, their problem
can be formulated as the following integer program:{
max

N∑
k=1

C∑
c=1

�xck − krc�
2

∣∣∣∣
C∑
c=1

xck = k ∀k�

0� xck − xc�k−1 � 1 ∀ c�xck � 0� integer
}
� (18)

Kubiak and Sethi (1991) show that the above problem can
be transformed into an assignment problem with decision
variable xcjk (binary variable; equals 1 when the jth unit of
product c is produced in the kth period, and is zero other-
wise). The cost �c

jk (for assigning the jth unit of product
c to the kth period) depends on the deviation of position
k from the perfect position Zc

j = 	�2j − 1�/2rc
 of the jth
unit of product c. The solution of the assignment problem{
min

∑
j� k� c

�c
jkx

c
jk

∣∣∣∣st� ∑
j� c

xcjk = 1 ∀k�

∑
k

xcjk = 1 ∀ j� c� xcjk � 0
}

(19)

can be easily transformed into a solution of the original
problem (18). For details, see Kubiak and Sethi (1991).
The key for using this assignment approach for the

ISCI problem is to find a strong relationship between the

perfect positions and the ideal distance. Consider the fol-
lowing trivial example, with nine slots and three colors
n1 = n2 = n3 = 3. The perfect positions Zc

j are 2, 5, and 8
for j = 1 to 3 and all colors. Because Zc

j are the same
for all colors c, the costs �c

jk are the same, and there-
fore the set of optimal solutions of (19) includes solu-
tions that are not optimal with respect to the ISCI objec-
tive. For example, the sequence c1c2c3c3c2c1c1c3c2 has the
same cost in (19) as c1c2c3c1c2c3c1c2c3, which is clearly
favored under the ISCI objective. The problem is that
there are multiple perfect positions for an ideal distance.
In our example, the positions �1�4�7� and �2�5�8�, as
well as �3�6�9�, are perfect with respect to the ideal
distance 9/3 = 3. If we would change the perfect posi-
tions to Zc1 = �1�4�7�, Zc2 = �2�5�8�, and Zc3 = �3�6�9�,
together with the cost �c

jk, Model (19) would produce
the optimum sequence c1c2c3c1c2c3c1c2c3. In general, we
try to find for each color one of the shifted perfect
positions Pc�!c� = "Zc

j + !c � j = 1 � � � nc#, with !c ∈
"−	N/2nc
+ 1� � � � � 	�2nc − 1�N/2nc
# = Ic, that make
the optimal solution of (19) likely to be a good solution
for the ISCI problem. Our suggestion is to find positions
Pc�!c� such that the number of multiple perfect positions
is minimized. More formally, we try to find

!∗ = argmin
!

∣∣∣∣"1� � � � �N #∖
{⋃

c

P c�!c�

}∣∣∣∣�
Finding such an !∗ vector is in general difficult, but can
be “easily” found for relevant ISCI instances by the fol-
lowing integer program, which is closely related to a min-
imum cover model. The binary variable ucec takes value 1
if the shifted perfect positions Pc�!c�are used, 0 otherwise.
Hence, for each slot k we can aggregate the contributing
positions for all colors. Because we want to count (and
minimize) the multiple used slots, we need a variable ok
that collects the overflow (22). Furthermore, we need to
select one set of perfect positions for each color (21). The
following set of equations gives the details:

Minimize
∑
k

ok (20)

subject to ∑
!c∈Ic

uc!c = 1 ∀ c� (21)

∑
c

∑
Zc
j+!c=k�!c∈Ic

uc!c = 1+ ok ∀k� (22)

ok � 0� uc!c binary. (23)

After finding !∗, we define the cost

�c
jk = �P c�!∗c�− k�2 (24)

to be the quadratic deviation from the perfect position, and
solve (19). The resulting solution can be evaluated in terms
of the ISCI objective.
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5. Computational Results
We used 40 test problems to test the effectiveness of the
heuristics and the optimal algorithms. A test problem with
20–50 slots is indicative of the usual size of the problem
faced by the broadcast television industry. Test problems
26–40 are considered “large.” We constructed these test
problems to check the range of effectiveness of our algo-
rithm and heuristics. All computations were run on a per-
sonal computer with an Intel Pentium IV processor at
1.6 GHz. Table 2 describes our test problems.
We have specified the total number of slots (N� and the

number of colors (C) against each problem. The column
labeled Color Details in Table 2 describes the numbers of
balls of each color. Thus, Problem 1 has a total of eight
balls of two colors: five red balls and three blue balls.
Computations for a test problem were terminated after
10 minutes (600 seconds) of CPU time usage. Table 4 has,
for each test instance, the computational results for all
models and algorithms described so far. Each section of
the table includes the column Obj for objective value and
CPU for CPU time usage in seconds. For GAMS/CPLEX
P2 and GAMS/CPLEX P3, we also list the best-known
linear-programming-based lower bound from the CPLEX
branch-and-cut algorithm. If a model/algorithm produced
the best solution among all algorithms, numbers in the
“Obj” column of the corresponding section are printed in
bold; i.e., the more sets of bold numbers, the better the
method. The last section, titled Best Choice, takes the min-
imum objective value over all sections and the maximum
bound of GAMS/CPLEX P2 and GAMS/CPLEX P3 and
also lists the relative optimality gap, i.e., (best objective—
best bound)/best bound.
The development of efficient optimal and near-optimal

solution methods for the ISCI problem has been the focus
of this paper. Computational results are the essential tools
for providing evidence for the relevance of our analysis.
Most important is the reproducibility of our experiments.
Therefore, we made the GAMS source code for all models
available at www.gams.com/apps/isci.
The remainder of this section is organized into two sub-

sections. Section 5.1 describes the computational results
for the optimal solution approaches, i.e., Model P2, the
modified branch-and-bound algorithm, and Flow Model P3.
Section 5.2 describes the computations for the four
heuristics.

5.1. Computations for the Optimal
Solution Approaches

Formulation P2 was modeled using GAMS, and the
test problems were solved using GAMS/CPLEX solver
(CPLEX version 8.0). We were able to obtain optimal solu-
tions for Problems 1–14, 19, and 20 within 600 seconds
of CPU time. In addition, a feasible integer solution was
obtained for Problems 15–18 and 21–25, while no feasi-
ble solution was found for the rest of the problems. Along

with the size, the computation time is also influenced by
the structure of the problem. For example, we were able to
get optimal solutions for Problem 19 (45 slots), while we
were unable to get optimal solutions for Problems 15–18,
which are smaller. This is due to the special structure of
Problem 19, where we have an almost equal number of
balls of each color.
The modified branch-and-bound algorithm has a “feast-

or-famine” behavior. We were able to obtain optimal solu-
tions for the first 20 test problems using the algorithm
within the allowable time. We could solve up to a maximum
of a 50-slot problem within the said time. The solution
times are significantly improved compared to Model P2.
Unfortunately, it did not improve upon the starting feasi-
ble solution within the allowable time for instances higher
than 20.
With Formulation P3 we were able to obtain opti-

mal solutions for Problems 1–23 (up to 60 slots), and
Problem 27, within 600 seconds of CPU time. Feasible
integer solutions were obtained for all instances except 34
and 40. Although the gap between objective value and best
bound is significantly large, this represents a substantial
improvement over Model P2 and the modified branch-and-
bound algorithm. This formulation is able to solve any typ-
ical broadcast television problem.

5.2. Computations for the Heuristics

The greedy heuristic performs reasonably well for smaller
test problems (up to Problem 11). The elegance of this
heuristic lies in its simplicity and easy computability. How-
ever, the deviation from the best-known solution increases,
in general, as the size of the problem increases. Neverthe-
less, the solutions produced by the greedy algorithm can
help to “hot-start” the CPLEX branch-and-cut algorithm
for P2 and P3 as well as the modified branch-and-bound
algorithm.
The removal of arcs unlikely to carry flow resulted in

the P3/Delta Heuristic. �c has been selected in a way that
the underlying graph had significantly fewer arcs but main-
tained the paths representing the optimal solution. For all
but two instances the P3/Delta Heuristic found a feasible
solution and provided in 28 of the 40 cases the best-known
solution.
Recall that in the P3 Batching Heuristic we are solv-

ing large problems in batches of 60 slots. Therefore, we
are solving problems with less than 60 slots in one batch.
This explains why we are getting the optimal solutions
for Problems 1–23. By comparing GAMS/CPLEX P3 and
P3/Batching Heuristic, the reader will observe that the lat-
ter runs somewhat faster for these test problems. This is
because we are using a sparse network to P3/Batching
Heuristic. Overall, the P3 Batching Heuristics perform very
well, which is also expressed in the largest number of
shaded table entries. Furthermore, this heuristic can be
modified to speed up the overall process by reducing the
batch size from 60 to a smaller number, which results in



Bollapragada, Bussieck, and Mallik: Scheduling Commercial Videotapes in Broadcast Television
688 Operations Research 52(5), pp. 679–689, © 2004 INFORMS

faster solution times for the P3 submodels, but also poten-
tially worse solutions.
We next take a look at the Assignment Heuristic. The

running times for the Assignment Heuristic are almost as
good as for the Greedy Heuristic. However, the Greedy
Heuristic outperforms the Assignment Heuristic based on
speed and quality (always faster, better in 26, worse in 10
of the 40 cases). We also experimented with an absolute-
value form of the cost function in (24). However, that
results in worse performance of the heuristic compared
to the squared form of cost function. Nevertheless, the
Assignment Heuristic represents a first step in casting the
ISCI problem into an assignment framework, which may
result in the development of better optimal and near-optimal
algorithms.
The last section, Best Choice in Table 4 summarizes our

efforts to solve solving the ISCI problem to optimality. For
24 out of the 40 models, the solution of Model P3 pro-
vided the optimum solution. For the remaining cases, the
relative gap between best-known solution and best bound
varies between 4% and 210%. It appears that the structure
of the problem, in addition to its size, plays a key role in
determining the accuracy of the heuristics as well as the
quality of the lower bound.

6. Summary and Conclusion
In this paper, we developed efficient solution methods to
schedule commercial videotapes in broadcast television.
Our objective was to make the airings of the same com-
mercial as evenly spaced as possible over a specified time
period. We first modeled this problem as a mixed-integer
program that minimizes the sum of deviations from the
ideal spacing of the commercials. We also developed a
branch-and-bound-like algorithm that uses the structure of
the problem to obtain the optimal solution. Both models/
algorithms did not solve problems of practical size in the
set time limit. We then presented an innovative formu-
lation that was able to improve upon the performance.
We also described four heuristics for quickly solving the
ISCI problem. Our choice of the objective function in
Equation (1) is consistent with our observation in the indus-
try, where the deviation from the ideal schedule is mea-
sured in absolute value. The flow formulation algorithm
and all of our heuristics will remain valid for an alternative
objective function involving the minimization of squared
deviation from the ideal schedule. A variation of one of
the heuristic algorithms described in §5 was implemented
in a scheduling system for placing commercial videotapes
at the Pax Network. The algorithm resulted in significant
improvement in scheduling productivity.
Two extensions of the original ISCI problem are of prac-

tical importance. An advertiser often wants a specific slot
for a specific commercial. For example, the client described
in §1 might have wanted the commercial with ISCI code
TOPS9016 to be aired at 9:00 pm on May 12. Television

networks typically accommodate these requests, while still
maintaining the overall objective of placing the commer-
cials of an ISCI code as evenly spaced as possible. Given
that the exact identity of the desired slot is known, this situ-
ation can readily be accommodated in our modeling frame-
work by assuming that some slots out of N possible slots
contain preplaced balls. All of our models and algorithms
handled this extension rather well by simply accounting for
the preplaced balls. The second extension that we consid-
ered is called the ISCI problem with equal time intervals,
where an advertiser wanted the commercials with the same
ISCI code to be as evenly spaced in time as possible dur-
ing the time period under consideration. This problem is
similar in structure to that of the original ISCI problem.
All algorithms described in this paper can be used for the
ISCI problem with equal time intervals with minor modi-
fications and yielding similar results. A detailed discussion
including computational results for these extensions would
exceed the scope of this paper. We refer the reader to the
ISCI model web page for details.
It is interesting to note that while we developed the mod-

els and the algorithms presented here with one specific
problem in mind, similar situations arise in other business
scenarios. One such example is the problem of designing
sales catalogs. While designing these catalogs, the catalog
merchants often want the similar products to be spread out
as much as possible through the catalog. Considering the
sales catalog to be a collection of slots to hold descrip-
tions for different types of products, this problem can be
transformed into the models described in this paper.
Our future research will address some extensions to this

problem. One such extension is to have different classes of
balls. In our current work, we are minimizing the sum of
deviations from the ideal spacing between any two balls
of the same color. In a multiple-class scenario, it is more
important to have even spacing for balls of one color over
balls of another color. Thus, minimizing the weighted sum
of deviations from the ideal spacing will be an appropriate
objective.
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