Exercises 4 Game Theory MA300/301/402

due in week 5, Thursday 5pm

Exercise 4.1 – STRATEGIES AND REDUCED STRATEGIES IN GAME TREES

Consider the following game tree. At a leaf, the top payoff is for player I, the bottom payoff for player II.

- (a) What is the number of strategies of player I and of player II? How many reduced strategies does each of the players have?
- (b) Give the reduced strategic form of the game.
- (c) What are the Nash equilibria of the game in reduced strategies? What are the subgame perfect equilibria of the game?
- (d) Identify every pair of reduced strategies where one strategy weakly or strictly dominates the other, and indicate if the dominance is weak or strict.

Exercise 4.2 – SUBGAME PERFECT EQUILIBRIA

(a) For the following game tree, find all Nash equilibria (in pure strategies). Which of these are subgame perfect?

(b) In the following game tree, the payoffs a, b, c, d are positive real numbers.

For each of the following statements (i), (ii), (iii), decide if it is true or false, justifying your answer with an argument or counterexample; you may refer to any standard results. For any a, b, c, d > 0,

- (i) the game always has a subgame perfect Nash equilibrium (SPNE);
- (ii) the payoff to player II in any SPNE is always at least as high as her payoff in any Nash equilibrium;
- (iii) the payoff to player I in any SPNE is always at least as high as his payoff in any Nash equilibrium.

Exercise 4.3 – WEAK DOMINATION

- (a) In the above two-player game, identify all pairs of strategies where one weakly dominates the other.
- (b) Assume you are allowed to remove a weakly dominated strategy of some player. Do so, and repeat this process (of iterated elimination of weakly dominated strategies) until you find a single strategy pair of the original game.
- (c) Find such an iterated elimination of weakly dominated strategies that results in a strategy pair other than the one found in (b), where *both* strategies, and the payoffs to the players, are different.
- (d) What are the Nash equilibria of the game?