GAMS

A USER'S GUIDE

by:
Anthony Brooke
David Kendrick
Alexander Meeraus
Ramesh Raman

Tutorial

by:
Richard E. Rosenthal

December 98
© GAMS Development Corporation, 1998

GAMS Development Corporation GAMS Software GmbH
1217 Potomac Street, N.W. Gutenbergstr. 13
Washington, DC 20007, USA GAMS 35390 Giessen, Germany
Tel: +1 202 342-0180 Tel: +49 641-93246-0
Fax: +1 202 342-0181 -- Fax: +49 641-93246-10
E-mail:sales@gams.com E-mail:info@gams.de

Http://www.gams.com/ Http://www.gams.de/

Table of Contents:

Introduction

1.1 MOTIVATION 1
1.2 BAasIC FEATURES OF GAMS 1
1.2.1 GENERAL PRINCIPLES 1
1.2.2 DDCUMENTATION 2
1.2.3 PRTABILITY 2
1.2.4 \BERINTERFACE 2
1.2.5 MODEL LIBRARY 2
1.3 ORGANIZATION OF THE BOOK 3
A Gams Tutorial

2.1 INTRODUCTION 5
2.2 SRUCTURE OF A GAMS M ODEL 7
2.3 &Ts 9
2.4 DATA 10
2.4.1 DATA ENTRY BY LISTS 10
2.4.2 DaTA ENTRY BY TABLES 11
2.4.3 DATA ENTRY BY DIRECT ASSIGNMENT 11
2.5 VARIABLES 12
2.6 EQUATIONS 13
2.6.1 EQUATION DECLARATION 13
2.6.2 G\MS SUMMATION (AND PRODUCT) NOTATION 14
2.6.3 KQUATION DEFINITION 14
2.7 OBJECTIVE FUNCTION 16
2.8 MODEL AND SOLVE STATEMENTS 16
2.9 DSPLAY STATEMENTS 17
2.10 THE'.LO, .L, .UP, .M' DATABASE 17
2.10.1 ASSIGNMENTOF VARIABLE BOUNDSAND/OR INITIAL VALUES 17
2.10.2 TRANSFORMATIONAND DISPLAY OF OPTIMAL VALUES 18
2.11 GAMS OUTPUT 19
2.11.1 EHOPRINTS 19
2.11.2 RRORMESSAGES 21
2.11.3 FEFERENCEMAPS 23
2.11.4 F)UATION LISTINGS 24
2.11.5 MDODEL STATISTICS 25
2.11.6 SATUS REPORTS 25
2.11.7 ®LUTION REPORTS 26
2.12 IIMMARY 27

! This is version: ug254j

Gams Programms 29
3.1 INTRODUCTION 29
3.2 THE STRUCTURE OF GAMS PROGRAMS 29
3.2.1 ORMAT OF GAMS INPUT 29
3.2.2 QASSIFICATION OF GAMS STATEMENTS 30
3.2.3 (RGANIZATION OF GAMS PROGRAMS 30
3.3 DATA TYPESAND DEFINITIONS 31
3.4 LANGUAGE | TEMS 32
3.4.1 GHARACTERS 32
3.4.2 ESERVEDWORDS 33
3.4.3 DENTIFIERS 33
3.4.4 |LABELS 34
3.4.5 TEXT 34
3.4.6 NUMBERS 35
3.4.7 CELIMITERS 35
3.4.8 ®MMMENTS 36
3.5 SUMMARY 36
Set Definitions 37
4.1 INTRODUCTION 37
4.2 SMPLE SETS 37
4.2.1 THE SYNTAX 37
4.2.2 £TNAMES 37
4.2.3 $TELEMENTS 38
4.2.4 ASSOCIATEDTEXT 38
4.2.5 SQUENCESAS SET ELEMENTS 39
4.2.6 DECLARATIONS FORMULTIPLE SETS 40
4.3 THE ALIAS STATEMENT : MULTIPLE NAMES FOR A SET 40
4.4 SUBSETSAND DOMAIN CHECKING 41
4.5 MULTI -DIMENSIONAL SETS 41
4.5.1 ONE-TO-ONE MAPPING 41
4.5.2 MANY-TO-MANY MAPPING 42
4.6 UIMMARY 43
Data Entry: Parameters, Scalars & Tables

5.1 INTRODUCTION 45
5.2 STALARS 45
5.2.1 THE SYNTAX 45
5.2.2 AN [LLUSTRATIVE EXAMPLE 45
5.3 PARAMETERS 46
5.3.1 THE SYNTAX 46
5.3.2 AN ILLUSTRATIVE EXAMPLES 46
5.3.3 ARAMETER DATA FORHIGHER DIMENSIONS 47
5.4 TABLES 48
5.4.1 THE SYNTAX 48
5.4.2 AN [LLUSTRATIVE EXAMPLE 48
5.4.3 GNTINUED TABLES 49

45

5.4.4 TABLES WITH MORE THAN TwO DIMENSIONS 49
5.4.5 @®NDENSINGTABLES 50
5.4.6 HANDLING LONG ROW LABELS 50
5.5 ACRONYMS 51
5.5.1 THE SYNTAX 51
5.5.2 LLUSTRATIVE EXAMPLE 51
5.6 SUMMARY 51
Data Manipulations With Parameters

6.1 INTRODUCTION 53
6.2 THE ASSIGNMENT STATEMENT 53
6.2.1 SALAR ASSIGNMENTS 53
6.2.2 NDEXED ASSIGNMENTS 53
6.2.3 WBING LABELS EXPLICITLY IN ASSIGNMENTS 54
6.2.4 ASSIGNMENTSOVER SUBSETS 54
6.2.5 BSUESWITH CONTROLLING INDICES 54
6.2.6 EXTENDED RANGE IDENTIFIERSIN ASSIGNMENTS 55
6.2.7 ACRONYMSIN ASSIGNMENTS 55
6.3 EXPRESSIONS 55
6.3.1 SANDARD ARITHMETIC OPERATIONS 56
6.3.2 NDEXED OPERATIONS 56
6.3.3 FUNCTIONS 58
6.3.4 XTENDED RANGE ARITHMETIC AND ERRORHANDLING 58
6.4 SUMMARY 60
Variables 61
7.1 INTRODUCTION 61
7.2 VARIABLE DECLARATIONS 61
7.2.1 THE SYNTAX 61
7.2.2 VARIABLE TYPES 62
7.2.3 SYLES FOR VARIABLE DECLARATION 62
7.3 VARIABLE ATTRIBUTES 63
7.3.1 BOUNDSON VARIABLES 64
7.3.2 BXING VARIABLES 64
7.3.3 ACTIVITY LEVELS OF VARIABLES 64
7.4 VARIABLES [N DISPLAY AND ASSIGNMENT STATEMENTS 64
7.4.1 ASSIGNINGVALUES TO VARIABLE ATTRIBUTES 64
7.4.2 VARIABLE ATTRIBUTESIN ASSIGNMENTS 65
7.4.3 DSPLAYING VARIABLE ATTRIBUTES 65
7.5 SUMMARY 66
Equations 67
8.1 INTRODUCTION 67
8.2 EQUATION DECLARATIONS 67
8.2.1 THE SYNTAX 67
8.2.2 AN ILLUSTRATIVE EXAMPLE 67
8.3 EQUATION DEFINITIONS 68

53

vi

8.3.1 THE SYNTAX 68
8.3.2 AN ILLUSTRATIVE EXAMPLE 68
8.3.3 £ALAR EQUATIONS 69
8.3.4 NDEXED EQUATIONS 69
8.3.5 WBING LABELS EXPLICITLY IN EQUATIONS 69
8.4 EXPRESSIONSIN EQUATION DEFINITIONS 70
8.4.1 ARITHMETIC OPERATORSIN EQUATION DEFINITIONS 70
8.4.2 FUNCTIONSIN EQUATION DEFINITIONS 70
8.4.3 RREVENTING UNDEFINED OPERATIONSIN EQUATIONS 71
8.5 DATA HANDLING ASPECTSOF EQUATIONS 72
8.6 IUMMARY 72
Model And Solve Statements 73
9.1 INTRODUCTION 73
9.2 THE M ODEL STATEMENT 73
9.2.1 THE SYNTAX 73
9.2.2 @ ASSIFICATION OF MODELS 74
9.2.3 MODEL ATTRIBUTES 74
9.3 THE SOLVE STATEMENT 76
9.3.1 THE SYNTAX 76
9.3.2 REQUIREMENTSFORA VALID SOLVE STATEMENT 77
9.3.3 ACTIONSTRIGGEREDBY THE SOLVE STATEMENT 77
9.4 PRROGRAMS WITH SEVERAL SOLVE STATEMENTS 77
9.4.1 $VERAL MODELS 77
9.4.2 ENSITIVITY OR SCENARIO ANALYSIS 78
9.4.3 TERATIVE IMPLEMENTATION OF NON-STANDARD ALGORITHMS 79
9.5 MAKING NEW SOLVERS AVAILABLE WITH GAMS 80
Gams Output 81
10.1 INTRODUCTION 81
10.2 THE | LLUSTRATIVE M ODEL 81
10.3. GMPILATION OUTPUT 82
10.3.1 EHOPRINT OF THE INPUTFILE 82
10.3.2 THE SYMBOL REFERENCEMAP 83
10.3.3 THE SYMBOL LISTING MAP 85
10.3.4 THE UNIQUE ELEMENT LISTING - MAP 85
10.3.5 WLEFULDOLLAR CONTROL DIRECTIVES 86
10.4 EXECUTION OUTPUT 87
10.5 QUTPUT PRODUCED BY A SOLVE STATEMENT 87
10.5.1 THE EQUATION LISTING 87
10.5.2 THE COLUMN LISTING 89
10.5.3 THE MODEL STATISTICS 89
10.5.4 THE SOLVE SUMMARY 90
10.5.5 ®LVER REPORT 93
10.5.6 THE SOLUTION LISTING 94
10.5.7 EPORTSUMMARY 95
10.5.8 FLE SUMMARY 96

10.6 ERROR REPORTING

96

Vii

10.6.1 OMPILATION ERRORS 97
10.6.2 @MPILATION TIME ERRORS 98
10.6.3 EXECUTION ERRORS 99
10.6.4 ®LVE ERRORS 99
10.7 YMMARY 100
Conditional Expressions, Assignments And Equations

11.1 INTRODUCTION 101
11.2 LoGICAL CONDITIONS 101
11.2.1 NUMERICAL EXPRESSIONSAS LOGICAL CONDITIONS 101
11.2.2 NUMERICAL RELATIONSHIP OPERATORS 102
11.2.3 loGICAL OPERATORS 102
11.2.4 $TMEMBERSHIP 102
11.2.5 loGICAL CONDITIONS INVOLVING ACRONYMS 103
11.2.6 NUMERICAL VALUES OF LOGICAL CONDITIONS 103
11.2.7 MXED LOGICAL CONDITIONS - OPERATORPRECEDENCE 103
11.2.8 MXED LOGICAL CONDITIONS - EXAMPLES 104
11.3 THE DOLLAR CONDITION 104
11.3.1 AN EXAMPLE 105
11.3.2 NESTEDDOLLAR CONDITIONS 105
11.4 CONDITIONAL ASSIGNMENTS 105
11.4.1 BDLLAR ON THE LEFT 106
11.4.2 BDLLAR ON THE RIGHT 106
11.4.3 FLTERING CONTROLLING INDICESIN INDEXED OPERATIONS 107
11.4.4 FLTERING SETSIN ASSIGNMENTS 107
11.5 GONDITIONAL INDEXED OPERATIONS 109
11.5.1 FLTERING CONTROLLING INDICESIN INDEXED OPERATIONS 109
11.6 GONDITIONAL EQUATIONS 110
11.6.1 BDLLAR OPERATORSWITHIN THE ALGEBRA 110
11.6.2 BDLLAR CONTROL OVER THE DOMAIN OF DEFINITION 110
11.6.3 FLTERING THE DOMAIN OF DEFINITION 111
Dynamic Sets 113
12.1 INTRODUCTION 113
12.2ASSIGNING MEMBERSHIP TO DYNAMIC SETS 113
12.2.1 THE SYNTAX 113
12.2.2 LLUSTRATIVE EXAMPLE 113
12.2.3 DrNAMIC SETSWITH MULTIPLE INDICES 114
12.2.4 ASSIGNMENTSOVER THE DOMAIN OF DYNAMIC SETS 114
12.2.5 EB)UATIONS DEFINED OVER THE DOMAIN OF DYNAMIC SETS 115
12.3 WSING DOLLAR CONTROLS WITH DYNAMIC SETS 115
12.3.1 ASSIGNMENTS 115
12.3.2 NDEXED OPERATIONS 116
12.3.3 F)UATIONS 116
12.3.4 FLTERING THROUGHDYNAMIC SETS 116
12.4 T OPERATIONS 117
12.4.1 $TUNION 117
12.4.2 STINTERSECTION 117

101

viii

12.4.3 T COMPLEMENT 117
12.4.4 &1 DIFFERENCE 117
12.5 YMMARY 118
Sets As Sequences: Ordered Sets 19
13.1 INTRODUCTION 119
13.2 CRDERED AND UNORDERED SETS 119
13.3 ORD AND CARD 120
13.3.1 THE ORD OPERATOR 120
13.3.2 THE CARD OPERATOR 121
13.4 LAG AND LEAD OPERATORS 121
13.5 LAGS AND LEADS IN ASSIGNMENTS 122
13.5.1 LNEAR LAG AND LEAD OPERATORS- REFERENCE 122
13.5.2 INEAR LAG AND LEAD OPERATORS- ASSIGNMENT 123
13.5.3 GRCULAR LAG AND LEAD OPERATORS 123
13.6 LAGS AND LEADS IN EQUATIONS 124
13.6.1 LNEAR LAG AND LEAD OPERATORS- DOMAIN CONTROL 124
13.6.2 LNEAR LAG AND LEAD OPERATORS- REFERENCE 125
13.6.3 GRCULAR LAG AND LEAD OPERATORS 125
13.7 YMMARY 126
The Display Statement 127
14.1 INTRODUCTION 127
14.2 THE SYNTAX 127
14.3 AN EXAMPLE 127
14.4 THE LABEL ORDER IN DISPLAYS 128
14.4.1 XAMPLE 129
14.5 DSPLAY CONTROLS 129
14.5.1 GoOBAL DISPLAY CONTROLS 130
14.5.2 locAL DispLAY CONTROL 130
14.5.3 DSPLAY STATEMENT TO GENERATEDATA IN LIST FORMAT 131
The Put Writing Facility 133
15.1 INTRODUCTION 133
15.2 THE SYNTAX 133
15.3 AN EXAMPLE 134
15.4 QuTPUT FILES 135
15.4.1 DEFINING FILES 135
15.4.2 ASSIGNINGFILES 136
15.4.3 COSINGA FILE 136
15.4.4 APPENDINGTO A FILE 137
15.5 IGE FORMAT 137
15.6 PAGE SECTIONS 138
15.6.1 ACCESSINGV ARIOUS PAGE SECTIONS 139
15.6.2 RAGING 139
15.7 ROSITIONING THE CURSORON A PAGE 140
15.8 YSTEM SUFFIXES 140

15.9 QUTPUT ITEMS 141
15.9.1 TEXT ITEMS 141
15.9.2 NUMERIC ITEMS 142
15.9.3 &TVALUE ITEMS 142
15.10 G.OBAL ITEM FORMATTING 143
15.10.1 FELD JUSTIFICATION 143
15.10.2 FELD WIDTH 143
15.11 LOCAL I TEM FORMATTING 144
15.12 ADDITIONAL NUMERIC DISPLAY CONTROL 144
15.12.1 LLUSTRATIVE EXAMPLE 145
15.13 QWRSOR CONTROL 146
15.13.1 ®RRENTCURSORCOLUMN 146
15.13.2 ®RRENTCURSORROW 147
15.13.3 lASTLINE CONTROL 147
15.14 RGING CONTROL 148
15.15 EXCEPTION HANDLING 148
15.16 ®URCE OF ERRORS ASSOCIATED WITH THE PUT STATEMENT 149
15.16.1 SNTAX ERRORS 149
15.16.2 PT ERRORS 149
15.17 SVPLE SPREADSHEET/DATABASE APPLICATION 150
15.17.1 AN EXAMPLE 150
Programming Flow Control Features

16.1 INTRODUCTION 151
16.2 THE LOOP STATEMENT 151
16.2.1 THE SYNTAX 151
16.2.2 XAMPLES 152
16.3 THE | F-ELSEIF-ELSE STATEMENT 152
16.3.1 THE SYNTAX 153
16.3.2 XAMPLES 153
16.4 THE WHILE STATEMENT 154
16.4.1 THE SYNTAX 154
16.4.2 XAMPLES 154
16.5 THE FOR STATEMENT 155
16.5.1 THE SYNTAX 155
16.5.2 XAMPLES 155
Special Lanqguage Features 157
17.1 INTRODUCTION 157
17.2 $ECIAL MIP FEATURES 157
17.2.1 TYyPESOF DISCRETEV ARIABLES 157
17.2.2 $ECIAL ORDERSETSOF TYPE 1 (S0sl) 157
17.2.3 $ECIAL ORDERSETSOF TYPE2 (S02) 159
17.2.4 SMI-CONTINUOUSV ARIABLES 159
17.2.5 EMI-INTEGERV ARIABLES 160
17.2.6 &TTING PRIORITIESFOR BRANCHING 160
17.3 MODEL SCALING - THE SCALE OPTION 161
17.3.1 THE SCALE OPTION 161

151

17.3.2 \ARIABLE SCALING 161
17.3.3 F)UATION SCALING 162
17.3.4 $ALING OF DERIVATIVES 163
Glossary 165
Appendix A: The Gams Model Library

A.1 INTRODUCTION 171
A.2 USING THE MODEL L IBRARY 171
A.3 THE M ODELS 172
Appendix B: The Gams Call 177
B.1 INTRODUCTION 177
2.1.1 THE GENERIC GAMS CALL 177
2.1.2 $ECIFYINGOPTIONSTHROUGH THE COMMAND LINE 177
B.2 LIST OF COMMAND LINE PARAMETERS 178
B.2.1PARAMETERS CONTROLLING THE SPECIFICGAMS RUN 178
B.2.2 ARAMETERS CONTROLLING SYSTEM SETTINGS 178
B.2.3 ARAMETERSAFFECTINGINPUT FILE PROCESSING 179
B.2.4 ARAMETERSAFFECTINGOUTPUTIN LISTING FILE 179
B.2.5 ARAMETERSAFFECTINGOTHER FILES 179
B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 180
B.3.1 ACTION 180
B.3.2 APPENDLOG 180
B.3.3 APPENDOUT 181
B.3.4 BOTMARGIN 181
B.3.5 ASE 181
B.3.6 (ERR 181
B.3.7 C'RLM 182
B.3.8 CIRLZ 182
B.3.9 QURDIR 182
B.3.10 DFORMAT 182
B.3.11 DUMPOPT 183
B.3.12 DUMPPARMS 185
B.3.13 EOLONLY 185
B.3.14 RROR 185
B.3.15 RRMSG 186
B.3.16 EXPAND 187
B.3.17 FERR 187
B.3.18 FORCEWORK 188
B.3.19 G205 188
B.3.20 NPUT 189
B.3.21 NPUTDIR 189
B.3.22 NPUTDIR1 TO INPUTDIR18 190
B.3.23 LEFTMARGIN 190
B.3.24 LBINCDIR 191
B.3.25 LICENSE 191

171

Xi

B.3.26 LOGFILE 191
B.3.27 LOGLINE 192
B.3.28 LOGOPTION 193
B.3.29 MULTIPASS 193
B.3.30 NDCHECK 194
B.3.31 Q°PTFILE 195
B.3.32 QuTPUT 195
B.3.33 RGECONTR 196
B.3.34 RGESIZE 196
B.3.35 RGEWIDTH 196
B.3.36 RROFILE 197
B.3.37 RJTDIR 198
B.3.38 REFERENCE 198
B.3.39 RELPATH 198
B.3.40 RESTART 199
B.3.41 \WE 199
B.3.42 $RDIR 199
B.3.43 SEPSUM 200
B.3.44 SRINGCHK 200
B.3.45 $BSYS 201
B.3.46 $IPPRESS 201
B.3.47 &SDIR 201
B.3.48 &SINCDIR 201
B.3.49 TABIN 202
B.3.50 TFORMAT 202
B.3.51 TOPMARGIN 202
B.3.52 WORKDIR 203
Appendix C: Dollar Control Options

C.1 INTRODUCTION 205
C.1.1 INTAX 205
C.1.2 XAMPLE 205
C.2 LisT OF DOLLAR CONTROL OPTIONS 206
C.2.1 OPTIONSAFFECTINGINPUT COMMENT FORMAT 206
C.2.2 OPTIONSAFFECTINGINPUT DATA FORMAT 206
C.2.3 OPTIONSAFFECTINGOUTPUT FORMAT 207
C.2.4 OPTIONSAFFECTINGLISTING OF REFERENCEMAPS 207
C.2.5 PTIONSAFFECTINGPROGRAM CONTROL 208
C.3 DETAILED DESCRIPTION OF DOLLAR CONTROL OPTIONS 208
C.3.1 ABORT‘TEXT 208
C.3.2 BATINCLUDE FILE ARG1 ARG? ... 209
C.3.3 G\LL COMMAND 210
C.3.4GEARID1 ID2 ... 211
C.3.5 ®MMENT C 212
C.3.6 DOLLAR C 212
C.3.7 DOUBLE 213
C.3.8 EHO'TEXT > FILE OR ECHO'TEXT >> FILE 213
C.3.9 BECT 213
C.3.10 ®LcomC 214

205

Xii

C.3.11 RROR'TEXT 214
C.3.12 &IT 'TEXT 214
C.3.13®T0Il D 215
C.3.14 HDDEN 'TEXT 215
C.3.15 F[NoOT] CONDITION NEW_INPUT_LINE 215
C.3.16 NCLUDE 'FILE' 218
C.3.17 NLINECOM C 219
C.3.18KLLIDLI D2 219
C.3.19 laBELI D 219
C.3.20 UBINCLUDE FILE ARGLARR ... 220
C.3.21 UNESN 220
C.3.22 LOGTEXT 221
C.3.23 MaxcoL N 221
C.3.24 MNcoOL N 222
C.3.25 [QN|OFADIGIT 222
C.3.26 [QN|OFFDOLLAR 223
C.3.27 [ON|OFAEMPTY 223
C.3.28 [QN|OFFIEND 224
C.3.29 [QN|OFFJEOLCOM 225
C.3.30 [ON|OFFEPS 225
C.3.31 [ON|OFFGLOBAL 226
C.3.32 [QN|OFFINCLUDE 226
C.3.33 [ON|OFFINLINE 227
C.3.34 [QN|OFFLISTING 227
C.3.35 [ON|OFFIM ARGIN 228
C.3.36 [QN|OFAM ULTI 228
C.3.37 [ON|OFFINESTCOM 229
C.3.38 [ON|OFFSYMLIST 230
C.3.39 [ON|OFF]SYMXREF 230
C.3.40 [QN|OFATEXT 231
C.3.41 [ON|OFFJUELLIST 232
C.3.42 [ON|OFFJUELXREF 232
C.3.43 [ON|OFFUPPER 232
C.3.44 [ON|OFFJWARNING 233
C.3.45 HANTOM ID 234
C.C.46 SiIFT 234
C.3.47 SNGLE 235
C.3.48 SArRsCccc 235
C.3.49 SITLE 'TEXT 236
C.3.50 §SINCLUDEFILE ARGl A RR 236
C.3.51 TTLE ‘TEXT 236
C.3.52 L5205 237
C.3.53 L5225 237
C.3.54 5999 237
Appendix D: The Option Statement

D.1 INTRODUCTION 239
D.1.1 THE SYNTAX 239

239

Xiii

D.1.2 EXAMPLE 240
D.2 LisT OF OPTIONS 240
D.2.1 QPTIONSCONTROLLING OUTPUT DETAIL 240
D.2.2 OPTIONSCONTROLLING SOLVER SPECIFICPARAMETERS 241
D.2.3 QPTIONSCONTROLLING CHOICE OF SOLVER 241
D.2.4 QPTIONSAFFECTINGINPUT PROGRAM CONTROL 241
D.3 DETAILED DESCRIPTION OF OPTIONS 241
Appendix E: The Save And Restart Feature 247
E.1 INTRODUCTION 247
E.2 THE SAVE AND RESTART FEATURES 247
E.2.1 3WVING WORK FILES 248
E.2.2 RESTARTING FROM WORK FILES 248
E.3 WAYS IN WHICH WORK FILES ARE USEFUL 249
E.3.1 $PARATION OF MODEL AND DATA 249
E.3.2 NCREMENTAL PROGRAM DEVELOPMENT 250
E.3.3 TACKING SEQUENCESOF DIFFICULT SOLVES 250
E.3.4 MULTIPLE SCENARIOS 251

Index 253

INTRODUCTION

1.1 MOTIVATION

Substantial progress was made in the 1950s and 1960s with the development of algorithms and
computer codes to solve large mathematical programming problems. The number of applications
of these tools in the 1970s was less then expected, however, because the solution procedures
formed only a small part of the overall modeling effort. A large part of the time required to de-
velop a model involved data preparation and transformation and report preparation. Each model
required many hours of analyst and programming time to organize the data and write the pro-
grams that would transform the data into the form required by the mathematical programming
optimizers. Furthermore, it was difficult to detect and eliminate errors because the programs that
performed the data operations were only accessible to the specialist who wrote them and not to
the analysts in charge of the project.

GAMS was developed to improve on this situation by:

« Providing a high-level language for the compact representation of large and complex models
» Allowing changes to be made in model specifications simply and safely

» Allowing unambiguous statements of algebraic relationships

» Permitting model descriptions that are independent of solution algorithms

1.2 BASIC FEATURES OF GAMS

Some basic features of GAMS are explained in the following sub-sections.

1.2.1 GENERAL PRINCIPLES

The design of GAMS has incorporated ideas drawn from relational database theory and mathe-
matical programming and has attempted to merge these ideas to suit the needs of strategic model-
ers. Relational database theory provides a structured framework for developing general data or-
ganization and transformation capabilities. Mathematical programming provides a way of de-
scribing a problem and a variety of methods for solving it. The following principles were used in
designing the system:

e All existing algorithmic methods should be available without changing the user’'s model rep-
resentation. Introduction of new methods, or of new implementations of existing methods,
should be possible without requiring changes in existing models. Linear, nonlinear, mixed
integer, mixed integer nonlinear optimizations and mixed complementarity problems can cur-
rently be accommodated.

» The optimization problem should be expressible independently of the data it uses. This sepa-
ration of logic and data allows a problem to be increased in size without causing an increase
in the complexity of the representation.

2 INTRODUCTION

* The use of the relational data model requires that the allocation of computer resources be
automated. This means that large and complex models can be constructed without the user
having to worry about details such as array sizes and scratch storage.

1.2.2 DOCUMENTATION

The GAMS model representation is in a form that can be easily read by people and by computers.
This means that the GAMS program itself is the documentation of the model, and that the sepa-
rate description required in the past (which was a burden to maintain, and which was seldom up-
to-date) is no longer needed. Moreover, the design of GAMS incorporates the following features
that specifically address the user’'s documentation needs:

A GAMS model representation is concise, and makes full use of the elegance of the mathe-
matical representation.

» All data transformations are specified concisely and algebraically. This means that all data
can be entered in their most elemental form and that all transformations made in constructing
the model and in reporting are available for inspection.

» Explanatory text can be made part of the definition of all symbols and is reproduced when-
ever associated values are displayed.

+ Allinformation needed to understand the model is in one document.

Of course some discipline is needed to take full advantage of these design features, but the aim is

to make models more accessible, more understandable, more verifiable, and hence more credible.

1.2.3 PORTABILITY

The GAMS system is designed so that models can be solved on different types of computers with
no change. A model developed on a small personal computer can later be solved on a large main-
frame. One person can develop a model that is later used by others, who may be physically dis-
tant from the original developer. In contrast to previous approaches, only one document need be
moved --- the GAMS statement of the model. It contains all the data and logical specifications
needed to solve the model.

1.2.4 USER INTERFACE

Portability concerns also have implications for the user interface. The basic GAMS system is
file-oriented, and no special editor or graphical input and output routines exist. Rather than bur-
den the user with having to learn yet another set of editing commands, GAMS offers an open ar-
chitecture in which each user can use his word processor or editor of choice. This basic user in-
terface facilitates the integration of GAMS with a variety of existing and future user environ-
ments.

1.2.5 MODEL LIBRARY

When architects begin to design a new building, they develop the new structure by using ideas
and techniques that have been tested in previous structures. The same is true in other fields: de-
sign elements from previous projects serve as sources of ideas for new developments.

1.3 ORGANIZATION OF THE BOOK 3

From the early stages of the development of GAMS we have collected models to be used in a li-
brary of examples. Many of these are standard textbook examples and can be used in classes on
problem formulation or to illustrate points about GAMS. Others are models that have been used
in policy or sector analysis and are interesting for both the methods and the data they use. All the
substantive models in the library are described in the open literature. A collection of models is
now included with all GAMS systems, along with a database to help users locate examples that
cover countries, sectors, or topics of interest to them.

The syntax used to introduce features in the various chapters are presented using the Backus-
Naur form (BNF) notation where:

[denotes that the enclosed construct is optional,

{} denotes that the enclosed construct may be repeated zero or more times, and

| denotes that there is @anoperator across the arguments on both sides of the symbol.

1.3 ORGANIZATION OF THE BOOK

Some introductions to software systems are like reference manuals: they describe each command
in detail. Others take you step by step through a small number of examples. This book uses ele-
ments of both approaches. The text is divided into three parts. The first part (Chapters 1 and 2) is
introductory. Chapter 2 is a self-contained tutorial that guides you through a single example, a
small transportation model, in some detail: you can quickly investigate the flavor of GAMS by
reading it.

The second part (Chapters 3 to 17) comprises the meat of the book. The components of the
GAMS language are introduced in an ordered way, interspersed with detailed examples that are
often drawn from the model library. All models from the model library are enclosed in square pa-
renthesis (for example, [TRNSPORT]. Some specialized material has deliberately been omitted
in this process because the primary aim is to make GAMS accessible to the widest possible audi-
ence, especially those without extensive experience with computers or mathematical program-
ming systems. Some familiarity with quantitative methods and mathematical representations is
assumed.

The third part consists of specialized discussions of advanced topics and can be studied as
needed. Users with large, complex, or expensive models will find much useful material in this
part.

A GAMS TUTORIAL
by Richard E. Rosenthal

2.1 INTRODUCTION

The introductory part of this book ends with a detailed example of the use of GAMS for formu-
lating, solving, and analyzing a small and simple optimization problem. Richard E. Rosenthal of
the Naval Postgraduate School in Monterey, California wrote it. The example is a quick but
complete overview of GAMS and its features. Many references are made to other parts of the
book, but they are only to tell you where to look for more details; the material here can be read
profitably without reference to the rest of the book.

The example is an instance of the transportation problem of linear programming, which has his-
torically served as a 'laboratory animal' in the development of optimization technology. [See, for
example, Dantzig (1963).] It is good choice for illustrating the power of algebraic modeling lan-
guages like GAMS because the transportation problem, no matter how large the instance at hand,
possesses a simple, exploitable algebraic structure. You will see that almost all of the statements
in the GAMS input file we are about to present would remain unchanged if a much larger trans-
portation problem were considered.

In the familiar transportation problem, we are given the supplies at several plants and the de-
mands at several markets for a single commaodity, and we are given the unit costs of shipping the
commodity from plants to markets. The economic question is: how much shipment should there
be between each plant and each market so as to minimize total transport cost?

The algebraic representation of this problem is usually presented in a format similar to the fol-
lowing.
Indices:
i = plants
j = markets
Given Data:
a = supply of commodity of plant(in cases)
by = demand for commodity at markefcases)
c;j = cost per unit shipment between plaahd markej ($/case)

Decision Variables:
X; = amount of commodity to ship from plarto markef (cases),
wherex; = 0, for alli, j

6 A GAMS TUTORIAL

Constraints:

Observe supply limit at plait Z X, <8 for alli (cases)
]
Satisfy demand at markgt z X, = q , for all j (cases)
Objective Function: Minimize G X ($K)
>3s

Note that this simple example reveals some modeling practices that we regard as good habits in
general and that are consistent with the design of GAMS. First, all the entities of the model are
identified (and grouped) by type. Second, the ordering of entities is chosen so that no symbol is
referred to before it is defined. Third, the units of all entities are specified, and, fourth, the units
are chosen to a scale such that the numerical values to be encountered by the optimizer have
relatively small absolute orders of magnitude. (The symbol $K here means thousands of dollars.)

The names of the types of entities may differ among modelers. For example, economists use the
terms 'exogenous variable' and 'endogenous variable' for 'given data' and 'decision variable,' re-
spectively. In GAMS, the terminology adopted is as follows: indices are caited, given data

are callecharameters , decision variables are callgdriables , and constraints and the
objective function are callegquations

The GAMS representation of the transportation problem closely resembles the algebraic repre-
sentation above. The most important difference, however, is that the GAMS version can be read
and processed by the computer.

As an instance of the transportation problem, suppose there are two canning plants and three
markets, with the given data as follows. (This example is adapted from Dantzig, 1963)

Plants Shipping Distances to Markets(1000 miles) Supplies
New York Chicago Topeka

Seattle 2.5 1.7 1.8 350

San Diego 2.5 1.8 14 600

Demands 325 300 275

Shipping distances are in thousands of miles, and shipping costs are assumed to be $90.00 per
case per thousand miles. The GAMS representation of this problem is as follows:

Sets

i canning plants / seattle, san-diego /

j markets / new-york, chicago, topeka/;
Parameters

a(i) capacity of plantiin cases
| seattle 350
san-diego 600 /

b(j)) demand at market j in cases
! new-york 325

chicago 300

topeka 275 /;

2.2 STRUCTURE OF A GAMS MODEL 7

Table d(i,j) distance in thousands of miles
new-york chicago topeka
seattle 25 1.7 1.8
san-diego 2.5 1.8 1.4 ;

Scalar f freight in dollars per case per thousand miles /90/ ;
Parameter c(i,j) transport cost in thousands of dollars per case ;
c(i,j) = f*d(,j) /1000 ;
Variables
x(i,j) shipment quantities in cases
z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations
cost define objective function
supply(i) observe supply limit at plant i
demand(j) satisfy demand at market j ;

cost .. z =e= sum((i,j), c(i,j)*x(ij)) ;
supply(i) .. sum(, x(i.j)) =I= a(j);
demand(j) .. sum(i, x(i,j)) =g= b(j) ;
Model transport /all/ ;

Solve transport using Ip minimizing z ;

Display x.I, x.m ;

If you submit a file containing the statements above as input to the GAMS program, the trans-
portation model will be formulated and solved. Details vary on how to invoke GAMS on differ-
ent of computers, but the simplest ('no frills") way to call GAMS is to enter the word gams fol-
lowed by the input file's name. You will see a number of terse lines describing the progress
GAMS is making, including the name of the file onto which the output is being written. When
GAMS has finished, examine this file, and if all has gone well the optimal shipments will be dis-
played at the bottom as follows.

new-york chicago topeka
seattle 50.000 300.000
san-diego 275.000 275.000

You will also receive the marginal costs (simplex multipliers) below.

chicago topeka
seattle 0.036
san-diego 0.009

These results indicate, for example, that it is optimal to send nothing from Seattle to Topeka, but
if you insist on sending one case it will add .036 $K (or $36.00) to the optimal cost. (Can you
prove that this figure is correct from the optimal shipments and the given data?)

2.2 STRUCTURE OF A GAMS MODEL

For the remainder of the tutorial, we will discuss the basic components of a GAMS model, with
reference to the example above. The basic components are

8 A GAMS TUTORIAL

Inputs Outputs
* Sets * Echo Print
Declaration « Reference Maps
Assignment of members . -
* Equation Listings
 Data
(Parameters, Tables, Scalars) + Status Reports
Declaration * Results
Assignment of values
* Variables
Declaration

Assignment of type
Assignment of bounds and/or initial values
(optional)
Equations
Declaration
Definition
Model andSolve statements
Display statement (optional)

There are optional input components, such as edit checks for bad data and requests for custom-
ized reports of results. Other optional advanced features include saving and restoring old models,
and creating multiple models in a single run, but this tutorial will discuss only the basic compo-
nents.

Before treating the individual components, we give a few general remarks.

1. A GAMS model is a collection of statements in the GAMS Language. The only rule govern-

ing the ordering of statements is that an entity of the model cannot be referenced before it is
declared to exist.

GAMS statements may be laid out typographically in almost any style that is appealing to the
user. Multiple lines per statement, embedded blank lines, and multiple statements per line are
allowed. You will get a good idea of what is allowed from the examples in this tutorial, but
precise rules of the road are given in the next Chapter.

When you are a beginning GAMS user, you should terminate every statement with a semi-
colon, as in our examples. The GAMS compiler does not distinguish between upper-and
lowercase letters, so you are free to use either.

Documentation is crucial to the usefulness of mathematical models. It is more useful (and
most likely to be accurate) if it is embedded within the model itself rather than written up
separately. There are at least two ways to insert documentation within a GAMS model. First,
any line that starts with an asterisk in column 1 is disregarded as a comment line by the
GAMS compiler. Second, perhaps more important, documentary text can be inserted within
specific GAMS statements. All the lowercase words in the transportation model are exam-
ples of the second form of documentation.

As you can see from the list of input components above, the creation of GAMS entities in-
volves two steps: a declaration and an assignment or definition. 'Declaration' means declaring
the existence of something and giving it a name. 'Assignment’ or 'definition' means giving
something a specific value or form. In the case of equations, you must make the declaration
and definition in separate GAMS statements. For all other GAMS entities, however, you

have the option of making declarations and assignments in the same statement or separately.

2.3 SETS 9

6. The names given to the entities of the model must start with a letter and can be followed by
up to nine more letters or digits.

2.3 SETS

Sets are the basic building blocks of a GAMS model, corresponding exactly to the indices in the
algebraic representations of models. The Transportation example above contains$est one
statement:

Sets
i canning plants / seattle, san-diego /
j markets / new-york, chicago, topeka/;

The effect of this statement is probably self-evident. We declared two sets and gave them the
named andj . We also assigned members to the sets as follows:

i = {Seattle, San Diego}

j = {New York, Chicago, Topeka}.
You should note the typographical differences between the GAMS format and the usual mathe-
matical format for listing the elements of a set. GAMS uses slashes /' rather than curly braces '{}

to delineate the set simply because not all computer keyboards have keys for curly braces. Note
also that multiword names like 'New York' are not allowed, so hyphens are inserted.

The lowercase words in tlsets statement above are called 'text.’ Text is optional. It is there
only for internal documentation, serving no formal purpose in the model. The GAMS compiler
makes no attempt to interpret the text, but it saves the text and 'parrots' it back to you at various
times for your convenience.

It was not necessary to combine the creation ofisatedj in one statement. We could have put
them into separate statements as follows:

Set i canning plants / seattle, san-diego/;
Set | markets / new-york, chicago, topeka/ ;

The placement of blank spaces and lines (as well as the choice of upper- or lowercase) is up to
you. Each GAMS user tends to develop individual stylistic conventions. (The use of the singular
set is also up to you. Usinget in a statement that makes a single declaratiorsatsd in one

that makes several is good English, but GAMS treats the singular and plural synonymously.)

A convenient feature to use when you are assigning members to a set is the asterisk. It applies to
cases when the elements follow a sequence. For example, the following asetvasithtements

in GAMS.

Set t time periods /1991*2000/;
Set m machines /machl*mach24/;
Here the effect is to assign

t ={1991,1992,1993,, 2000}
m = {mach, mach,......, machy},

Note that set elements are stored as character strings, so the elerharéshot numbers.

Another convenient feature is thkas statement, which is used to give another name to a pre-
viously declared set. In the following example:

Alias (t,tp);

10 A GAMS TUTORIAL

the namdp is like at’ in mathematical notation. It is useful in models that are concerned with
the interactions of elements within the same set.

The sets, j, t , andmin the statements above are examples of static sets, i.e., they are as-
signed their members directly by the user and do not change. GAMS has several capabilities for
creating dynamic sets, which acquire their members through the execution of set-theoretic and
logical operations. Dynamic sets are discussed in Chapter "DYNAMIC SETS,” page 113. An-
other valuable advanced feature is multidimensional sets, which are discussed in Section:
“MULTI-DIMENSIONAL SETS,” page 41.

2.4 DATA

The GAMS model of the transportation problem demonstrates all of the three fundamentally dif-
ferent formats that are allowable for entering data. The three formats are:

e Lists

 Tables

» Direct assignments

The next three sub-sections will discuss each of these formats in turn.

2.4.1 DATA ENTRY BY LISTS

The first format is illustrated by the first Parameters statement of the example, which is repeated
below.

Parameters

a(i) capacity of plantiin cases
| seattle 350
san-diego 600 /

b(j) demand at market j in cases
/ new-york 325

chicago 300

topeka 275 /;

This statement has several effects. Again, they may be self-evident, but it is worthwhile to ana-
lyze them in detail. The statement declares the existence of two parameters, gives them the names
a andb, and declares their 'domains' toibandj , respectively. (A domain is the set, or tuple of

sets, over which a parameter, variable, or equation is defined.) The statement also gives docu-
mentary text for each parameter and assigns valus$) of andb(j) for each element of and

j - It is perfectly acceptable to break this one statement into two, if you prefer, as follows.

Parameters a(i) capacity of plantiin cases
/ seattle 350
san-diego 600 /;

Parameters b(j) demand at market j in cases
/ new-york 325
chicago 300
topeka 275 /;

Here are some points to remember when using the list format.

1. The list of domain elements and their respective parameter values can be laid out in almost
any way you like. The only rules are that the entire list must be enclosed in slashes and that
the element-value pairs must be separated by commas or entered on separate lines.

2.4 DATA 11

2. There is no semicolon separating the element-value list from the name, domain, and text that
precede it. This is because the same statement is being used for declaration and assignment
when you use the list format. (An element-value list by itself is not interpretable by GAMS
and will result in an error message.)

3. The GAMS compiler has an unusual feature called ‘domain checking,' which verifies that
each domain element in the list is in fact a member of the appropriate set. For example, if
you were to spell 'Seattle’ correctly in the statement decl&ehg but misspell it as 'Seatle’
in a subsequent element-value list, the GAMS compiler would give you an error message that
the element 'Seatle' does not belong to thie.set

4. Zero is the default value for all parameters. Therefore, you only need to include the nonzero
entries in the element-value list, and these can be entered in any order .

5. A scalar is regarded as a parameter that has no domain. It can be declared and assigned with
aScalar statement containing a 'degenerate’ list of only one value, as in the following
statement from the transportation model.

Scalar f freight in dollars per case per thousand miles /90/;

If a parameter’'s domain has two or more dimensions, it can still have its values entered by the list
format. This is very useful for entering arrays that are sparse (having few non-zeros) and super-
sparse (having few distinct non-zeros).

2.4.2 DATA ENTRY BY TABLES

Optimization practitioners have noticed for some time that many of the input data for a large
model are derived from relatively small tables of numbers. Thus, it is very useful to have the ta-
ble format for data entry. An example of a two-dimensional table (or matrix) is provided the
transportation model:

Table d(i,j) distance in thousands of miles
new-york chicago topeka
seattle 25 1.7 1.8
san-diego 25 1.8 1.4 ;

The effect of this statement is to declare the paramdeded to specify its domain as the set of
ordered pairs in the Cartesian product @ndj . The values ofl are also given in this statement
under the appropriate heading. If there are blank entries in the table, they are interpreted as ze-
roes.

As in the list format, GAMS will perform domain checking to make sure that the row and column
names of the table are members of the appropriate sets. Formats for entering tables with more
columns than you can fit on one line and for entering tables with more than two dimensions are
given in Chapter: "DATA ENTRY: PARAMETERS, SCALARS & TABLES," page 45

2.4.3 DATA ENTRY BY DIRECT ASSIGNMENT

The direct assignment method of data entry differs from the list and table methods in that it di-
vides the tasks of parameter declaration and parameter assignment between separate statements.
The transportation model contains the following example of this method.

Parameter c(i,j) transport cost in thousands of dollars per case ;
c(i,j) = f* d(i,j) / 1000 ;

12 A GAMS TUTORIAL

It is important to emphasize the presence of the semicolon at the end of the first line. Without it,
the GAMS compiler would attempt to interpret both lines as parts of the same statement. (GAMS
would fail to discern a valid interpretation, so it would send you a terse but helpful error mes-
sage.)

The effects of the first statement above are to declare the paramitespecify the domain

(i,j) ,and to provide some documentary text. The second statement assi@s to the

product of the values of the parametieandd(i,j) . Naturally, this is legal in GAMS only if

you have already assigned value$ @ndd(i,)) in previous statements.

The direct assignment above applies tgigll pairs in the domain af. If you wish to make
assignments for specific elements in the domain, you enclose the element names in quotes. For
example,

c('Seattle','New-York') = 0.40;

is a valid GAMS assignment statement.

The same parameter can be assigned a value more than once. Each assignment statement takes ef-
fect immediately and overrides any previous values. (In contrast, the same parameter may not be
declared more than once. This is a GAMS error check to keep you from accidentally using the

same name for two different things.)

The right-hand side of an assignment statement can contain a great variety of mathematical ex-
pressions and built-in functions. If you are familiar with a scientific programming language such
as FORTRAN or C, you will have no trouble in becoming comfortable writing assignment state-
ments in GAMS. (Notice, however, that GAMS has some efficiencies shared by neither
FORTRAN nor C. For example, we were able to assigin ~ values for alli,j) pairs

without constructing 'do loops'.)

The GAMS standard operations and supplied functions are given later. Here are some examples

of valid assignments. In all cases, assume the left-hand-side parameter has already been declared
and the right-hand-side parameters have already been assigned values in previous statements.

csquared = sqr(c);

e = m*csquared;

w = |/lamda;

eoq(i) = sqrt(2*demand(i)*ordcost(i)/holdcost(i));

i) =min(p(), q(i)/r(i), log(s())); ,
euclidean(i,j) = grt(sqr(xi(i) - xi(j) + sqr(x2(i) - x2(j)));
present(j) = future(j)*exp(-interest*time(j));

The summation and product operators to be introduced later can also be used in direct assign-
ments.

2.5 VARIABLES

The decision variables (or endogenous variables) of a GAMS-expressed model must be declared
with aVariables statement. Each variable is given a name, a domain if appropriate, and (op-
tionally) text. The transportation model contains the following examplé/afiables state-

ment.

Variables
x(i,j) shipment quantities in cases
z total transportation costs in thousands of dollars ;

2.6 EQUATIONS 13

This statement results in the declaration of a shipment variable for each (i,j) pair. (You will see
in Chapter "EQUATION DEFINITIONS," page 68 how GAMS can handle the typical real-

world situation in which only a subset of tfig) pairs is allowable for shipment.)

Thez variable is declared without a domain because it is a scalar quantity. Every GAMS optimi-
zation model must contain one such variable to serve as the quantity to be minimized or maxi-
mized.

Once declared, every variable must be assigned a type. The permissible types are give below.

Variable Type Allowed Range of Variable
free(default) -00 tQ +00

positive 0 to +oo

negative -0 to0 0

binary 0orl

integer 0,1,...., 100 (default)

The variable that serves as the quantity to be optimized must be a scalar and must fioeeof the
type. In our transportation exampkeis kept free by default, bui,j) is constrained to non-
negativity by the following statement.

Positive variable x ;

Note that the domain of should not be repeated in the type assignment. All entries in the do-
main automatically have the same variable type.

Section 2.10 describes how to assign lower bounds, upper bounds, and initial values to variables.

2.6 EQUATIONS

The power of algebraic modeling languages like GAMS is most apparent in the creation of the
equations and inequalities that comprise the model under construction. This is because whenever
a group of equations or inequalities has the same algebraic structure, all the members of the
group are created simultaneously, not individually.

2.6.1 EQUATION DECLARATION

Equations must be declared and defined in separate statements. The format of the declaration is
the same as for other GAMS entities. First comes the key®grhtions in this case, fol-

lowed by the name, domain and text of one or more groups of equations or inequalities being de-
clared. Our transportation model contains the following equation declaration:

Equations
cost define objective function
supply(i) observe supply limit at plant i
demand(j) satisfy demand at market j ;

Keep in mind that the worlquation has a broad meaning in GAMS. It encompasses both
equality and inequality relationships, and a GAMS equation with a single name can refer to one
or several of these relationships. For examgdet has no domain so it is a single equation, but
supply refers to a set of inequalities defined over the domain i.

14 A GAMS TUTORIAL

2.6.2 GAMS SUMMATION (AND PRODUCT) NOTATION

Before going into equation definition we describe the summation notation in GAMS. Remember
that GAMS is designed for standard keyboards and line-by-line input readers, so it is not possible
(nor would it be convenient for the user) to employ the standard mathematical notation for sum-
mations.

The summation notation in GAMS can be used for simple and complex expressions. The format

is based on the idea of always thinking of a summation as an operator with two arguments:
Sum(index of summation, summand)

A comma separates the two arguments, and if the first argument requires a comma then it should
be in parentheses. The second argument can be any mathematical expression including another
summation.

As a simple example, the transportation problem contains the expression
sum(j, x(i,j))
that is equivalent t@; x;.
A slightly more complex summation is used in the following example:
Sum((i.j), c(i.j)*x(i.j))
that is equivalent t&; 2 cj x;.
The last expression could also have been written as a nested summation as follows:
Sum(i, Sum(j, c(i,j)*x(.j)))
In section "THE DOLLAR CONDITION," page: 104 we describe how to use the 'dollar' operator

to impose restrictions on the summation operator so that only the elements of i and j that satisfy
specified conditions are included in the summation.

Products are defined in GAMS using exactly the same format as summations, replecing
Prod . For example,

prod(j, x(i,))
is equivalent to|_| X

Summation and product operators may be used in direct assignment statements for parameters.
For example,

scalar totsupply total supply over all plants;
totsupply = sum(i, b(i));

2.6.3 EQUATION DEFINITION

Equation definitions are the most complex statements in GAMS in terms of their variety. The
components of an equation definition are, in order:

¢ The name of the equation being defined
* The domain

e Domain restriction condition (optional)

e The symbol."

* Left-hand-side expression

2.6 EQUATIONS 15

Relational operatosl= ,=e=, or=g=
Right-hand-side expression

The transportation example contains three of these statements.

cost .. z =e= sum((i,j), c(i.j)*x(i.))) ;
supply(i) .. sum(, x(i,j)) =I= ai);
demand(j) .. sum(i, x(i,})) =g= b(j) ;

Here are some points to remember.

The power to create multiple equations with a single GAMS statement is controlled by the
domain. For example, the definition for themand constraint will result in the creation of
one constraint for each element of the donpaias shown in the following excerpt from the
GAMS output.

DEMAND(new-york)..X(seattle,new-york) + X(san-diego,new-york)=G=325 ;

DEMAND(chicago).. X(seattle,chicago) + X(san-diego,chicago) =G=300 ;
DEMAND(topeka).. X(seattle,topeka) + X(san-diego,topeka) =G=275;

The key idea here is that the definition of the demand constraints is exactly the same whether
we are solving the toy-sized example above or a 20,000-node real-world problem. In either
case, the user enters just one generic equation algebraically, and GAMS creates the specific
equations that are appropriate for the model instance at hand. (Using some other optimization
packages, something like the extract above would be part of the input, not the output.)
In many real-world problems, some of the members of an equation domain need to be omit-
ted or differentiated from the pattern of the others because of an exception of some kind.
GAMS can readily accommodate this loss of structure using a powerful feature known as the
‘dollar' or 'such-that' operator, which is not illustrated here. The domain restriction feature
can be absolutely essential for keeping the size of a real-world model within the range of
solvability.
The relational operators have the following meanings:

=l= less than or equal to

=g= greater than or equal to

=e= equalto
It is important to understand the difference between the symbols '=ZearidThe '=' symbol
is used only in direct assignments, and Hee' symbol is used only in equation definitions.
These two contexts are very different. A direct assignment gives a desired value to a pa-
rameter before the solver is called. An equation definition also describes a desired relation-
ship, but it cannot be satisfied until after the solver is called. It follows that equation defini-
tions must contain variables and direct assignments must not.
Variables can appear on the left or right-hand side of an equation or both. The same variable
can appear in an equation more than once. The GAMS processor will automatically convert
the equation to its equivalent standard form (variables on the left, no duplicate appearances)
before calling the solver.
An equation definition can appear anywhere in the GAMS input, provided the equation and
all variables and parameters to which it refers are previously declared. (Note that it is per-
missible for a parameter appearing in the equation to be assigned or reassigned a value after
the definition. This is useful when doing multiple model runs with one GAMS input.) The
equations need not be defined in the same order in which they are declared.

16 A GAMS TUTORIAL

2.7 OBJECTIVE FUNCTION

This is just a reminder that GAMS has no explicit entity called the 'objective function.' To spec-
ify the function to be optimized, you must create a variable, which is free (unconstrained in sign)
and scalar-valued (has no domain) and which appears in an equation definition that equates it to
the objective function.

2.8 MODEL AND SOLVE STATEMENTS

The word nodel has a very precise meaning in GAMS. It is simply a collection of equations.

Like other GAMS entities, it must be given a name in a declaration. The format of the declaration
is the keywordnodel followed by the name of the model, followed by a list of equation names
enclosed in slashes. If all previously defined equations are to be included, you céaillénter

in place of the explicit list. In our example, there is one Model statement:

model transport /all/ ;

This statement may seem superfluous, but it is useful to advanced users who may create several
models in one GAMS run. If we were to use the explicit list rather than the sHhalticut , the
statement would be written as

model transport / cost, supply, demand / ;

The domains are omitted from the list since they are not part of the equation name. The list op-
tion is used when only a subset of the existing equations comprises a specific model (or sub-
model) being generated.

Once a model has been declared and assigned equations, we are ready to call the solver. This is
done with a solve statement, which in our example is written as

solve transport using Ip minimizing z ;

The format of the solve statement is as follows:

1. The key wordsolve

2. The name of the model to be solved

3. The key wordusing

4. An available solution procedure. The complete list is

Ip for linear programming

nlp for nonlinear programming

mip for mixed integer programming

rmip for relaxed mixed integer programming

minlp for mixed integer nonlinear programming

rminlp for relaxed mixed integer nonlinear programming
mcp for mixed complementarity problems

mpec for mathematical programs with equilibrium constraints
cns for constrained nonlinear systems

The keyword minimizing" or "maximizing"

The name of the variable to be optimized

oo

2.9 DISPLAY STATEMENTS 17

2.9 DISPLAY STATEMENTS

Thesolve statement will cause several things to happen when executed. The specific instance
of interest of the model will be generated, the appropriate data structures for inputting this prob-
lem to the solver will be created, the solver will be invoked, and the output from the solver will
be printed to a file. To get the optimal values of the primal and/or dual variables, we can look at
the solver output, or, if we wish, we can request a display of these results from GAMS. Our ex-
ample contains the following statement:

display x.I, x.m ;

that calls for a printout of the final levels] , and marginal (or reduced coste)n, of the
shipment variablex(i,j) . GAMS will automatically format this printout in to dimensional
tables with appropriate headings.

2.10 THE ".LO, .L, .UP, .M' DATABASE

GAMS was designed with a small database system in which records are maintained for the vari-
ables and equations. The most important fields in each record are:

o = lower bound

A = level or primal value
.up = upper bound

.m = marginal or dual value

The format for referencing these quantities is the variable or equation’s name followed by the
field’s name, followed (if necessary) by the domain (or an element of the domain).

GAMS allows the user complete read-and write-access to the database. This may not seem re-
markable to you now, but it can become a greatly appreciated feature in advanced use. Some ex-
amples of use of the database follow.

2.10.1 ASSIGNMENT OF VARIABLE BOUNDS AND/OR INITIAL VALUES

The lower and upper bounds of a variable are set automatically according to the variable’s type
(free, positive, negative, binary , orinteger), but these bounds can be over-
written by the GAMS user. Some examples follow.

x.up(i,j) = capacity(ij) ;
x.Jo(i,j) = 10.0 ;
x.up(‘seattle’,'new-york') = 1.2*capacity(seattle','new-york’) ;

It is assumed in the first and third examples tagiacity(i,j) is a parameter that was pre-

viously declared and assigned values. These statements must appear after the variable declaration
and before th&olve statement. All the mathematical expressions available for direct assign-

ments are useable on the right-hand side.

In nonlinear programming it is very important for the modeler to help the solver by specifying as
narrow a range as possible between lower and upper bound. It is also very helpful to specify an
initial solution from which the solver can start searching for the optimum. For example, in a con-
strained inventory model, the variables quantity(i) , and it is known that the optimal so-
lution to the unconstrained version of the problem is a parameter ealié . As a guess for

the optimum of the constrained problem we enter

18 A GAMS TUTORIAL

quantity.l(i) = 0.5*eoq(i) ;

(The default initial level is zero unless zero is not within the bounded range, in which case it is
the bound closest to zero.)

It is important to understand that the and.up fields are entirely under the control of the
GAMS user. Thel and.m fields, in contrast, can be initialized by the user but are then con-
trolled by the solver.

2.10.2 TRANSFORMATION AND DISPLAY OF OPTIMAL VALUES

(This section can be skipped on first reading if desired.)

After the optimizer is called via treolve statement, the values it computes for the primal and
dual variables are placed in the database i thand.m fields. We can then read these results
and transform and display them with GAMS statements.

For example, in the transportation problem, suppose we wish to know the percentage of each
market’s demand that is filled by each plant. After the solve statement, we would enter

parameter pctx(i,j) perc of market j's demand filled by plant i;
petx(i,j) = 100.0*x.1(i,j)/b() ;
display pctx ;

Appending these commands to the original transportation problem input results in the following
output:

pctx percent of market j's demand filled by plant |
new-york chicago topeka

seattle 15.385 100.000

san-diego 84.615 100.000

For an example involving marginal, we briefly consider the 'ratio constraints' that commonly ap-
pear in blending and refining problems. These linear programming models are concerned with
determining the optimal amount of each of several available raw materials to put into each of
several desired finished products. yétj) be the variable for the number of tons of raw
materiali put into finished produgt Suppose the 'ratio constraint' is that nho product can consist
of more than 25 percent of one ingredient, that is,

y(i.)ag) == .25;
for alli, j. To keep the model linear, the constraint is written as
ratio(i,j).. y(ij) - .25*q(j) == 0.0 ;

rather than explicitly as a ratio.

The problem here is theatio .m(i,j)) , the marginal value associated with the linear form of
the constraint, has no intrinsic meaning. At optimality, it tells us by at most how much we can
benefit from relaxing the linear constraint to

y(ij) - .25%q()) == 1.0;

Unfortunately, this relaxed constraint has no realistic significance. The constraint we are inter-
ested in relaxing (or tightening) is the nonlinear form of the ration constraint. For example, we
would like to know the marginal benefit arising from changing the ratio constraint to

y(@i.)/a@) == .26 ;

2.11 GAMS OUTPUT 19

We can in fact obtain the desired marginals by entering the following transformation on the un-
desired marginals:

parameter amr(i,j) appropriate marginal for ratio constraint ;
amr(i,j) = ratio.m(i,j)*0.01*q.l(j) ;
display amr ;

Notice that the assignment statementsfior accesses botm and.l records from the data-
base. The idea behind the transformation is to notice that

y(@i.)a@) == .26 ;
is equivalent to

y(i.j) - .25*q(j) =I= 0.01*q()) ;

2.11 GAMS OUTPUT

The default output of a GAMS run is extensive and informative. For a complete discussion, see
Chapter “GAMS OUTPUT,” page 81. This tutorial discusses output partially as follows:

Outputs:

Echo Print or Echo Print

Error Messages Reference Maps
Reference Maps Equation Listings

Model Statistics
Status Reports
Solution Reports

A great deal of unnecessary anxiety has been caused by textbooks and users’ manuals that give
the reader the false impression that flawless use of advanced software should be easy for anyone
with a positive pulse rate. GAMS is designed with the understanding that even the most experi-
enced users will make errors. GAMS attempts to catch the errors as soon as possible and to
minimize their consequences.

2.11.1 ECHO PRINTS

Whether or not errors prevent your optimization problem from being solved, the first section of
output from a GAMS run is an echo, or copy, of your input file. For the sake of future reference,
GAMS puts line numbers on the left-hand side of the echo. For our transportation example,
which luckily contained no errors, the echo print is as follows:

20 A GAMS TUTORIAL

3 Sets

4 i canning plants / seattle, san-diego /

5 j markets / new-york, chicago, topeka/;
6

7

8

Parameters
9 a(i) capacity of plantiin cases
10 | seattle 350
11 san-diego 600 /
12
13 b(j) demand at market j in cases
14 !/ new-york 325
15 chicago 300
16 topeka 275 /;
17
18 Table d(i,j) distance in thousands of miles
19 new-york chicago topeka
20 seattle 25 1.7 1.8
21 san-diego 2.5 1.8 1.4 ;
22
23 Scalar f freight in dollars per case per thousand miles /90/ ;
24
25 Parameter c(i,j) transport cost in thousands of dollars per case;
26
27 c(i,j) = f*d(,j) /1000 ;
28
29 Variables
30 x(i,j) shipment quantities in cases
31 z total transportation costs in thousands of dollars ;
32
33 Positive Variable x ;
34
35 Equations
36 cost define objective function
37 supply(i) observe supply limit at plant i
38 demand(j) satisfy demand at market j ;
39
40 cost .. z =e= sum((i,j), c(i,j)*x(i.))) ;
41
42 supply(i) .. sum(j, x(i.j)) =I= a(i);
43
44 demand(j) .. sum(i, x(i,j)) =g= b(j) ;
45
46 Model transport /all/ ;
47
48 Solve transport using Ip minimizing z ;
49
50 Display x.I, x.m;
51

The reason this echo print starts with line number 3 rather than line number 1 is because the in-
put file contains two 'dollar-print-control' statements. This type of instruction controls the output
printing, but since it has nothing to do with defining the optimization model, it is omitted from

the echo. The dollar print controls must start in column 1.

$title a transportation model
$offuppper

The$title statement causes the subsequent text to be printed at the top of each page of output.
The$offupper statement is needed for the echo to contain mixed upper- and lowercase. Other
available instructions are given in “Appendix C: DOLLAR CONTROL OPTIONS,” page 205.

2.11 GAMS OUTPUT 21

2.11.2 ERROR MESSAGES

When the GAMS compiler encounters an error in the input file, it inserts a coded error message
inside the echo print on the line immediately following the scene of the offense. These messages
always start with*** and contain a$" directly below the point at which the compiler thinks

the error occurred. THeis followed by a numerical error code, which is explained after the echo
print. Several examples follow.

Example 1 Entering the statement

set g quarterly time periods / spring, sum, fall, wtr / ;

results in the echo

1 set g quarterly time periods / spring, sum, fall, wtr /;

*kkk $160

In this case, the GAMS compiler indicates that something is wrong with the set element sum. At
the bottom of the echo print, we see the interpretation of error code 160:

Error Message
160 UNIQUE ELEMENT EXPECTED

The problem is thagum is a reserved word denoting summation, so our set element must have a
unique name likésummer'. This is a common beginner’s error. The complete list of reserved
words is shown in the next chapter.

Example 2 Another common error is the omission of a semicolon preceding a direct assignment
or equation definition. In our transportation example, suppose we omit the semicolon prior to the
assignment of(i,j) , as follows.

parameter c(i,j) transport cost in 1000s of dollars per case
c(i,j) =f*d(j) / 1000 ;

Here is the resulting output.

16 parameter c(i,j) transport cost in 1000s of dollars per case
17 c(i,j) = f*d(i,j)/1000
i $97 $195%$96$194%1

Error Message
1 REAL NUMBER EXPECTED

96 BLANK NEEDED BETWEEN IDENTIFIER AND TEXT
(-OR-ILLEGAL CHARACTER IN IDENTIFIER)
(-OR-CHECK FOR MISSING ‘;’ ON PREVIOUS LINE)

97 EXPLANATORY TEXT CAN NOT START WITH ‘$’, ‘=", or *..’
(-OR-CHECK FOR MISSING ‘;’ ON PREVIOUS LINE)

194 SYMBOL REDEFINED

195 SYMBOL REDEFINED WITH A DIFFERENT TYPE

It is not uncommon for one little offense like our missing semicolon to generate five intimidating
error messages. The lesson here is: concentrate on fixing the first error and ignore the other! The
first error detected (in line 17), code 97, indicate that GAMS thinks the symbols in line 17 are a
continuation of the documentary text at the end of line 16 rather than a direct assignment as we
intended. The error message also appropriately advises us to check the preceding line for a
missing semicolon.

22 A GAMS TUTORIAL

Unfortunately, you cannot always expect error messages to be so accurate in their advice. The
compiler cannot read your mind. It will at times fail to comprehend your intentions, so learn to
detect the causes of errors by picking up the clues that abound in the GAMS output. For example,
the missing semicolon could have been detected by looking up the c entry in the cross-reference
list (to be explained in the next section) and noticing that it was never assigned.

SYMBOL TYPE REFERENCES
Cc PARAM DECLARED 15 REF 17

Example 3 Many errors are caused merely by spelling mistakes and are caught before they can
be damaging. For example, wieattle’ spelled in the table differently from the way it was
introduced in the set declaration, we get the following error message.

4 sets

5 i canning plants /seattle, san-diego /
6 j markets /new-york, chicago, topeka/ ;
7

8 table d(i,j) distance in thousand of miles

9 new-york chicago topeka

10 seatle 25 17 1.8
*kkk $170

11 san-diego 2.5 1.8 14 ;

Error Message
170 DOMAIN VIOLATION FOR ELEMENT

Example 4 Similarly, if we mistakenly entedem(j) instead ob(j) as the right-hand side of
the demand constraint, the result is

*kkk

45 demand(j) .. sum(i, x(i,j)) =g= dem()) ;
$140

Error Message
140 UNKNOWN SYMBOL, ENTERED AS PARAMETER

Example 5 The next example is a mathematical error, which is sometimes committed by novice
modelers and which GAMS is adept at catching. The following is mathematically inconsistent
and, hence, is not an interpretable statement.

For alli, Z x; =100

There are two errors in this equation, both having to do with the control of indicesi ladex
over-controlled and indegxis under-controlled.

You should see that indéxs getting conflicting orders. By appearing in the quantifeerall i,'

it is supposed to remain fixed for each instance of the equation. Yet, by appearing as an index of
summation, it is supposed to vary. It can’t do both. On the other hand,jiisdeat controlled in

any way, so we have no way of knowing which of its possible values to use.

If we enter this meaningless equation into GAMS, both errors are correctly diagnosed.

meaninglss(i) .. sum(i, x(i,j)) =e= 100;
rrx $125 $149
ERROR MESSAGES
125 SET IS UNDER CONTROL ALREADY [This refers to set i]
149 uncontrolled set entered as constant [This refers to set j]

A great deal more information about error reporting is given in section“ERROR REPORTING,”
page 96. Comprehensive error detection and well-designed error messages are a big help in get-
ting models implemented quickly and correctly.

2.11 GAMS OUTPUT 23

2.11.3 REFERENCE MAPS

The next section of output, which is the last if errors have been detected, is a pair of 'reference
maps' that contain summaries and analyses of the input file for the purposes of debugging and
documentation.

The first reference map is a 'cross-reference map' such as one finds in most modern compilers. It
is an alphabetical, cross-referenced list of all the entities (sets, parameters, variables, and equa-
tions) of the model. The list shows the type of each entity and a coded reference for each appear-
ance of the entity in the input. The cross-reference map for our transportation example is as fol-
lows (we do not display all tables).

SYMBOL TYPE REFERENCES

A PARAM DECLARED 9 DEFINED 10 REF 42

B PARAM DECLARED 13 DEFINED 14 REF 44

C PARAM DECLARED 25 ASSIGNED 27 REF 40

COST EQU DECLARED 36 DEFINED 40 IMPL-ASN 48
REF 46

D PARAM DECLARED 18 DEFINED 18 REF 27

DEMAND EQU DECLARED 38 DEFINED 44 IMPL-ASN 48
REF 46

F PARAM DECLARED 23 DEFINED 23 REF 27

SET DECLARED 4 DEFINED 4 REF 9
18 25 27 30 37 2*40
2*42 44 CONTROL 27 40 42
44
J SET DECLARED 5 DEFINED 5 REF 13
18 25 27 30 38 2*40
42 2*44 CONTROL 27 40 42

44

SUPPLY EQU DECLARED 37 DEFINED 42 IMPL-ASN 48
REF 46

TRANSPORT MODEL DECLARED 46 DEFINED 46 IMPL-ASN 48
REF 48

X VAR DECLARED 30 IMPL-ASN 48 REF 33
40 42 44 2*50

z VAR DECLARED 31 IMPL-ASN 48 REF 40
48

For example, the cross-reference list tells us that the syiviba parameter that was declared in

line 10, defined (assigned value) in line 11, and referenced in line 43. The $yhdmh more
complicated entry in the cross-reference list. It is shown to be a set that was declared and defined
in line 5. It is referenced once in lines 10, 19, 26, 28, 31, 38, 45 and referenced twice in lines 41
and 43. Sek is also used as a controlling index in a summation, equation definition or direct pa-
rameter assignment in lines 28, 41, 43 and 45.

For the GAMS novice, the detailed analysis of the cross-reference list may not be important. Per-
haps the most likely benefit he or she will get from the reference maps will be the discovery of an
unwanted entity that mistakenly entered the model owing to a punctuation or syntax error.

The second part of the reference map is a list of model entities grouped by type and listed with
their associated documentary text. For example, this list is as follows.

sets
i canning plants
j markets

24 A GAMS TUTORIAL

parameters

a capacity of plant i in cases

b demand at market j in cases

c transport cost in 1000s of dollars per case

d distance in thousands of miles

f freight in dollars per case per thousand miles

variables
X shipment quantities in cases
z total transportation costs in 1000s of dollars

equations

cost define objective function
demand satisfy demand at market j
supply observe supply limit at plant i

models
transport

2.11.4 EQUATION LISTINGS

Once you succeed in building an input file devoid of compilation errors, GAMS is able to gener-
ate a model. The question remains, and only you can answer it, does GAMS generate the model
you intended?

The equation listing is probably the best device for studying this extremely important question.

A product of the solve command, the equation listing shows the specific instance of the model

that is created when the current values of the sets and parameters are plugged into the general al-
gebraic form of the model. For example, the generic demand constraint given in the input file for
the transportation model is

demand(j) .. sum(i, x(i,j)) =g= b()) ;
while the equation listing of specific constraints is

-------- demand =g= satisfy demand at market j

demand(new-york).. x(seattle, new-york) +x(san-diego, new-york) =g= 325 ;
demand(chicago).. x(seattle, chicago) +x(san-diego, chicago) =g= 300 ;
demand(topeka).. x(seattle, topeka) +x(san-diego, topeka) =g= 275 ;

The default output is a maximum of three specific equations for each generic equation. To
change the default, insert an input statement prior to the solve statement:

option limrow = r;

wherer is the desired number.

The default output also contains a section called the column listing, analogous to the equation
listing, which shows the coefficients of three specific variables for each generic variable. This
listing would be particularly useful for verifying a GAMS model that was previously imple-
mented in MPS format. To change the default number of specific column printouts per generic
variable, the above command can be extended:

option limrow = r, limcol =c¢;

wherec is the desired number of columns. (Settimgow andlimcol to O is a good way to
save paper after your model has been debugged.)

2.11 GAMS OUTPUT 25

In nonlinear models, the GAMS equation listing shows first-order Taylor approximations of the
nonlinear equations. The approximations are taken at the starting values of the variables.

2.11.5 MODEL STATISTICS

The last section of output that GAMS produces before invoking the solver is a group of statistics
about the model’s size, as shown below for the transportation example.

MODEL STATISTICS

BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 6
BLOCKS OF VARIABLES 2 SINGLE VARIABLES 7
NON ZERO ELEMENTS 19

The BLOCKcounts refer to the number of generic equations and variableSING4E counts
refer to individual rows and columns in the specific model instance being generated. For nonlin-
ear models, some other statistics are given to describe the degree of non-linearity in the problem.

2.11.6 STATUS REPORTS

After the solver executes, GAMS prints out a brief 'solve summary' whose two most important
entries ar&SOLVER STATUSand theMODEL STATUSFor our transportation problem the
solve summary is as follows:

SOLVE SUMMARY

MODEL TRANSPORT OBJECTIVE Z
TYPE LP DIRECTION MINIMIZE
SOLVER BDMLP FROM LINE 49

*¥*** SOLVER STATUS 1 NORMAL COMPLETION
*»*** MODEL STATUS 1 OPTIMAL

**** OBJECTIVE VALUE 153.6750

RESOURCE USAGE, LIMIT 0.110 1000.000
ITERATION COUNT, LIMIT 5 1000

The status reports are preceded by the ¢&fhe string as an error message, so you should
probably develop the habit of searching for all occurrences of this string whenever you look at an
output file for the first time. The desired solver status MORMAL COMPLETIQNbut there are

other possibilities, documented in Chapter "OUTPUT PRODUCED BY A SOLVE

STATEMENT," page 87, which relate to various types of errors and mishaps.

There are eleven possible model status’s, including the usual linear programming termination
states 1 OPTIMAL, 3 UNBOUNDED, 4 INFEASIBLE), and others relating to nonlinear

and integer programming. In nonlinear programming, the status to lookKXtwQEALLY

OPTIMAL The most the software can guarantee for nonlinear programming is a local optimum.
The user is responsible for analyzing the convexity of the problem to determine whether local
optimality is sufficient for global optimality.

In integer programming, the status to look fo8 INTEGER SOLUTION. This means that a

feasible integer solution has been found. More detail follows as to whether the solution meets the
relative and absolute optimality tolerances that the user specifies.

26 A GAMS TUTORIAL

2.11.7 SOLUTION REPORTS

If the solver status and model status are acceptable, then you will be interested in examining the
results of the optimization. The results are first presented in as standard mathematical program-
ming output format, with the added feature that rows and columns are grouped and labeled ac-
cording to names that are appropriate for the specific model just solved. In this format, there is a
line of printout for each row and column giving the lower limit, level, upper limit, and marginal.
Generic equation block and the column output group the row output by generic variable block.
Set element names are embedded in the output for easy reading. In the transportation example,
the solver outputs faupply(i) , demand(j) , andx(i,j) are as follows:

---- EQU SUPPLY observe supply limit at plant i
LOWER LEVEL UPPER MARGINAL

seattle -INF 350.000 350.000 EPS
san-diego -INF 550.000 600.000

---- EQU DEMAND satisfy demand at market j
LOWER LEVEL UPPER MARGINAL
new-york 325.000 325.000 +INF 0.225
chicago 300.000 300.000 +INF 0.153
topeka 275.000 275.000 +INF 0.126

---- VAR X shipment quantities in cases

LOWER LEVEL UPPER MARGINAL

seattle .new-york . 50.000 +INF
seattle .chicago . 300.000 +INF .
seattle .topeka . . +INF 0.036
san-diego.new-york . 275.000 +INF .
san-diego.chicago . . +INF 0.009
san-diego.topeka . 275.000 +INF

m

The single dots.™ in the output represent zeroes. The eBfAS which stands for ‘epsilon,’
mean very small but nonzero. In this cd&sRSindicates degeneracy. (The slack variable for the
Seattle supply constraint is in the basis at zero level. The marginal is marké&PSithther

than zero to facilitate restarting the optimizer from the old basis.)

If the solvers results contain either infeasibilities or marginal costs of the wrong sign, then the of-
fending entries are marked witRFES or NOPT respectively. If the problem terminates un-
bounded, then the rows and columns corresponding to extreme rays are ddB&D

At the end of the solvers solution report is a very important ‘'report summary,' which gives a tally
of the total number of non-optimal, infeasible, and unbounded rows and columns. For our exam-
ple, the report summary shows all zero tallies as desired.

¥ REPORT SUMMARY : 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED

After the solver’s report is written, control is returned from the solver back to GAMS. All the
levels and marginals obtained by the solver are entered into the GAMS databask iarie

.m fields. These values can then be transformed and displayed in any desired report. As noted
earlier, the user merely lists the quantities to be displayed, and GAMS automatically formats and
labels an appropriate array. For example, the input statement.

2.12 SUMMARY 27

display x.I, x.m ;

results in the following output.

---- 50 VARIABLE X.L shipment quantities in cases
new-york chicago topeka

seattle 50.000 300.000
san-diego 275.000 275.000

---- 50 VARIABLE X.M shipment quantities in cases
chicago topeka

seattle 0.036
san-diego 0.009

As seen in reference maps, equation listings, solution reports, and optional displays, GAMS
saves the documentary text and 'parrots’ it back throughout the output to help keep the model well
documented.

2.12 SUMMARY

This tutorial has demonstrated several of the design features of GAMS that enable you to build
practical optimization models quickly and effectively. The following discussion summarizes the
advantages of using an algebraic modeling language such as GAMS versus a matrix generator or
conversational solver.

1.

2.

By using an algebra-based notation, you can describe an optimization model to a computer

nearly as easily as you can describe it to another mathematically trained person.

Because an algebraic description of a problem has generality, most of the statements in a

GAMS model are reusable when new instances of the same or related problems arise. This is

especially important in environments where models are constantly changing.

You save time and reduce generation errors by creating whole sets of closely related con-

straints in one statement.

You can save time and reduce input errors by providing formulae for calculating the data

rather than entering them explicitly.

The model is self-documenting. Since the tasks of model development and model documen-

tation can be done simultaneously, the modeler is much more likely to be conscientious about

keeping the documentation accurate and up to date.

The output of GAMS is easy to read and use. The solution report from the solver is automati-

cally reformatted so that related equations and variables are grouped together and appropri-

ately labeled. Also, thdisplay = command allows you to modify and tabulate results very

easily.

If you are teaching or learning modeling, you can benefit from the insistence of the GAMS

compiler that every equation be mathematically consistent. Even if you are an experienced

modeler, the hundreds of ways in which errors are detected should greatly reduce develop-

ment time.

By using the 'dollar' operator and other advanced features not covered in this tutorial, one can

efficiently implement large-scale models. Specific applications of the dollar operator include

the following:

a. It can enforce logical restrictions on the allowable combinations of indices for the vari-
ables and equations to be included in the model. You can thereby screen out unnecessary
rows and columns and keep the size of the problem within the range of solvability.

28 A GAMS TUTORIAL

b. It can be used to build complex summations and products, which can then be used in
eguations or customized reports.

c. It can be used for issuing warning messages or for terminating prematurely conditioned
upon context-specific data edits.

GAMS PROGRAMMS

3.1 Introduction

This chapter provides a look at the structure of the GAMS language and its components. It
should be emphasized again that GAMS is a programming language, and that programs must be
written in the language to use it. A GAMS program is contained in a disk file, which is normally
constructed with a text editor of choice. When GAMS is “run”, the file containing the program
(the input file) is submitted to be processed. After this processing has finished the results, which
are in the output file(s), can be inspected with a text editor. On many machines a few terse lines
appear on the screen while GAMS runs, keeping the user informed about progress and error de-
tection. But it is the responsibility of the user to inspect the output file carefully to see the results
and to diagnose any errors.

The first time or casual reader can skip this chapter: the discussion of specific parts of the lan-
guage in the next Chapters does not assume an understanding of this chapter.

3.2 THE STRUCTURE OF GAMS PROGRAMS

GAMS programs consist of one or more statements (sentences) that define data structures, initial
values, data modifications, and symbolic relationships (equations). While there is no fixed order
in which statements have to be arranged, the order in which data modifications are carried out is
important. Symbols must be declared as to type before they are used, and must have values as-
signed before they can be referenced in assignment statements. Each statement is followed by a
semicolon except the last statement, where a semicolon is optional.

3.2.1 FORMAT OF GAMS INPUT

GAMS input is free format. A statement can be placed anywhere on a line, multiple statements
can appear on a line, or a statement can be continued over any number of lines as follows:

statement;

statement;

statement; statement; statement;

the words that you are now reading is an example of a very
long statement which is stretched over two lines;

Blanks and end-of-lines can generally be used freely between individual symbols or words.
GAMS is not case sensitive, meaning that lower and upper case letters can be mixed freely but
are treated identically. Up to 255 characters can be placed on a line and completely blank lines
can be inserted for easier reading.

30 GAMS PROGRAMMS

Not all lines are a part of the GAMS language. Two special symbols, the atesisét the dol-

lar symbol$' can be used in the first position on a line to indicate a non-language input line. An
asterisk in column one means that the line will not be processed, but treated as a comment. A
dollar symbol in the same position indicates that compiler options are contained in the rest of the
line.

Multiple files can be used as input through the use ofithdude facility described in Ap-
pendix C. In short, the statement,

$include filel

inserts the contents of the specified file (filel in this case) at the location of the call. A more
complex versions of this is ti#batinclude which is described in Appendix C.

3.2.2 CLASSIFICATION OF GAMS STATEMENTS

Each statement in GAMS is classified into one of two groups:

+ declaration and definition statements; or
» execution statements

A declaration statement describes the class of symbol. Often initial values are provided in a dec-
laration, and then it may be called a definition. The specification of symbolic relationships for an
equation is a definition. Execution statements are instructions to carry out actions such as data
transformation, model solution, and report generation.

Declarative Statements Execution Statements
acronym parameter variable option display solve
set scalar model assignment abort loop
alias table for while repeat

execute

eguation declaration
equation definition

Although there is great freedom about the order in which statements can be placed in a GAMS
program, certain orders are commonly used. The two most common arrangements are discussed
in the next sub-section.

3.2.3 ORGANIZATION OF GAMS PROGRAMS

The two most common ways of organizing GAMS programs are shown below. The first style
places the data first, followed by the model and then the solution statements. In this style of or-
ganization, the sets are placed first. Then the data are specified with parameter, scalar, and table
statements. Next the model is defined with the variable, equation declaration, equation definition,
and model statement. Finally the model is solved and the results are displayed.

3.3 DATATYPES AND DEFINITIONS 31

Style 1 Style 2
DATA MODEL
set declarations anq definitions' 3 set declarations
paramater declarations and definitions paramater declarations
a§5|gnments variable declarations
displays equation declarations
equation definitions
model definition
MODEL
Y
variable declarations Y
equation declarationg set definitions

equation definitions

el parameter definitions| DATA
model definitions

assignments

displays
\ 4 \4
solve solve
display display
SOLUTION SOLUTION

A second style emphasizes the model by placing it before the data. This is a particularly useful
order when the model may be solved repeatedly with different data sets. There is a separation
between declaration and definition.

For example, sets and parameters may be declared first with the statements

set ¢ “"crops";
parameter yield "crop yield" ;

and then defined later with a statement:

set ¢ / wheat, clover, beans/ ;
parameter yield / wheat 1.5
clover 6.5
beans 1.0 /;

The first statement declares that the identifiés a set and the second defines the elements in
the set

Sets and parameters used in the equations must be declared before the equa-

M tions are specified; they can defined, however, after the equation specifica-
tions but before a specific equation is used in a solve statement. This gives
GAMS programs substantial organizational flexibility.

3.3 DATA TYPES AND DEFINITIONS

There are five basic GAMS data types and each symbol or identifier must be declared to belong
to one of the following groups:

32 GAMS PROGRAMMS

sets variables
parameters equations
acronyms models

scalars andtables are not separate data types but are a shorthand way to declare a symbol
to be gparameter , and to use a particular format for initializing the numeric data.

Definitions have common characteristics, for example:

parameter a (M) input-output matrix
data-type-keyword identifier domain list text
The domain list and the text are always optional characteristics. Other examples are:

set time time periods;
model turkey turkish fertilizer model ;
variables x.,y,z ;

In the last example a number of identifiers (separated by commas) are declared in one statement.

3.4 LANGUAGE ITEMS

Before proceeding with more language details, a few basic symbols need to be defined and the
rules for recognizing and writing them in GAMS established. These basic symbols are often
called lexical elements and form the building blocks of the language. They are:

characters text
reserved words and tokens numbers
identifiers (indents) delimiters
labels comments

Each of these items are discussed in detail in the following sub-sections.

' As noted previously, we can use any mix of lower and upper case. GAMS
L‘ makes no distinction between upper and lower case.

3.4.1 CHARACTERS

A few characters are not allowed in a GAMS program because they are illegal or ambiguous on
some machines. Generally all unprintable and control characters are illegal. The only place where
any character is legal is in adontext-$offtext " block as illustrated in the section on

comments below. For completeness the full set of legal characters are listed below. Most of the
uncommon punctuation characters are not part of the language, but can be used freely in text or
comments.

3.4 LANGUAGE ITEMS

33

AtoZ
&

*

@
\

$

+

alphabet atoz

ampersand
asterisk

at

back slash
colon
comma
dollar

dot

plus

AT

-~
O =i
=

[=)

alphabet Oto9
double quote #
equals ?
greater than ;
less than '
minus /

parenthesis

square brackets

braces
percent

numerals
pound sign
guestion mark
semicolon
single quote
slash

space
underscore
exclamation mark
circumflex

3.4.2 RESERVED WORDS

GAMS, like computer languages such as C and Pascal, uses reserved words (often also called
keywords) that have predefined meanings. It is not permitted to use any of these for one's own
definitions, either as identifiers or labels. The complete list of reserved words are listed below. In
addition, a small number of symbols constructed from non-alphanumeric characters have a
meaning in GAMS.

abort
acronym
acronyms
alias

all

and
assign
binary
card

diag
display
eps

eq
equation
equations

ge
gt
inf
integer

maximizing
minimizing
model
models

na

ne
negative
not

option
options

or

ord
parameter
parameters
positive
prod
sameas
scalar
scalars
set

sets

smax
smin

sosl
s0s2
sum
system
table
using
variable
variables
xor

yes
repeat
until
while

if

then

else
semicont
semiint
file

files
putpage
puttl
free

no
solve
for

The reserved non-alphanumeric symbols are:

=g=
—e=
=Nn=

++
*%

3.4.3 IDENTIFIERS

Identifiers are the names given to sets, parameters, variables, models, etc. GAMS requires an
identifier to start with a letter followed by more letters or digits. The length of an identifier is
currently limited to 10 characters. Identifiers can only contain alphanumeric characters (letters or
numbers). Examples of legal identifiers are:

a al5 revenue x0051

34 GAMS PROGRAMMS

whereas the following identifiers are incorrect:

15 $casg muchtoolong milk&meat

" A name used for one data type cannot be reused for another.

3.4.4 LABELS

Labels are set elements. They may be up to 31 characters long and can be used in quoted or un-
guoted form.

The unquoted form is simpler to use but places restrictions on characters used, in that any un-
guoted label must start with a letter or digit and can only be followed by letters, digits, or the sign
characters and- . Examples of unquoted labels are:

Phos-Acid 1986 1952-53 A
September H2S04 Line-1

In quoted labels, quotes are used to delimit the label, which may begin with and/or include any
legal character. Either single or double quotes can be used but the closing quote has to match the
opening one. A label quoted with double quotes can contain a single quote (and vice versa). Most
experienced users avoid quoted labels because they can be tedious to enter and confusing to read.
There are a couple of special circumstances. If one wants to make a label stand out, then one can,
for instance, put asterisks in it and indent it. A more subtle example is that GAMS keywords can

be used as labels if they are quoted. If one needs to use labels, lit@ or sum then they will

have to be quoted. Examples of quoted labels are:

TOTAL 'MATCH' '10%INCR' '12°/FOOT' 'LINE 1'
' Labels do not have a value. The |ak®B6 ' does not have the numerical
L‘ value 1986 and the labéll" is different from the label’.

The rules for constructing identifiers and labels are as shown below.

Identifiers | Unquoted Labels Quoted Labels
Number of Characters 10 31 31
Must Begin With A letter A letter or a number Any character
Permitted Special Characters None +or — characters Any but the starting
quote

3.4.5 TEXT

Identifiers and simple labels can also be associated with a line of descriptive text. This text is
more than a comment: it is retained by GAMS and is displayed whenever results are written for
the identifier.

Text can be quoted or unquoted. Quoted text can contain any character except the quote character
used. Single or double quotes can be used but must match. Text has to fit on one line and cannot
exceed 80 characters in length. Text used in unquoted form must follow a number of mild re-
strictions. Unquoted text cannot start with a reserved wordpor =" and must not include semi-

colon; ', commas,", or slashes ‘. End of lines terminate a text. These restrictions are a direct
consequence of the GAMS syntax and are usually followed naturally by the user. Some examples
are:

3.4 LANGUAGE ITEMS 35

this is text

final product shipment (tpy)

“quoted text containing otherwise illegal characters ; /,”
'use single quotes to put a "double" quote in text'

3.4.6 NUMBERS

Numeric values are entered in a style similar to that used in other computer languages

" Blanks can not be used in a number: GAMS treats a blank as a separator.
The common distinction between real and integer data types does not exist in

M" GAMS. If a number is used without a decimal point it is still stored as a real
number.

In addition, GAMS uses an extended range arithmetic that contains special symbols for infinity
(INF), negative infinity {INF), undefined (UNDF, epsilon EPS), and not availableNA). One

cannot entetNDF it is only produced by an operation that does not have a proper result, such as
division by zero. All the other special symbols can be entered and used as if they were ordinary
numbers.

The following example shows various legal ways of entering numbers:

0 156.70 -135 .095 1.
2el0 2e+10 15.e+10 .314e5 +1.7
0.0 .0 0. INF —INF
EPS NA

The letter e denotes the well-known scientific notation allowing convenient representation of
very large or small numbers.

For example:
le-5 =1*10°=0.00001 3.56e6 =3.56*16 = 3,560,000

GAMS uses a smaller range of numbers than many computers are able to han-
dle. This has been done to ensure that GAMS programs will behave in the

n same way on a wide variety of machines, including personal computers. A
good general rule is to avoid using or creating numbers with absolute values
greater than 1.0e+20.

' A number can be entered with up to ten significant digits on all machines, and
L‘ more on some.

3.4.7 DELIMITERS

As mentioned before, statements are separated by a semjcoléowever, if the next statement
begins with a reserved word (often called keyword in succeeding chapters), then GAMS does not
require that the semicolon be used.

The characters commd and slash' " are used as delimiters in data lists, to be introduced later.
The comma terminates a data element (as does an end-of-line) and the slash terminates a data list.

36 GAMS PROGRAMMS

3.4.8 COMMENTS

A comment is an explanatory text that is not processed or retained by the computer. There are
three ways to include comments in a GAMS program.

The first, already mentioned above, is to start a line with an asteriskthe first character po-
sition. The remaining characters on the line are ignored but printed on the output file.

The second is to use special ‘block’ delimiters that cause GAMS to ignore an entire section of
the program. Th& symbol must be in the first character position. The choice between the two
ways is a matter of individual taste or utility. The example below illustrates the use of the block
comment.

$ontext

Following a $ontext directive in column 1 all lines are ignored by GAMS but
printed on the output file until the matching $offtext is encountered, also

in column 1.This facility is often used to logically remove parts of programs
that are not used every time, such as statements producing voluminous
reports.Every $ontext must have a matching $offtext in the same file
$offtext

The third style of comment allows embedding a comment within a line. It must be enabled with
the compiler optio$inlinecom or $eolcom as in the following example.

$eolcom #

$inlinecom {}

x=1; #thisisacomment

y=2; {thisisalsoacomment} z=3;

3.5 SUMMARY

This completes the discussion of the components of the GAMS language. Many unfamiliar terms
used in this chapter have been further explained in the Glossary.

SET DEFINITIONS

4.1 INTRODUCTION

Sets are fundamental building blocks in any GAMS model. They allow the model to be suc-

cinctly stated and easily read. In this chapter we will discuss how sets are declared and initial-

ized. There are some more advanced set concepts, such as assignments to sets as well as lag and
lead operations, but these are not introduced until much later in the book. However the topics
covered in this chapter will be enough to provide a good start on most models.

4.2 SIMPLE SETS

A setSthat contains the elemer#sb andc is written, using normal mathematical notation, as:
S ={a,b,c}
In GAMS notation, because of character set limitations, the same set must be written as

set S /a, b, c/

The ®t statement begins with the keywaret (orsets). Sis the name of the set, and its
members ara, b, andc. They are labels, but are often referred to as elements or members.

4.2.1 THE SYNTAX

In general, the syntax in GAMS for simple sets is as follows:

set set_name ["text"] [felement ["text"] {,element ["text"]} /]
{,set_name ["text"] [/felement ["text"] {,element ["text"]} /] ;

set_name is the internal name of the set (also called an identifier) in GAMS. The accompany-
ing text is used to describe the set or element immediately preceding it.

4.2.2 SET NAMES

The name of the set is an identifier. An identifier has to start with a letter followed by more let-
ters or digits. It can only contain alphanumeric characters, and can be up to 10 characters long.
This is enough to construct meaningful names, and explanatory text can be used to provide more
details.

Examples of legal identifiers are

i i15 countries s0051

whereas the following identifiers are incorrect:

25 S$currency countriesinafrica food&drink

38 SET DEFINITIONS

4.2.3 SET ELEMENTS

The name of each set element can be up to 10 characters long, and can be used in quoted or un-
guoted form. The unquoted form is simpler to use but places restrictions on characters used, in
that any unquoted label must start with a letter or digit and can only be followed by letters, digits,
or the sign charactessand- . Examples of legal unquoted labels are:

Phos-Acid 1986 1952-53 A
September H2S04 Line-1

In quoted labels, quotes are used to delimit the label, which may begin with and/or include any
legal character. Either single or double quotes can be used but the closing quote has to match the
opening one. A label quoted with double quotes can contain a single quote (and vice versa). Most
experienced users avoid quoted labels because they can be tedious to enter and confusing to read.
There are a couple of special circumstances. If one wants to make a label stand out, then to put
asterisks in it and indent it, as below, is common. A more subtle example is that it is possible to

use GAMS keywords as labels if they are quoted. If one need to use labals, lite or sum

then they will have to be quoted.

Examples of quoted labels are:

TOTAL 'Match' '10%incr' '12"/foot'" 'Line 1'

' Labels do not have a value. The |atk®B6 ' does not have the numerical
L‘ value 1986 and the labéll" is different from the label’.

Each element in a set must be separated from other elements by a comma or by an end-of-line. In
contrast, each element is separated from any associated text by a blank.

Consider the following example from the Egyptian fertilizer model [FERTS], where the set of
fertilizer nutrients could be written as

set cq "nutrients" /N, P205/;

or as

set cq "nutrients" /N
P205 /;

The order in which the set members are listed is normally not important. However, if the mem-
bers represent, for example, time periods, then it may be useful to refer to 'next' or ‘previous'
member. There are special operations to do this, and they will be discussed in Chapter 13. For
now, it is enough to remember that the order in which set elements are specified is not relevant,
unless and until some operation implying order is used. At that time, the rules change, and the set
becomes what we will later call an ordered set.

4.2.4 ASSOCIATED TEXT

It is also possible to associate text with each set member or element. Explanatory text must not
exceed 80 characters and must all be contained on the same line as the identifier or label it de-
scribes.

For example, label text for the set of final products in [SHALE] contains details of the units of
measurement.

4.2 SIMPLE SETS 39

Set f "final products"

/yncrude "refined crude (million barrels)"

Ipg "liquified petroleum gas(million barrels)"
ammonia "ammonia (million tons)"

coke "coke (million tons)"

sulfur "sulfur (million tons)"

!,

Notice that text may have embedded blanks, and may include special characters such as paren-
theses. There are, however, restrictions on special characters in text. Include slashes, commas or
semicolons only if the text is enclosed in quotes. A set definition like

set prices prices of commodities in dollars/ounce
/ gold-price, sil-price / ;

will cause errors since the slash between dollars and ounce will signal the beginning of the set
declaration, and the GAMS compiler will treat ounce as the name of the first element. Further,
the slash before gold-price will be treated as the end of the set definition, and gold-price will be
treated as a new set. However, by enclosing the explanatory text in quotes, this problem is
avoided. The following text is valid:

set prices "prices of commodities in dollars/ounce"

4.2.5 SEQUENCES AS SET ELEMENTS

The asterisk ™' plays a special role in set definitions. It is used to relieve the tedium of typing a
sequence of elements for a set, and to make intent clearer. For example in a simulation model
there might be ten annual time periods from 1991 to 2000. Instead of typing ten years, the ele-
ments of this set can be written as

set t "time" /1991 * 2000 /;

which means that the set includes the ten eleni®&s, 1992,...,2000 . GAMS builds up

these label lists by looking at the differences between the two labels. If the only characters that
differ are digits, and if the number (shyformed by these digits in the left one is less than that
from the right oneR), then a label is constructed for every integer in the sequet® . Any
non-numeric differences or other inconsistencies cause errors.

The following example illustrates the most general form of the 'asterisked' definition:
set g /albc * a20bc /;

Note that this is not the same as
set g /a0lbc * a20bc /;

although the sets, which have 20 members each, have 11 members in common. As a last example,
the following are all illegal because they are not consistent with the rule given above for making
lists:

set illegall /a20bc * alObc /
illegal2 /alx1 *a9x9 /
illegal3 /al* b9/,

Note one last time that set elements (often referred to as labels) can contain the sign characters '
and +' as well as letters and numbers.

40 SET DEFINITIONS

4.2.6 DECLARATIONS FOR MULTIPLE SETS

The keywordset (if you prefer, sagets instead: the two are equivalent) does not need to be
used for each set, rather only at the beginning of a group of sets. It is often convenient to put a
group of set declarations together at the beginning of the program. When this is done the set
keyword need only be used once. If you prefer to intermingle set declarations with other state-
ments, you will have to use a neet statement for each additional group of sets.

The following example below shows how two sets can be declared together. Note that the semi-
colon is used only after the last set is declared.

sets

s "Sector" / manuf
agri
services
government /

r "regions" / north
eastcoast
midwest
sunbelt /;

4.3 THE ALIAS STATEMENT: MULTIPLE NAMES FOR A SET

It is sometimes necessary to have more than one name for the same set. In input-output models,
for example, each commodity may be used in the production of all other commodities and it is
necessary to have two names for the set of commodities to specify the problem without ambigu-
ity. In the general equilibrium model [ORANI], the set of commodities is written

set ¢ "commodities" /food, clothing/ ;

and a second name for the se$ established with either of the following statements

alias (c, cp) ;
alias (cp, ¢) ;

wherecp is the new set that can be used instead of the original set

' The newly introduced set can be used as an alternative name for the original
L‘ set, and will always contain only the same elements as the original set.

The alias statement can be used to introduce more than one new name for the original set.

alias (c,cp, cpp, cppp);

where the new setp, cpp, cppp are all new names for the original set

The order of the sets in the alias statement does not matter. The only restric-
M" tion set by GAMS is that exactly one of the sets in the statement be defined
earlier. All the other sets are introduced by the alias statement.

We will not demonstrate the use of set aliases until later. Just remember they are used for cases
when a set has to be referred to by more than one name.

4.4 SUBSETS AND DOMAIN CHECKING 41

4.4 SUBSETS AND DOMAIN CHECKING

It is often necessary to define sets whose members must all be members of some larger set. The
syntax is:

set set_identl (set_ident2) ;

whereset_identl is a subset of the larger set_ident2

For instance, we may wish to define the sectors in an economic model following the style in
[CHENERY]

set
i "all sectors"/ light-ind, food+agr, heavy-ind, services /
t(i) "traded sectors" / light-ind, food+agr, heavy-ind /
nt "non-traded sectors" / services / ;

Some types of economic activity, for example exporting and importing, may be logically re-
stricted to a subset of all sectors. In order to model the trade balance, for example, we need to
know which sectors are traded, and one obvious way is to list them explicitly, as in the definition
of the set above. The specificatidi) means that each member of thetsatust also be a
member of the set. GAMS will enforce this relationship, which is called domain checking. Ob-
viously the order of declaration is important: the membershiprofist be known beforte is de-

clared for checking to be done. There will be much more on this topic in succeeding chapters.
For now it is important to note that domain checking will find any spelling errors that might be
made in establishing the members of the s@these would cause errors in the model if they

went undetected.

It is legal but unwise to define a subset without reference to the larger set, as is done above for
the setnt . If services were misspelled no error would be marked, but the model would give in-
correct results. So we urge you to use domain checking whenever possible. It catches errors and
allows you to write models that are conceptually cleaner because logical relationships are made
explicit.

This completes the discussion of sets in which the elements are simple. This is sufficient for most
GAMS applications; however, there are a variety of problems for which it is useful to have sets
that are defined in terms of two or more other sets.

4.5 MULTI-DIMENSIONAL SETS

It is often necessary to provide mappings between elements of different sets. For this purpose,
GAMS allows the use of multi-dimensional sets.

M GAMS allows sets with up to 10 dimensions.

The next two sub-sections explain how to express one-to-one and many-to-many mappings be-
tween sets.

4.5.1 ONE-TO-ONE MAPPING

Consider a set whose elements are pairs:
A={ (bd), (ac), (ce) }

42 SET DEFINITIONS

In this set there are three elements and each element consists of a pair of letters. This kind of set
is useful in many types of modeling. As an illustrative example, consider the world aluminum
model [ALUM], where it is necessary to associate, with each bauxite-supplying country, a port
that is near to the bauxite mines. The set of countries is

set ¢ "countries"
/ jamaica
haiti
guyana
brazil /;

and the set of ports is

set p "ports"

/ kingston
s-domingo
georgetown
belem /;

Then a set can be created to associate each port with its country, viz.,

set ptoc(p, ¢) "port to country relationship”
/ kingston .jamaica
s-domingo .haiti
georgetown .guyana
belem .brazil /;

The dot betweekingston andjamaica is used to create one such pair. Blanks may be used
freely around the dot for readability. The ptic has four elements, and each element consists

of a port-country pair. The notatig¢p,c) after the set namgoc indicates that the first mem-

ber of each pair must be a member of th@adtports, and that the second must be in the set

of countries. This is a second example of domain checking. GAMS will check the set elements to
ensure that all members belong to the appropriate sets.

4.5.2 MANY-TO-MANY MAPPING
A many-to-many mapping is needed in certain cases. Consider the following set

seti/a b/
jlc,d el
ij1(i,j) /a.c, a.d/
ij2(i,j) /a.c, b.c/
ij3(i,j) /a.c, b.c, a.d, b.d/ ;

* ij1 represents a one-to-many mapping where one elemennaps onto many elements of
j.

* ij2 represents a many-to-one mapping where many elemeintsap onto one element of
j.

* ij3 is the most general case where many elementsydp on to many elementsjof

These sets can be written compactly as

seti/a b/
jlc,d el
ij1(i,j) /a.(c,d)/
ij2(i,j) /(a,b).c/
ij3(1,)) /(a,b).(c,d)/ ;

The parenthesis provides a list of elements that can be expanded when creating pairs.

4.6 SUMMARY 43

When complex sets like this are created, it is important to check that the de-
n sired set has been obtained. The checking can be done by using a display
statement.

The concepts may be generalized to set with more than two labels per set element. Mathemati-
cally these are callegttuples 4-tuples or more generallyy-tuples

This section ends with some examples to illustrate definitions of multi-label set elements. Some
examples of the compact representation of setst@bles using combinations of dots, parenthe-
ses and commas are:

Construct Result
(a,b).c.d a.g.d., b.c.d
(a,b).(c,d) .e a.c.e| b.c.e.,a.d.e, b.d.e
(a.1*3).c (a1, a.2,a.3).c
or a.l.c,a.2.c,a.3.c
1*3. 1*3. 1*3 1.10,11.2,113,. .. .33.3

Note that the asterisk can also be used in conjunction with the dot. Recall that the elements of the
list 1*4 are{l,2,3,4}when examining the above examples.

4.6 SUMMARY

In GAMS, a simpleset consists of a set name and the elements of the set. Both the name and
the elements may have associated text that explains the name or the elements in more detail.
More complex sets have elements that are pairs orretgries. These sets with pairs ard

tuples are ideal for establishing relationships between the elements in different sets. GAMS also
uses a domain checking capability to help catch labeling inconsistencies and typographical errors
made during the definition of related sets.

The discussion here has been limited to sets whose members are all specified as the set is being
declared. For many models this is all you need to know about sets. Later we will discuss more
complicated concepts, such as sets whose membership changes in different parts of the model
(assignment to sets) and other set operations such as unions, complements and intersections.

DATA ENTRY: PARAMETERS, SCALARS & TABLES

5.1 INTRODUCTION

One of the basic design paradigms of the GAMS language has been to use data in its most basic
form, which may be scalar, list oriented, or tables of two or more dimensions. Based on this crite-
rion, three data types are introduced in this chapter.

Scalar Single (scalar) data entry.
Parameter List oriented data.
Table Table oriented data. Must involve two or more dimensions.

Each of these data types will be explained in detail in the following sections.

' Initialization of data can only be done once for parameters; thereafter data
L‘ must be modified with assignment statements.

5.2 SCALARS

Thescalar statement is used to declare and (optionally) initialize a GAMS parameter of di-
mensionality zero. That means there are no associated sets, and that there is therefore exactly one
number associated with the parameter.

5.2.1 THE SYNTAX
In general, the syntax in GAMS forsaalar declaration is:

scalar(s) scalar_name [text] [/signed_num/]
{ scalar_name [text] [/signed_num/]} ;

scalar_name is the internal name of the scalar (also called an identifier) in GAMS. The ac-
companying text is used to describe the element immediately prece@iynagd _num is a
signed number and is assigned to be the valgsealar_name

As with all identifiersscalar_name has to start with a letter followed by more letters or dig-

its. It can only contain alphanumeric characters, and can be up to 10 characters long. Explanatory
text must not exceed 80 characters and must all be contained on the same line as the identifier or
label it describes.

5.2.2 AN ILLUSTRATIVE EXAMPLE

An example of acalar definition in GAMS is shown below.

46 DATA ENTRY: PARAMETERS, SCALARS & TABLES

Scalars rho "discount rate" /.15/
irr "internal rate of return"
life "financial lifetime of productive units" /20/;

The statement above initializdso andlife , but notirr . Later on anothegcalar state-
ment can be used to initialize , or, (looking ahead to a notion that will be developed later), an
assignment statement could be used to provide the value:

irr = 0.07;

5.3 PARAMETERS

While parameter is a data type that encompasseslars andtables , the discussion in
this chapter will focus on the usemdrameters in data entry. List oriented data can be read
into GAMS using theparameter statement.

5.3.1 THE SYNTAX
In general, the syntax in GAMS foparameter declaration is:

parameter(s) param_name [text] [/ element [=] signed_num
{,element [=] signed num} /]
{,param_name [text] [/ element [=] signed_num
{,element [=] signed num} /]} ;

param_name is the internal name of the parameter (also called an identifier) in GAMS. The ac-
companying text is used to describe the parameter immediately prece8iggéd_num is a

signed number and is declared to be the value of the entry associated with the corresponding
element.

As with all identifiers param_name has to start with a letter followed by more letters or digits.

It can only contain alphanumeric characters, and can be up to 10 characters long. Explanatory
text must not exceed 80 characters and must all be contained on the same line as the identifier or
label it describes.

A parameter may be indexed over one or more sets (the maximum number being 10). The ele-
ments in the data should belong to the set that the parameter is indexed over.

n The default value of parameter s 0.

Parameter initialization requires a list of data elements, each consisting of a label and a value.
Slashes must be used at the beginning and end of the list, and commas must separate data ele-
ments entered more than one to a line. An equals sign or a blank may be used to separate the la-
bel-tuple from its associated value. A parameter can be defined in a similar syntax to that used
for a set.

5.3.2 AN ILLUSTRATIVE EXAMPLES

The fragment below is adapted from [MEXSS]. We also show the set definitions because they
make the example clearer.

5.3 PARAMETERS a7

Set i "steel plants" /hylsa "monterrey"
hylsap "puebla" /
j "markets" / mexico-df, monterrey, guadalaja / ;

parameter dd(j) distribution of demand
/ mexico-df 55,
guadalaja 15/;

The domain checking specification fdd means that there will be a vector of data associated
with it, one number corresponding to every member of thie k&ted. The numbers are specified
along with the declaration in a format very reminiscent of the way we specified sets: in this sim-
ple case a label followed by a blank separator and then a value. Any of the legal number entry
formats are allowable for the value. The default data value is zero.rfBomterrey has been

left out of the data list, then the value associated ed{fmonterrey’) , the market share in
monterrey , would be zero.

We can also put several data elements on a line, separated by commas:

parameter a(i) / seattle = 350, san-diego = 600/
b(i) / seattle 2000, san-diego 4500/ ;

As with sets, commas are optional at end-of-line.

5.3.3 PARAMETER DATA FOR HIGHER DIMENSIONS

A parameter can have up to 10 dimensions. The list oriented data initialization through the pa-
rameter statement can be easily extended to data of higher dimensionality. The label that appears
on each line in the one-dimensional case is replaced by a label-tuple for higher dimensions. The
elements in the-tuple are separated by dot9 {ust like in the case of multi-dimensional sets.

The following example illustrates the use of parameter data for higher dimensions:

parameter salaries(employee,manager,department)
/anderson .murphy .toy = 6000
hendry .smith .toy =9000
hoffman .morgan .cosmetics =8000/ ;

All the mechanisms using asterisks and parenthesized lists that we introduced in our discussion
of sets are available here as well. Below is an artificial example, in which a very small fraction of
the total data points are initialized. GAMS will mark an error if the same label combination (or
label-tuple) appears more than once in a data list.

Set row /rowl*rowl10 /
col /coll*coll0/;
parameter a(row, col)
/ (rowl,rowd) . cl2*col7 12
rowl0 . coll10 17
rowl*row7 . col10 33 /;

In this example, the twelve elementsvl.col2 torowl.col7 androw4.col2 to

row4.col7 are all initialized at 12, the single elemesw10.col10 at 17, and the seven
elementgowsl.coll0 torow7.coll0 at 33. The other 80 elements (out of a total of 100)
remain at their default value, which is 0. This example shows the ability of GAMS to provide a
concise initialization, or definition, for a sparse data structure.

48 DATA ENTRY: PARAMETERS, SCALARS & TABLES

5.4 TABLES

Tabular data can be declared and initialized in GAMS using a table statement. For 2- and higher-
dimensional parameters this provides a more concise and easier method of data entry than the list
based approach, since each label appears only once (at least in small tables).

5.4.1 THE SYNTAX
In general, the syntax in GAMS fortable declaration is:

table table_name [text] EOL
element {element}
element signed_num { signed_num} EOL
{element signed_num { signed_num} EOL} ;

table_name is the internal name of the table (also called an identifier) in GAMS. The accom-
panying text is used to describe the parameter immediately prece@mmad_num is a

signed number and is declared to be the value of the entry associated with the corresponding
element.

' The table statement is the only statement in the GAMS language that is not
L‘ free format.

The following rules apply:

* The relative positions of all entries in a table are significant. This is the only statement where
end of line (EOL) has meaning. The character positions of the numeric table entries must
overlap the character positions of the column headings.

* The column section has to fit on one line.

* The sequence of signed numbers forming a row must be on the same line.

* The element definition of a row can span more than one line

» A specific column can appear only once in the entire table.

The rules for forming simple tables are straightforward. The components of the header line are
the by now familiakeyword-identifier-domain_list-text sequence , thedo-

main-list and text being optional. Labels are used on the top and the left to map out a rectan-
gular grid that contains the data values. The order of labels is unimportant, but if domain check-
ing has been specified each label must match one in the associated set. Labels must not be re-
peated, but can be left out if the corresponding numbers are all zero or not needed. At least one
blank must separate all labels and data entries. Blank entries imply that the default value (zero)
will be associated with that label combination.

' Notice also that, in contrast to thet , scalar , andparameter state-
L‘ ments, only one identifier can be declared and initialized in a table statement.

5.4.2 AN ILLUSTRATIVE EXAMPLE
The example below, adapted from [KORPET], is preceded by the appropriate set definitions,

5.4 TABLES 49

sets i "plants"
/ inchon,ulsan,yosu /
m "productive units"

atmos-dist "atmospheric distillation unit"
steam-cr "steam cracker"

aromatics "aromatics unit"

hydrodeal "hydrodealkylator" / ;

table ka(m,i) "initial cap. of productive units (100 tons per yr)"
inchon ulsan yosu
atmos-dist 3702 12910 9875

steam-cr 517 1207
aromatics 181 148
hydrodeal 180 ;

In the example above, the row labels are drawn from the set m, and those on the column from the
seti . Note that the data for each row is aligned under the corresponding column headings.

' If there is any uncertainty about which data column a number goes with,
L‘ GAMS will protest with an error message and mark the ambiguous entry.

5.4.3 CONTINUED TABLES

If a table has too many columns to fit nicely on a single line, then the columns that don’t fit can
be continued on additional lines. We use the same example to illustrate:
table ka(m,i) initial cap. of productive units (100 tons per yr)

inchon ulsan
atmos-dist 3702 12910

steam-cr 517

aromatics 181

hydrodeal 180
+ yosu

atmos-dist 9875
steam-cr 1207
aromatics 148 ;

The crucial item is the plus'sign above the row labels and to the left of the column labels in

the continued part of the table. The row labels have been duplicated, excbpttbeal

has been left out, not having associated data. Tables can be continued as many times as neces-
sary.

5.4.4 TABLES WITH MORE THAN TWO DIMENSIONS

A table can have up to 10 dimensions. Dots are again used to separate adjacent labels, and can be
used in the row or column position. The label on the left of the row corresponds to the first set in
the domain list, and that on the right of each column header to the last. Obviously there must be
the same number of labels associated with each number in the table, as there are sets in the do-
main list.

The actual layout chosen will depend on the size of the controlling sets and the amount of data,
and the ideal choice should be the one that provides the most intuitively satisfactory way of or-
ganizing and inspecting the data. Most people can more easily look down a column of numbers
than across a row, but to put extra labels on the row leads to a greater density of information.
The following example, adapted from [MARCOQ], illustrates the use of tables with more than two
dimensions.

50 DATA ENTRY: PARAMETERS, SCALARS & TABLES

Sets ci "commodities : intermediate”
/ naphtha "naphtha"
dist "distillate"
gas-oil "gas-oil" /
cr "commodities : crude oils"
/ mid-c "mid-continent”
w-tex "west-texas" /
g "attributes of intermediate products”
/ density, sulfur/ ;

table attrib(ci, cr, q) blending attributes
density sulfur

naphtha. mid-c 272 .283
naphtha. w-tex 272 1.48

dist . mid-c 292 .526

dist . w-tex 297 2.83

gas-oil. mid-c 295 .98

gas-oil. w-tex 303 5.05 ;

The tableattrib could also be laid out as shown below:

table attrib (ci,cr,q) blending attributes
w-tex.density mid-c.density w-tex.sulfur mid-c.sulfur

naphtha 272 272 1.48 .283
dist 297 297 2.83 .526
gas-oil 303 303 5.05 .98 ;

5.4.5 CONDENSING TABLES

All the mechanisms using asterisks and parenthesized lists that were introduced in the discussion
of sets are available here as well. The following example shows how repeated columns or rows
can be condensed with asterisks and lists in parentheses follows. The set membership is not
shown, but can easily be inferred.

table upgrade(strat,size,tech)
small.techl small.tech2 medium.techl medium.tech2

strategy-1 .05 .05 .05 .05

strategy-2 2 2 2 2

strategy-3 2 2 2 2

strategy-4 .2 2

table upgradex(strat,size,tech) alternative way of writing table
techl*tech2

strategy-1.(small,medium) .05

strategy-2*strategy-3.(small,medium) .2

trategy-4.medium 2;

display attrib, attribx;

Here we encounter thdisplay statement again. It causes the data associatedipgtade
andupgradex to be listed on the output file.

5.4.6 HANDLING LONG ROW LABELS

It is possible to continue the row labels in a table on a second, or even third, line in order to ac-
commodate a reasonable number of columns. The break musafteme dot, and the rest of

each line containing an incomplete row label-tuple must be blank.

The following example, adapted from [INDUS], is used to illustrate. As written, this table actu-
ally has nine columns and many rows: we have just reproduced a small part to show continued
row label-tuples.

5.5 ACRONYMS 51

table yield (c,t,s,w,z) crop yield (metric tons per acre)
nwfp pmw

wheat.(bullock, semi-mech).la-plant.

(heavy, january) .385 .338
wheat.(bullock, semi-mech).la-plant.light 506 .446
wheat.(bullock, semi-mech).la-plant. standard 592 524
wheat.(bullock, semi-mech).(gk-harv, standard).

(heavy, january) .439 .387

5.5 ACRONYMS

An acronym is a special data type that allows the use of strings as values. It is useful in very spe-
cial cases and is explained in Section 6.4.

5.5.1 THE SYNTAX

The declaration for an acronymis similar to a set or parameter declaration in that several of them
can be declared in one statement.

Acronym(s) acronym_name {,acronym_name}

acronym_name is an identifier and follows the same naming convention as other identifiers
like names of sets, parameters, or tables.

5.5.2 ILLUSTRATIVE EXAMPLE

Consider the following example,

set machines /m-1*m5/ ;
acronyms monday, tuesday, wednesday, thursday, friday ;
parameter shutdown(machines) /

m-1 tuesday
m-2 wednesday
m-3 friday

m-4 monday
m-5 thursday

!

In the example above, data entries are in the form of stringgriikeday' and tuesday '. By
declaring each of those character stringa@snyms , this kind of data entry can be used by
GAMS. Sections 6.2.7 and 11.2.5 will explain the further use of acronyms once entered in this
form.

5.6 SUMMARY

In this chapter, the declaration and initialization of parameters witbattaaneter , scalar
and thetable statement have been discussed. The next chapter will describe how this data can
be changed with assignment statements.

DATA MANIPULATIONS WITH PARAMETERS

6.1 INTRODUCTION

Data once initialized may require manipulation in order to bring it to the form required in the
model. The first part of this chapter will deal explicitly with parameter manipulation. The rest of
the chapter will be devoted to explaining the ramifications: indexed assignment functions, index
operations.

6.2 THE ASSIGNMENT STATEMENT

The assignment statement is the fundamental data manipulation statement in GAMS. It may be
used to define or alter values associated with any sets, parameters, variables or equations.

A simple assignment is written in the style associated with many other computer languages.
GAMS uses the traditional symbols for addition (+), subtraction (-), multiplication (*) and divi-
sion (/). We will use them in the examples that follow, and give more details in Section
"EXPRESSIONS," page 55.

6.2.1 SCALAR ASSIGNMENTS
Consider the following artificial sequence:

scalarx /1.5/;
x=1.2;
X=X+2;

The scalax is initialized to be 1.5. The second statement changes the value to 1.2, and the third
changes it to 3.2. The second and third statement assignments have the effect of replacing the
previous value ox, if any, with a new one.

Note that the same symbol can be used on the left and rightokige. The new value is not
available until the calculation is complete, and the operation gives the expected result.

' An assignment cannot start with a reserved word. A semicolon is therefore re-
L‘ quired as a delimiter before all assignments.

6.2.2 INDEXED ASSIGNMENTS

The syntax in GAMS for performing indexed assignments is extremely powerful. This operation
offers what may be thought of as simultaneous or parallel assignment and it provides a concise
way of specifying large amounts of data Consider the mathematical statement,

DJy=2.75 DA for all d
This means that for every member of thedset value is assigned J. This can be written in
GAMS as follows,

54 DATA MANIPULATIONS WITH PARAMETERS

dj(d) = 2.75*da(d) ;

This assignment is known technically as an indexed assignment ahd/idldte referred to as
the controlling index or controlling set.

' The index sets on the left hand side of the assignment are together called the
L‘ controlling domain of the assignment

The extension to two or more controlling indices should be obvious. There will be an assignment
made for each label combination that can be constructed using the indices inside the parenthesis.
Consider the following example of an assignment to all 100 data elements of a,

Set row /r-1*r-10 /

col / c-1*c-10/

sro(row) /r-7*r-10/;
parameters a(row,col),
a(row,col) = 13.2 + r(row)*c(col) ;

The calculation in the last statement is carried out for each of the 100 unique two-label combina-
tions that can be formed from the elementsoaf and col. The first of these is, explicitly,

a('r-1''c-1) =13.2 + r('r-1")*c('c-1").

6.2.3 USING LABELS EXPLICITLY IN ASSIGNMENTS

It is often necessary to use labels explicitly in assignments. This can be done as discussed earlier
with parameters - by using quotes around the label. Consider the following assignment,

a('r-7','c-4) =-2.36;

This statement assigns a constant value to one elemanAbfother elements o remain un-
changed. Either single or double quotes can be used around the labels.

6.2.4 ASSIGNMENTS OVER SUBSETS

In general, wherever a set name can occur in an indexed assignment, a subset (or even a label)
can be used instead if you need to make the assignment over a subset instead of the whole do-
main.

Consider the following example,

a(sro,'col-10") = 2.44 -33*r(sro) ;

wheresro has already been established to be a proper subest of

6.2.5 ISSUES WITH CONTROLLING INDICES

The number of controlling indices on the left of theign should be at least as

n many as the number of indices on the right. There should be no index on the
right hand side of the assignment that is not present on the left unless it is op-
erated on by an indexed operator

Consider the following statement,

6.3 EXPRESSIONS 55

a(row,'col-2") =22 -c(col) 1;

GAMS will flag this statement as an error sime¢ is an index on the right hand side of the
equation but not on the left.

Each set is counted only once to determine the number of controlling indices.
If the same set appears more than once within the controlling domain, the sec-

M" ond and higher occurrences of the set shoulalibees of the original set
in order for the number of controlling indices to be equal to the number of in-
dices.

Consider the following statement as an illustration,
b(row,row) = 7.7 - r(row) ;

This statement has only one controlling indew(). If one steps through the elementsaw

one at a time assignments will be made only to the diagonal entkieF s will assign exactly

10 values! None of the off-diagonal elements of b will be filled.

If an additional name is provided foow and used in the second index position, then there will
be two controlling indices and GAMS will make assignments over the full Cartesian product, all
100 values. Consider the following example,

alias(row,rowp) ;
b(row,rowp) = 7.7 - r(row) + r(rowp) ;

6.2.6 EXTENDED RANGE IDENTIFIERS IN ASSIGNMENTS
The GAMS 'extended range' identifiers can also be used in assignment statements, as in
a(row,'col-10") = inf; a(row,'col-1’) = -inf;

Extended range arithmetic will be discussed later in this Section. The values most often used are
NAin incomplete tables, antllF for variable bounds.

6.2.7 ACRONYMS IN ASSIGNMENTS

Acronyms can also be used in assignment statements, as in

acronym monday, tuesday, wednesday, thursday, friday ;
parameter dayofweek ;
dayofweek = wednesday ;

" Acronyms contain no humeric value, and are treated as character stviyngs

6.3 EXPRESSIONS

An expression is an arbitrarily complicated specification for a calculation, with parentheses
nested as needed for clarity and intent. In this section, the discussion of parameter assignments
will continue by showing in more detail the expressions that can be used on the right of the =
sign. All numerical facilities available in both standard and 'extended' arithmetic will be covered.

56 DATA MANIPULATIONS WITH PARAMETERS

6.3.1 STANDARD ARITHMETIC OPERATIONS

The standard arithmetic symbols and operations are

Operator Description

* exponentiation

*/ multiplication and division

+,- addition and subtraction and binary)

They are listed above in precedence order, which determines the order of evaluation in an ex-
pression without parentheses.

Consider, for example:
X =5+ 4*3**2 :

For clarity, this could have been written:
X = 5 + (4%(3**2)) ;

In both cases the result is 41.

It is better to use parentheses than to rely on the precedence of operators, since
it prevents errors and clarifies intentions.

N

Expressions may be freely continued over many lines: an end-of-line is per-
missible at any point where a blank may be used . Blanks may be used for
readability around identifiers, parentheses and operator symbols. Blanks are
not allowed within identifiers or numbers, and are significant inside the quote
marks used to delimit labels.

N

x**n is calculated inside GAMS a&xp[n*log(x)] . This operation is not

n defined ifx has a negative value, and an error will result. If the possibility of
negative values fox is to be admittednd the exponent is known to be an in-
teger, then a function cappwer(x,n) , is available.

Three additional capabilities are available to add power and flexibility of expression calculations.
They are indexed operations, functions and extended range arithmetic.

6.3.2 INDEXED OPERATIONS

In addition to the simple operations explained before, GAMS also provides the following four
indexed operations.

6.3 EXPRESSIONS 57

Operation Description

sum Summation over controlling index
prod Product over controlling index

smin Minimum value over controlling index
smax Maximum value over controlling index

These four operations are performed over one or more controlling indices. The syntax in GAMS
for these operations is,

indexed_op((controlling_indices), expression)

If there is only one controlling index, the parentheses around it can be removed. The most com-
mon of these isum, which is used to calculate totals over the domain of a set. Consider the fol-
lowing simple example adapted from [ANDEAN] for illustration.

setsi plants / cartagena, callao, moron /
m product / nitr-acid, sulf-acid, amm-sulf /;

parameter capacity(i,m) capacity in tons per day
totcap(m) total capacity by process ;

totcap(m) = sum(i, capacity(i,m));

This would be written, using normal mathematical representation, as

TOTG, =Y G,
The index over which the summation is dongis separated from the reserved wsudh by a
left parenthesis and from the data texapacity(i,m) by a commai. is again called the

controlling index for this operation. The scope of the control is the pair of parenthetes
starts immediately after the sum. It is not likely to be useful to have to have two independent in-
dex operations controlled by the same index).
It is also possible to sum simultaneously over the domain of two or more sets, in which case more
parentheses are needed. Also, of course, an arithmetic expression may be used instead of an
identifier;

count = sum((i,j), a(i,j)) ;

emp = sum(t, I(t)*m(t)) ;

The equivalent mathematical forms are:

COUNT=Y Y AandEMP=Y LM
T T

Thesmin andsmax operations are used to find the largest and smallest values over the domain
of the index set or sets. The index for gn@in andsmax operators is specified in the same
manner as in the index for team operator. Consider the following example to find the largest
capacity,

Irgunit = smax((i,m),capacity(i,m));

58 DATA MANIPULATIONS WITH PARAMETERS

6.3.3 FUNCTIONS

GAMS provides commonly used standard functions such as exponentiation, and logarithmic, and
trigonometric functions. The complete list of available functions is given below. There are cau-
tions to be taken when functions appear in equations; these are dealt with in Chapter
“EXPRESSIONS IN EQUATION DEFINITIONS,” page 70.

Function Description

errorf(x) Integral of the standard normal distribution fromte x

exp(x) Exponential, &

log(x) Natural logarithm, logx)

log10(x) Common logarithm, logx

normal(x,y) Random number normally distributed with meaand standard deviatign
uniform(x,y) Random number with uniform distribution betweeandy
abs(x) Absolute Value of x, i.e. |x|

ceil (x) Ceiling of x. Smallest integer x

floor(x) Floor of x. Largest integes arg

mapval(x) Mapping function. Assigns unique numbers to special values.
max(x,y,.. Largest value among all arguments.

min(x,y;..) Smallest value among all arguments

mod(x,y) Remainderx - y*trunc(x/y)

power(x,y) Integer powerx” , where y must be an integer

round(x) roundx to the nearest integer

round (x,y) Roundsx toy decimal places right (+) or left (-) to the decimal point
sign(x) Returns 1if x>0, -1k <0,and 0 ik =0

sqr(x) Square ok. x?

sqrt(x) Square root oX. Vx

trunc(x) sign &) timesfloor(abs(x))

arctan(x) Tan® (x). Result in radians

cos(x) Cosinek); x in radians

sin(x) Sine). x in radians

Consider the following example of a function used as an expression in an assignment statement,

x(j) = log(y()) ;

which replaces the current valuexoivith the natural logarithm of over the domain of the in-
dex sef .

6.3.4 EXTENDED RANGE ARITHMETIC AND ERROR HANDLING

GAMS uses an ‘extended range’ arithmetic to handle missing data, the results of undefined op-
erations, and the representation of bounds that solver systems regard as ‘infinite.” The special
symbols are listed in Table 6.2, with the brief explanation of the meaning of each.

6.3 EXPRESSIONS 59

Special symbol | mapval | Description
inf 6 Plus infinity. A very large positive number
-inf 7 Minus infinity. A very large negative number
na 5 Not available. Used for missing data. Any Operation that uses

the valueNAwill produce the resuNA

undf 4 Undefined. The result of an undefined or illegal operation. |A
user cannot directly set a valuelblDF

eps 8 Very close to zero, but different from zero.

GAMS has defined the results of all arithmetic operations and all function values using these
special values.

The results can be inspected by running the model library problem [CRAZY] . As one would ex-
pect,1+INF evaluates tdNF, and1-EPS to 1.

Themapval function should be used in comparisons involving extended range
n arithmetic. Only the extended range arithmetic shown in the table above give

non-zero values fanapval . For examplemapval(a) takes a value @ if a

isinf . All regular numbers result inraapval of 0.

The following table shows a selection of results for exponentiation and division for a variety of
input parameters.

Value Operations

a b a**b power a/b

2 2 4 4 1
-2 2 undf 4 -1

2 2.1 4.28 undf .952
na 2.5 na na na

3 0 1 1 undf
inf 2 inf inf inf

2 inf undf undf o]

One should avoid creating or using numbers with absolute values larger than

n 1.0E20,. If a number is too large, it may be treated by GAMS as undefined
(UNDF), and all values derived from it in a model may be unusable. Always
use INF(or -INF) explicitly for arbitrarily large numbers

When an attempted arithmetic operation is illegal or has undefined results because of the value of
arguments (division by zero is the normal example), an error is reported and the result is set to
undefined UNDB.

From there onlUUNDHFs treated as a proper data value and does not trigger additional error mes-
sages.

60 DATA MANIPULATIONS WITH PARAMETERS

' GAMS will not solve a model if an error has been detected, but will terminate
L‘ with an error condition.

It is thus always necessary to anticipate conditions that will cause errors, such as divide by zero.
This is most easily done with the dollar control, and will be discussed in the next section.

6.4 SUMMARY

GAMS provides powerful facilities for data manipulation with parallel assignment statements,
built-in functions and extended range arithmetic.

VARIABLES

7.1 INTRODUCTION

This chapter covers the declaration and manipulation of G#dli@bles . Many of the con-

cepts covered in the previous Chapters are directly applicable here.

A variable is the GAMS name for what are calleddogenousariables by economists,
‘column$or activities by linear programming experts, adécision variableésy industrial Op-
erations Research practitioners. They are the entities whose values are generally unknown until
after a model has been solved. A crucial difference between GAMS variables and columns in tra-
ditional mathematical programming terminology is that one GAMS variable is likely to be asso-
ciated with many columns in the traditional formulation.

7.2 VARIABLE DECLARATIONS

A GAMS variable, like all other identifiers, must be declared before it is referenced.

7.2.1 THE SYNTAX

The declaration of wariable is similar to aset or parameter declaration, in that domain
lists and explanatory text are allowed and recommended, and several variables can be declared in
one statement.

[var-type] variable[s] var_name [text] {, var ident}

Var_type is the optional variable type that is explained in detail latr.name is the inter-

nal name of the variable (also called an identifier) in GAMS. An identifier has to start with a let-
ter followed by more letters or digits. It can only contain alphanumeric characters, and can be up
to 10 characters long. The accompanying text is used to describe the set or element immediately
preceding it. This must not exceed 80 characters and must all be contained on the same line as
the identifier it describes.

One important difference between variable and parameter declarations is thataahotbe

initialized in a variable declaration.

A typical variable statement, adapted from [RAMSEY], is shown below for illustration:

variables k(t) capital stock (trillion rupees)
c(t) consumption (trillion rupees per year)
i(t) investment (trillion rupees per year)
utility utility measure ;

62 VARIABLES

The declaration ok above implies, as usual, that referencds &oe restricted to the domain of

the set . A model that includek will probably have several corresponding variables in the as-
sociated mathematical programming problem: most likely one for each menthdndhis way,

very large models can be constructed using a small number of variables. (It is quite unusual for a
model to have as many as 50 distinct variables.) It is still unclear from the declaration whether
utility is not domain checked or whether it is a scalar variable, i.e., one without associated
sets. Later references will be used to settle the issue.

It is important that variable declarations include explanatory text and that this be as descriptive as
possible, since the text is used to annotate the solution output. Note the pee"ahStead of

"/ " in the text above: slashes are illegal in all unquoted text.

7.2.2 VARIABLE TYPES

There are five basic types of variables that may be used in variable statements. These are shown
below.

Keyword Default | Default | Description
Lower Upper
Bound | Bound
free -inf +inf No bounds on variable. Both bounds can be changed from
(default) the default values by the user
positive 0 +inf No negative values are allowed for variable. The userican
change the upper bound from the default value.
negative -inf 0 No positive values are allowed for variables. The use
can change the lower bound from the default value.
binary 0 1 Discrete variable that can only take values of 0 or 1
integer 0 100 Discrete variable that can only take integer values bef
tween the bounds. The user can change bounds from|the
default value.

The default type ifree , which means that if the type of the variable is not specified, it will not
be bounded at all. The most frequently used typefege andpositive , for descriptions of
variables for which negative values are meaningless, such as capacities, quantities or prices.

Four additional, although more exotic, variable typsssi , sos2 , semicont andsemiint
are available in GAMS. These are explained later.

7.2.3 STYLES FOR VARIABLE DECLARATION

Two styles are commonly used to declare variable types. The first is to list all variables with do-
main specifications and explanatory text as a group, and later to group them separately as to type.
The example shown below is adapted from [MEXSS]. The default tyipeeis, sophi ,

phipsi , etc. will befree variables in the example below. Note the use of variable names de-
rived from the original mathematical representation.

variables
u(c,i) "purchase of domestic materials (mill units per yr)"
v(c.j) "imports (mill tpy)"
e(c,i) "exports (mill tpy)"
phi “total cost (mill us$)"

phipsi “raw material cost (mill us$) ;
positive variables u, v, e ;

7.3 VARIABLE ATTRIBUTES 63

The commas in the list of positive variables are required separators.

It is possible to declare an identifier more than once, but that the second and
M" any subsequent declarations should only add new information that does not
contradict what has already been entered.

The second popular way of declaring variables is to list them in groups by type. We rewrite the
example above using this second method:

free variables
phi "total cost (mill us$)"
phipsi “raw material cost (mill us$)"

positive variables
u(c,i) "purchase of domestic materials (mill units per yr)"
v(c,j) "imports (mill typ)"
e(c,i) "exports (mill typ)" ;

The choice between the two approaches is best based on clarity.

7.3 VARIABLE ATTRIBUTES

Another important difference between parameters and variables is that an additional set of key-
words can be used to specify various attributes of variables. A GAMS parameter has one number
associated with each unique label combination. A variable, on the other hand, has six. They rep-
resent:

Variable attribute Variable suffix | Description

lower bound do The lower bound for the variable. Set by the user
either explicitly or through default values.

upper bound -up The upper bound for the variable. Set by the uger
either explicitly or through default values.

fixed value fx The fixed value for the variable.

activity level A The activity level for the variable. This is also

equivalent to the current value of the variable.
Receives new values when a model is solved.

marginal or dual value -m The marginal value for the variable. Receives
new values when a model is solved.
scale value .scale This is the scaling factor on the variable. This is

normally an issue with nonlinear programming
problems and is discussed in detail later.

branching priority value .prior This is the branching priority value of a variable
This parameter is used in mixed integer pro-
gramming models only, and is discussed in detall
later.

17

The user distinguishes between these suffix numbers when necessary by appending a suffix to
the variable name.

64 VARIABLES

7.3.1 BOUNDS ON VARIABLES

All default bounds set at declaration time can be changed using assignment statements.

' For binary and integer variable types, the consequences of the type declaration
L‘ cannot be completely undone.

Bounds on variables are the responsibility of the user. After variables have been declared, default
bounds have already been assigned: for many purposes, especially in linear models, the default
bounds are sufficient. In nonlinear models, on the other hand, bounds play a far more important
role. It may be necessary to provide bounds to prevent undefined operations, such as division by
zero.

It is also often necessary to define a ‘'reasonable’ solution space that will help to make the nonlin-
ear programming problem be solved more efficiently.

' The lower bound cannot be greater than the upper: if you happen to impose
L‘ such a condition, GAMS will exit with an error condition.

7.3.2 FIXING VARIABLES

GAMS allows the user to set variables through.the variable suffix. This is equivalent to the
lower bound and upper bound being equal to the fixed value. Fixed variables can subsequently be
freed by changing the lower and upper bounds.

7.3.3 ACTIVITY LEVELS OF VARIABLES

GAMS allows the user to fix the activity levels of variables throughltheariable suffix. These
activity levels of the variables prior to the solve statement serve as initial values for the solver.
This is particularly important for nonlinear programming problems.

7.4 VARIABLES IN DISPLAY AND ASSIGNMENT STATEMENTS

GAMS allows the modeler to use the values associated with the various attributes of each vari-
able in assignment and display statements. The next two sub-sections explain the use of variables
in the left and right hand sides of assignment statements respectively. Later we will explain the
use of variables in display statements.

7.4.1 ASSIGNING VALUES TO VARIABLE ATTRIBUTES

Assignment statements operate on one variable attribute at a time, and require the suffix to spec-
ify which attribute is being used. Any index list comes after the suffix.
The following example illustrates the use of assignment statements to set upper bounds for vari-
ables.

x.up(c,i,j) = 1000 ; philo = inf ;

p.fx('pellets’, 'ahmsa’, 'mexico-df) =200 ;
cl(t) = 4*cinit(t) ;

7.4 VARIABLES IN DISPLAY AND ASSIGNMENT STATEMENTS 65

Note that, in the first statement, the index set covering the domaiambears after the suffix.

The first assignment puts an upper bound on all variables associated with the identifier
statement on the second line bounds one particular entry. The statement on the last line sets the
level values of the variables into four times the values in the parameieit

Remember that the order is important in assignments, and notice that the two pairs of statements
below produce very different results. In the first case, the lower bouicd ¥685") will be

0.01, but in the second, the lower bound is 1.

c.fx('1985") = 1; clo(tf = 0.01;
clo(t) = 0.01; c.fx('1985)=1;

Everything works as described in the previous chapter, including the various mechanisms de-
scribed there of indexed operations, dollar operations, subset assignments and so on.

7.4.2 VARIABLE ATTRIBUTES IN ASSIGNMENTS

Using variable attributes on the right hand side of assignment statements is important for a vari-
ety of reasons. Two common uses are for generating reports, and for generating initial values for
some variables based on the values of other variables.

The following examples, adapted from [CHENERY], illustrate the use of variable attributes on
the right hand side of assignment statements:

scalar cva "total value added at current prices"
rva "real value added"
cli "cost of living index" ;

cva = sum (i, v.I(i)*x.1(i)) ;
cli = sum(i, p.I()*ynot(i))/sum(i, ynot(i)) ;
rva = cval/cli ;

display cli, cva, rva ;

As with parameters,aariable must have some non-default data values associated with it be-
fore one can use it in a display statement or on the right hand side of an assignment statement.
After a solve statement (to be discussed later) has been processed or if non-default values have
been set with an assignment statement, this condition is satisfied.

' The.fx suffix is really just a shorthand fdo and.up and can therefore
\‘ only be used only on the left-hand side of an assignment statement.

7.4.3 DISPLAYING VARIABLE ATTRIBUTES

When variables are useddisplay statements you must specify which of the six value fields
should be displayed. Appending the appropriate suffix to the variable name does this. As before,
no domain specification can appear. As an example we show rdigptay the level ofphi

and the level and the marginal values dfom [MEXSS]:

display phi.l, v.I, v.m;

The output looks similar, except that (of course) the listing shows which of the values is being
displayed. Because zeroes, and especially all zero rows or columns, are suppressed, the patterns
seen in the level and marginal displays will be quite different, since non-zero marginal values are
often associated with activity levels of zero.

66 VARIABLES

Mexico Steel - Small Static (MEXSS,SEQ=15)
Execution

---- 203 VARIABLE PHI.L = 538.811 total cost
(mill us$)
---- 203 VARIABLE V.L imports
(mill tpy)
(ALL 0.000)
---- 203 VARIABLE V.M imports
(mill tpy)

mexico-df monterrey guadalaja
steel 7.018 18.822 6.606

We should mention here a clarification of our previous discussion of displays. It is actually the
default values that are suppressed on display output. For parameters and variable levels, the de-
fault is zero, and so zero entries are not shown. For bounds, however, the defaults can be non-
zero. The default value for the upper bound of a positive variabl&ls,4and if above you also

would displayv.up , for example, you will see:

---- 203 VARIABLE V.UP imports

(mill tpy)
(ALL +INF)

If any of the bounds have been changed from the default value, then only the entries for the
changed elements will be shown. This sounds confusing, but since few users display bounds it
has not proved troublesome in practice.

7.5 SUMMARY

Remember that wherever a parameter can appear in a display or an assignment statement, a vari-
able can also appear - provided that it is qualified with one of the four suffixes. The only places
where a variable name can appear without a suffix is in a variable declaration, as shown here, or
in an equation definition, which is discussed in the next chapter.

EQUATIONS

8.1 INTRODUCTION

Equations are the GAMS names for the symbolic algebraic relationships that will be used to
generate the constraints in the model. As withables , one GAMS Equation will map into
arbitrarily many individual constraints, depending on the membership of the defining sets.

8.2 EQUATION DECLARATIONS

A GAMS equation , like all identifiers, must be declared before it can be used.

8.2.1 THE SYNTAX

The declaration of aequation is similar to aset orparameter declaration, in that domain
lists and explanatory text are allowed and recommended, and several equations can be declared
in one statement.

Equation[s] egn_name text {, eqn_name} ;

egn_name is the internal name of tlegjuation (an identifier) in GAMS. An identifier has to

start with a letter followed by more letters or digits. It can only contain alphanumeric characters,
and can be up to 10 characters long. The accompanying text is used to describe the set or element
immediately preceding it. This must not exceed 80 characters and must all be contained on the
same line as the identifier it describes.

There are no modifying keywords as there are with variables, and no initializing data list as there
may be with parameters or sets.

8.2.2 AN ILLUSTRATIVE EXAMPLE

The example is adapted from [PRODSCH] , an inventory and production management problem.
The relevant set definitions are also shown

sets g ‘quarters' / summer,fall,winter,spring /
S 'shifts’ [/ first,second /;
equations

cost 'total cost definition’
invb(g) ‘inventory balance'
sbal(q,s) 'shift employment balance' ;

The declaration of the first equation follows the keywegdations . This declaration begins
with the name of the equation, in this caest , and is followed by the text, nameRotal

cost definition '. The equatiorost above is a scalar equation, which will produce at
most one equation in the associated optimization problem.

68 EQUATIONS

By contrast, the equatiasbal is declared over the seig4 members) and (2 members), and

is thus likely to produce eight individual equations, one for each unique combination of labels.
The circumstances under which less than eight equations might be produced will be discussed in
later chapters. It is certainly true, however, that no more than eight equations will be produced.

8.3 EQUATION DEFINITIONS

The definitions are the mathematical specification of the equations in the GAMS language. The
next sub-section explain the syntax for an equation definition and this is followed by an illustra-
tive example. The rest of this section is devoted to discussions about some of the key components
of equation definitions.

8.3.1 THE SYNTAX
The syntax in GAMS for defining an equation is as follows,
egn_name(domain_list).. expression eqn_type expression ;

egn_name is the name of the equation as in the equation declaration. The two deatse'al-

ways required between the equation name and start of the algebra. The expressions in the equa-
tion definition can be of the forms discussed in the Chapters before, but can involve variables as
well. Egn_type refers to the symbol between the two expressions that form the equation, and
can be of the following types,

Equation type Description
=e= Equality: rhs must equal lhs
=g= Greater than: Ihs must be greater than or equal to rhs
=l= Less than: Ihs must be less than or equal to rhs
=n= No relationships enforced between Ihs and rhs. This equation type is
rarely used.

As with the assignment statement, equation definitions can be carried over as
M" many lines of input as needed. Blanks can be inserted to improve readability,
and expressions can be arbitrarily complicated.

An equation, once defined, can not be altered or re-defined. If one needs to
change the logic, a new equation with a new name will have to be defined. It is

n possible, however, to change the meaning of an equation by changing the data
it uses, or by using exception handling mechanisms (dollar operations) built
into the definition

8.3.2 AN ILLUSTRATIVE EXAMPLE

Consider the following example, adapted from [MEXSS]. The associated declarations are also
included.
Variables phi, phipsi, philam, phipi, phieps ;

equations obj ;
obj.. phi =e= phipsi + philam + phipi - phieps ;

obj is the name of the equation being defined. F¢re symbol means that this is an equality.
Any of the following forms of the equation are mathematically equivalent,

8.3 EQUATION DEFINITIONS 69

obj.. phipsi + philam + phipi - phieps =e= phi ;
obj.. phieps - phipsi =e= philam - phi + phipi ;
obj.. phi - phieps - phipsi - philam - phipi =e= 0;
obj.. 0 =e= phi - phieps - phipsi - philam - phipi ;

' The arrangement of the terms in the equation is a matter of choice, but often a
L‘ particular one is chosen because it makes the model easier to understand.

8.3.3 SCALAR EQUATIONS

A scalar equation will produce at most one equation in the associated optimization problem. The
equation defined in the last Section is an example of a scalar equation, which contains only scalar
variables. Note that in general, scalar equations may contain indexed variables operated on by
index operators. Consider the following example from [CHENERY]

dty.. td =e=sum(i, y(i)) ;

8.3.4 INDEXED EQUATIONS

All the set references in scalar equations are within the scope of index operations - many refer-
ences can therefore be included in one equation. However, GAMS allows for equations to be de-
fined over a domain, thereby developing a compact representation for constraints. The index sets
to the left of the.! 'are called the 'domain of definition' of the equation.

' Domain checking ensures that the domain over which an equation is defined
L‘ must be the set or a subset of the set over which the equation is declared.

Consider the following example of a singly indexed equation, meaning one that produces a sepa-
rate constraint for each member of the driving (or controlling) set.

dg(t).. g(t) =e= mew(t) + xsi(t)*m(t) ;

Ast has three members, three constraints will be generated , each one specifying separately for
each member df, the dependence gfonm. Mewandxsi are parameters: the data associated
with them are used in building up the individual constraints. These data do not have to be known
when the equation is defined, but do have to be when a model containing the equation is solved.
The extension to two or more index positions on the left of.theshould be obvious. There will
be one constraint generated for each label combination that can constructed using the indices in-
side the parenthesis. Here are two examples form [AIRCRAFT], a scheduling model.

bd(j,h).. b(@,h) =e= dd(j,h) - y(G,h) ;

yd(.h).. y(.h) =I= sum(i, p(i,j)*x(i.j)) ;

The domain of definition of both equations is the Cartesian prodiyicanéih: constraints will
be generated for every label pair that can be constructed from the membership of the two sets.

8.3.5 USING LABELS EXPLICITLY IN EQUATIONS

It is often necessary to use labels explicitly in equations. This can be done as with parameters -
by using quotes around the label. Consider the following example,

dz.. tz =e= y(jan’) + y(feb) + y(mar') + y(apr’) ;

70 EQUATIONS

8.4 EXPRESSIONS IN EQUATION DEFINITIONS

The arithmetic operators and functions that were described in Chapter “EXPRESSIONS,” page
55, can be used inside equations as well.

8.4.1 ARITHMETIC OPERATORS IN EQUATION DEFINITIONS

' All the mechanisms that may be used to evaluate expressions in assignments
L‘ are also available in equations.

Consider the following example adapted from [CHENERY] showing parentheses and exponen-
tiation,

dem(i) .. y(i) =e= ynot(i)*(pd*p(i))**thet(i) ;

8.4.2 FUNCTIONS IN EQUATION DEFINITIONS

Function references in equation definitions can be classified into two types based on the type of
the arguments,

« Exogenous argumentsThe arguments(s) are known. Parameters and variable attributes (for
example,l and.m attributes) are used as arguments. The expression is evaluated once
when the model is being set up, and all functions except the random distribution functions
uniform and normal are allowed.

Endogenous argumentsThe arguments are variables and therefore unknown. The function
will be evaluated many times at intermediate points while the model is being solved.

The occurrence of any function with endogenous arguments implies that the
model is not linear.

It is forbidden to use the uniform and normal functions in an equation defini-
tion.

N N

Functions with endogenous arguments can be further classified into the following types:

Type Function Derivative Examples
Smooth Continuous Continuous | €xp, sin, log
Non-Smooth Continuous Discontinuous| max, min, abs
Discontinuous Discontinuous Discontinuous| ceil, sign

Smooth functions can be used routinely in nonlinear models, but nhon-smooth ones may cause
numerical problems and should be used only if unavoidable, and only in a special model type
calleddnlp . However, the use of tlanlp model type is strongly discouraged and the use of
binary variables is recommended to model non-smooth functions. Discontinuous functions are
not allowed at all with variable arguments.

A fuller discussion is given in Chapter "THE MODEL STATEMENT", page 73. For conven-
ience, all the available functions are classified below.

8.4 EXPRESSIONS IN EQUATION DEFINITIONS 71
Function | Description Classification Exogenous Endogenous
Classification | model type
abs Absolute value Non-smooth Legal DNLP
arctan Arctangent Smooth Legal NLP
ceil Ceiling Smooth Legal lllegal
cos Cosine Discontinuous Legal NLP
errorf Error function Smooth Legal NLP
exp Exponential Smooth Legal NLP
floor Floor Discontinuous | Legal lllegal
log Natural log Smooth Legal NLP
log10 Common log Smooth Legal NLP
mapval Mapping function Discontinuous Legal lllegal
max Largest value Non-smooth Legal DNLP
min Smallest value Non-smooth Legal DNLP
mod Remainder Discontinuous Legal lllegal
normal Normal random lllegal lllegal lllegal
power Integer power Smooth* Legal NLP
round Rounding Discontinuous Legal lllegal
sign Sign Discontinuous Legal lllegal
sin Sine Smooth Legal NLP
sqr Square Smooth Legal NLP
sqrt Square root Smooth Legal NLP
trunc Truncation Discontinuous Legal lllegal
uniform Uniform random lllegal lllegal lllegal

* Classification is for the first argument only. The second must be an integer and is normally a
constant.

8.4.3 PREVENTING UNDEFINED OPERATIONS IN EQUATIONS

Certain operations can be undefined at particular values for the arguments. For example, the
log- function is undefined when the argument is 0. Division by 0 is another example. While this
can easily be determined for exogenous functions and expressions, it is a lot more difficult when
the operands are variables. The expression may be evaluated many times when the problem is
being solved. One way of preventing an expression from becoming undefined at all intermediate
points is by adding bounds to the variable concerned. Consider the following function reference
from [RAMSEY], preceded by the bounding of the variables:

c.lo(t) =0.01;
util .. utility =e= sum(t, beta(t)*log(c(t))) ;

The bounding or(t) away from O prevents the log function from being undefined.

72 EQUATIONS

8.5 DATA HANDLING ASPECTS OF EQUATIONS

The previous section dealt with the algebraic nature of equations. This section deals with the
other aspect of an equation - it also serves as data. As with variables, four data values are associ-
ated with each unique ‘'label-tuple' (unique label combination) of every equation. In practice these
are used mainly for reporting purposes after a solve, and so the discussion will be brief. The suf-
fixes associated with the four values dre .m, .lo and.up , as with variables. They may be
assigned values in assignments (this is rare), or referenced in expressions or displayed, which is
more common, especially for the marginal, .m. The meanings of the attriouted and.up

will be described with respect to an individual constraint rather than the symbolic equation.

After a solution has been obtained, there is a value associated with the unknown terms on the
left, and this is by definitiodl . The meaning olo and.up are shown in the table below in
terms of the constant right-hand-side (rhs) and the variable left-handlsidi(each of the
eqguation types. The relationship between rhs.lani$ satisfied only if the constraint is feasible

at the solution point.

Type lo .up A
=e= rhs rhs rhs
=l= -inf rhs rhs
=g= rhs inf rhs
=n= -inf inf any

The meaning of the marginal valuen(in terms of the objective value is discussed in detail in
most texts on mathematical programming. The crude but useful definition is that it is the amount
by which the objective function would change if the equation level were moved one unit.

8.6 SUMMARY

This chapter described the definition and declaration of equations.

MODEL and SOLVE STATEMENTS

9.1 INTRODUCTION

This chapter brings together all the concepts discussed in previous chapters by explaining how to
specify a model and solve it.

9.2 THE MODEL STATEMENT

The model statement is used to collect equations into groups and to label them so that they can be
solved. The simplest form of tleodel statement uses the keywaidll : the model consists of

all equations declared before the model statement is entered. For most simple applications this is
all you need to know about the model statement.

9.2.1 THE SYNTAX
In general, the syntax in GAMS for a model declaration is:

model(s) model_name [text] [/ all | eqn_name {, eqn, name} /]
{,;model_name [text] [/ all | eqn_name {, egn, name} /]} ;

model_name is the internal name of the model (also called an identifier) in GAMS. The ac-
companying text is used to describe the set or element immediately precelfgrg itame is
the name of an equation that has been declared prior to the model statement.

As with all identifiersmodel_name has to start with a letter followed by more letters or digits.

It can only contain alphanumeric characters, and can be up to 10 characters long. Explanatory
text must not exceed 80 characters and must all be contained on the same line as the identifier or
label it describes.

An example of a model definition in GAMS is shown below.

Model transport "a transportation model" /all/ ;

The model is callettansport and the keywordll is a shorthand for all known (declared)
equations.

Several models can be declared (and defined) immakel statement. This is useful when ex-
perimenting with different ways of writing a model, or if one has different models that draw on

the same data. Consider the following example, adapted from [PROLOG], in which different
groups of the equations are used in alternative versions of the problem. Three versions are solved
-- the linear, nonlinear, and ‘expenditure’ versions. The model statement to define all three is

model nortonl “linear version" /cb,rc,dfl,bc,obj/
nortonn "nolinear version" / cb,rc,dfn,bc,obj/
nortone "expenditure version / cb,rc,dfe,bc,obj/ ;

74 MODEL AND SOLVE STATEMENTS

wherecb, rc , etc. are the names of the equations. We will describe below how to obtain the so-
lution to each of the three models.

9.2.2 CLASSIFICATION OF MODELS

Various types of problems can be solved with GAMS. The type of the model must be known be-
fore it is solved. The model types are briefly discussed in this section. GAMS checks that the
model is in fact the type the user thinks it is, and issues explanatory error messages if it discovers
a mismatch - for instance, that a supposedly linear model contains nonlinear terms. This is be-
cause some problems can be solved in more than one way, and the user has to choose which way
to go. For instance, if there are binary or integer variables in the model, it can be solved either as
aMIP or as eRMIP.

The problem types and their identifiers, which are needed in the a solve statement, are listed be-
low.

Model Type | Description

LP Linear programming. There are no nonlinear terms or discrete (binary or integer)
variables in your model.
NLP Nonlinear programming. There are general nonlinear terms involving only

"smooth" functions in the model, but no discrete variables. The functions were
classified as to smoothness in the previous chapter.

DNLP Nonlinear programming with discontinuous derivatives. This is the same ag NLP,
except that 'non-smooth' functions can appear as well. These are more diffjcult to
solve than normal NLP problems. The user is strongly recommended not tojuse

this model type.
RMIP Relaxed mixed integer programming. The model can contain discrete variaples

but the discrete requirements are relaxed, meaning that the integer and binary
variables can assume any values between their bounds.

MIP Mixed integer programming. Like RMIP but the discrete requirements are gn-
forced: the discrete variables must assume integer values between their bounds
RMINLP Relaxed mixed integer nonlinear programming. The model can contain both dis-

crete variables and general nonlinear terms. The discrete requirements arqg re-
laxed. This class of problem is the same as NLP in terms of difficulty of soly-

tion.

MINLP Mixed integer nonlinear programming. Characteristics are the same as for
RMINLP, but the discrete requirements are enforced.

MPEC Mathematical Programs with Equilibrium Constraints

MCP Mixed Complementarity Problem

CNS Constrained Nonlinear System

Each of these model types will be discussed in detail in later chapters.

9.2.3 MODEL ATTRIBUTES

Various model attributes can be accessed by the user through a list of model suffixes. The com-
plete list of model suffixes is shown below.

9.2 THE MODEL STATEMENT 75
Suffix Description Reset | Default | Global Op-
Control tion
bratio basis acceptance test user 0.2pbratio
domlim maximum number of domain violationg user 0 | domlim
domusd number of domain violations solver
holdfixed substitution of fixed variables user 0
0 do not substitute out fixed variables
1 substitute fixed variables out of model
iterlim iteration limit user 1000 | iterlim
iterusd number of iterations used user
limcol number of columns displayed for each| user 3 limcol
block of variables.
limrow number of rows displayed for each blockser 3 limrow
of equations
modelstat model status solver
1 optimal
2 locally optimal
3 unbounded
4 infeasible
S) locally infeasible
6 intermediate infeasible
7 intermediate non-optimal
8 integer solution
9 intermediate non-integer
10 integer infeasible
11 (unused)
12 error unknown
13 error no solution
numequ number of single equations generated solve
numinfes number of infeasibilities solver
numnopt number of non-optimalities solver
numnz number of non-zero entries in the coeffisolver
cient
matrix
numunbnd number of unbounded variables solver
numvar number of single variables generated solve
optca absolute termination criterion for MIP user 0.0| optca
optcr relative termination criterion for MIP. user 0.1 opter
optfile option file usage user 0
reslim Time limit for solver. Usually in CPU | user 1000 | reslim
seconds.
resusd resource units (in CPU seconds) used|teolver
solve model
scaleopt scale option user 0
solprint solution print option user 1 | solprint
solveopt merge or replace option for solution data user 1| solveopt
solvestat solver status solver
1 normal completion
2 iteration interrupt

76 MODEL AND SOLVE STATEMENTS

Suffix Description Reset | Default | Global Op-
Control tion
resource interrupt
terminated by solver
evaluation error limit
unknow
(unused)
error preprocessor error
error setup failure
10 error solver failure
11 error internal solver error
12 error post-processor error
13 error system failure
sysout subsystem print option user 0 | sysout
workspace size of work array (in MB) user work

O©oOo~NO O Ww

The following example illustrates the use of model suffixes.

Model transport /all/ ;
transport.reslim = 60 ;

This sets the solver an upper limit of 60 seconds to attempt to solve the problem to optimality.

9.3 THE SOLVE STATEMENT

Once the model has been put together through the model statement, one can now attempt to solve
it using the solve statement. On seeing this statement, GAMS calls one of the available solvers
for the particular model type.

' It is important to remember that GAMS itself does not solve your problem, but
L‘ passes the problem definition to one of a number of separate solver programs.

The next few sub-sections discuss the solve statement in detail.

9.3.1 THE SYNTAX
In general, the syntax in GAMS for a model declaration is:

solve model_name using model_type maximizing|minimizing var_name|;
solve model_name maximizing|minimizing var_name using model_type ;

model_name is the name of the model as defined padel statementvar_name is the
name of the objective variable that is being optimikéodel type is one of the model types
described before. An example of a solve statement in GAMS is shown below.

Solve transport using Ip minimizing cost ;

solve andusing are reserved wordgansport is the name of the moddp, is the model
type,minimizing is the direction of optimization, amst is the objective variable. The op-
posite ofminimizing is maximizing , both reserved words. Note that an objective variable
is used instead of an objective row or function

9.4 PROGRAMS WITH SEVERAL SOLVE STATEMENTS e

' The objective variable must be scalar and type free, and must appear in the
L‘ least one of the equations in the model.

The next two sub-sections will describe briefly below what happens when a solve statement is
processed, and more details on how the resulting output is to be interpreted will be given in the
next chapter. After that sequences of solve statements will be discussed. The final section will
describe options that are important in controlling solve statements.

9.3.2 REQUIREMENTS FOR A VALID SOLVE STATEMENT

When GAMS encounters a solve statement, the following are verified:

a. All symbolic equations have been defined and the objective variable is used in at least one of
the equations

b. The objective variable is scalar and of type free

c. Each equation fits into the specified problem class (linearitipforcontinuous derivatives
for nlp , as we outlined above)

d. All sets and parameters in the equations have values assigned.

9.3.3 ACTIONS TRIGGERED BY THE SOLVE STATEMENT

The solve statement triggers a sequence of steps that are as follows:

a. The model is translated into the representation required by the solution system to be used.
b. Debugging and comprehension aids are produced and written to the outf@fATION
LISTING , etc)
c. GAMS verifies that there are no inconsistent bounds or unacceptable values (for étample
or UNDF) in the problem
d. Any errors detected at this stage cause termination with as much explanation as possible,
using the GAMS names for the identifiers causing the trouble
e. GAMS passes control to the solution subsystem and waits while the problem is solved
GAMS reports on the status of the solution process and loads solution values back into the
GAMS database. This causes new values to be assignedlto &mel.m fields for all indi-
vidual equations and variables in the model. A row by row and column by column listing of
the solution is provided by default. Any apparent difficulty with the solution process will
cause explanatory messages to be displayed. Errors caused by forbidden nonlinear operations
are reported at this stage.
The outputs from these steps, including any possible error messages, are discussed in detail in the
next chapter.

—h

9.4 PROGRAMS WITH SEVERAL SOLVE STATEMENTS

Severakolve statements can be processed in the same program. If you have to solve sequences
of expensive or difficult models, you should read the chapter on workfiles to find out how to in-
terrupt and continue program execution. The next few sub-sections discuss various instances
where several solve statements may be needed in the same file.

9.4.1 SEVERAL MODELS

If there are different models then the solves may be sequential, as below. Each of the models in
[PROLOG] consists of a different set of equations, but the data are identical, so the three solves
appear in sequence with no intervening assignments:

78 MODEL AND SOLVE STATEMENTS

solve nortonl using nlp maximizing z;
solve nortonn using nlp maximizing z;
solve nortone using nlp maximizing z;

When there is more than ogselve statement in your program, GAMS uses as much informa-
tion as possible form the previous solution to provide a starting point in the search for the next
solution.

9.4.2 SENSITIVITY OR SCENARIO ANALYSIS

Multiple solve statements can be used not only to solve different models, but also to conduct
sensitivity tests, or to perform case (or scenario) analysis of models by changing data or bounds
and then solving the same model again. While some commercial LP systems allow access to sen-
sitivity analysis through GAMS, it is possible to be far more general and not restrict the analysis
to either solver or model type. This facility is even more useful for studying many scenarios since
no commercial solver will provide this information.

An example of sensitivity testing is in the simple oil-refining model [MARCOQ]. Because of pol-
lution control, one of the key parameters in oil refinery models is an upper bound on the sulfur
content of the fuel oil produced by the refinery. In this example, the upper bound on the sulfur
content of the fuel oil produced in the refinery. In this example, the upper bound on the sulfur
content of fuel oil was set at 3.5 percent in the original data for the problem. First the model is
solved with this value. Next a slightly lower value of 3.4 percent is used and the model is solved
again. Finally, the considerably higher value of 5 percent is used and the model is solved for the
last time. After each solve, key solution values (the activity levels are associated thighpro-

cess levels by procepsand by crude oil typer) are saved for later reporting. This is necessary
because a following solve replaces any existing values. The complete sequence is :

parameter report(*,*,*) "process level report" ;

gs('upper','fuel-oil','sulfur’) = 3.5 ;
solve oil using Ip maximizing phi;
report(cr,p,'base’) = z.l(cr,p) ;

report(‘sulfur','limit','base") = qs('upper','fuel-oil’,'sulfur");
gs (‘upper','fuel-oil'/'sulfur) = 3.4 ;

solve oil using Ip maximizing phi ;

report(cr,p,'‘one’) = z.l(cr,p) ;
report(‘sulfur’,limit’,'one’) = gs (‘upper’,'fuel-oil’,'sulfur’);

gs(‘upper’,‘fuel-oil’,'sulfur’) = 5.0 ;

solve oil using Ip maximizing phi ;

report(cr,p,'two’) = z.l(cr,p) ;
report(‘sulfur’,limit’,'two’) = qs(‘upper’,‘fuel-oil’,'sulfur’);

display report ;

This example shows not only how simply sensitivity analysis can be done, but also how the asso-
ciated multi-case reporting can be handled. The paragetisrused to set the upper bound on
thesulfur content in thduel oll , and the value is retrieved for the report.

9.4 PROGRAMS WITH SEVERAL SOLVE STATEMENTS 79

The output from the display is shown below. Notice that there is no production at all if the per-
missible sulfur content is lowered. The "case attributes” have been listed in the row
SULFUR.LIMIT . The "wild card" domain is useful when generating reports: otherwise it would
be necessary to provide special sets containing the labels used in the report. Any mistakes made
in spelling labels used only in the report should be immediately apparent, and their effects should
be limited to the report. Chapter "DISPLAY CONTROLS", page 129 contains more detail on

how to arrange reports in a variety of ways.

----- 205 PARAMETER REPORT PROCESS LEVEL REPORT
BASE ONE TWO

MID-C .A-DIST 89.718 35.139
MID-C .N-REFORM 20.000 6.772
MID-C .CC-DIST 7.805 3.057
W-TEX .CC-GAS-OIL 5.902
W-TEX .A-DIST 64.861
W-TEX .N-REFORM 12.713
W-TEX .CC-DIST 4.735
W-TEX .HYDRO 28.733
SULFUR.LIMIT 3.500 3.400 5.000

9.4.3 ITERATIVE IMPLEMENTATION OF NON-STANDARD ALGORITHMS

Another use of multiple solve statements is to permit iterative solution of different blocks of
equations, solution values from the first are used as data in the next. These decomposition meth-
ods are useful for certain classes of problems because the sub-problems being solved are smaller,
and therefore more tractable. One of the most common examples of such a method is the Gener-
alized Bender's Decomposition method.

An example of a problem that is solved in this way is an input-output system with endogenous
prices, described in Henaff (1980). The model consists of two groups of equations. The first

group uses a given final demand vector to determine the output level in each sector. The second
group uses some exogenous process and input-output data to compute sectoral price levels. Then
the resulting prices are used to compute a new vector of final demands, and the two block of
equations are solved again. This iterative procedure is repeated until satisfactory convergence is
obtained. Henaff has used GAMS statements to perform this kind of calculation. The statements
that solve the system for the first time and the next iteration are shown below:

model usaio / mb, output /;
model dualmodel /dual, totp /;

solve usaio using Ip maximizing total ;
solve dualmodel using Ip maximizing totprice;

pbar(ta) = (sum(ipd.I(i,ta))/4.);
d(i,t) = (db(i)*g(t))/(pd.I(i,t)/pbar(t)) ;

solve usaio using Ip maximizing total;
solve dualmodel using Ip maximizing totprice;

80 MODEL AND SOLVE STATEMENTS

mbis a set of material balance (input-output) equationspatglt is a total output equation.

dual is a group of price equations, aiod is an equation that sums all the sectoral prices.

The domestic pricgsd used in the calculation of the average ppbar are divided by four be-
cause there are four sectors in this example. Alsd thie appended tpd to indicate that this is

the level of the variable in the solution of the model namely in dualmodel. Thus the iterative pro-
cedure uses solution values from one iteration to obtain parameter values for the next one. In
particular, bottpbar andpd are used to compute the demainfbr thei- th product in time pe-
riodt, d(i,t) . Also, the base year demado and the growth factay are used in that cal-
culation. Then when the new final demand vedtis calculated, the two blocks of equations are
solved again.

9.5 MAKING NEW SOLVERS AVAILABLE WITH GAMS

This short section is to encourage those of you who have a favorite solver not available through
GAMS. Linking a solver program with GAMS is a straightforward task, and we can provide
documents that describe what is necessary and provide the source code that has been used for
existing links. The benefits of a link with GAMS to the developer of a solver are several. They
include:

« Immediate access to a wide variety of test problems.

» An easy way of making performance comparisons between solvers.

* The guarantee that a user has not somehow provided an illegal input specification.

» Elaborate documentation, particularly of input formats, is not needed.

» Access to the existing community of GAMS users, for marketing or testing.

This completes the discussion of the model and solve statements. In the next chapter the various
components of GAMS output are described in some detail.

10

GAMS OUTPUT

10.1 INTRODUCTION

The output from GAMS contains many aids for checking and comprehending a model. In this
chapter the contents of the output file are discussed. Ways by which the amount of diagnostic
output produced can be controlled will also be discussed, although complete lists of all these
controls are not given until later. A small nonlinear model, [ALAN] by Alan S. Manne, is used to
illustrate the output file, and list it piece by piece as we discuss the various components. The pos-
sibilities for extension to large models with voluminous output (which is when the diagnostics

are really useful) should be apparent.

The output from a GAMS run is produced on one file, which can be read using any text editor.
The default name of this output file depends on the operating system, but Appendix A describes
how this default can be changed. The display statement, described in detail in Chapter 14, can be
used to export information from the GAMS program to the listing file.

10.2 THE ILLUSTRATIVE MODEL

[ALAN] is a portfolio selection model whose object is to choose a portfolio of investments
whose expected return meets a target while minimizing the variance. We will discuss a simplified
version of this model. The input file is listed for reference.

$Title A Quadratic Programming Model for Portfolio Analysis ALAN,SEQ=124a)
$onsymlist onsymxref onuellist onuelxref

$Ontext

This is a mini mean-variance portfolio selection problem described in
'GAMS/MINOS:Three examples' by Alan S. Manne, Department of Operations
Research, Stanford University, May 1986.

$Offtext
* This model has been modified for use in the documentation

Seti securities /hardware, software, show-biz, t-bills/; alias (i,));

Scalar target target mean annual return on portfolio % /10/,
lowyield yield of lowest yielding security,
highrisk variance of highest security risk ;

Parameters mean(i) mean annual returns on individual securities (%)
/ hardware 8
software 9
show-biz 12
t-bills 7/

82 GAMS OUTPUT

Table v(i,j) variance-covariance array (%-squared annual return)
hardware software show-biz t-bills
hardware 4 3 -1 0
software 3 6 1 0
show-biz -1 1 10 0
t-bills 0 0 0 0;

lowyield = smin(i, mean(i)) ;
highrisk = smax(i, v(i,i)) ;
display lowyield, highrisk ;

Variables x(i) fraction of portfolio invested in asset i
variance variance of portfolio

Positive Variable x;

Equations fsum fractions must add to 1.0
dmean definition of mean return on portfolio
dvar definition of variance;

fsum.. sum(i, x(i)) =e= 1.0 ;
dmean.. sum(i, mean(i)*x(i)) =e= target;
dvar.. sum(i, x(i)*sum(j,v(i,j)*x(j))) =e= variance;

Model portfolio / fsum, dmean, dvar/;
Solve portfolio using nlp minimizing variance;

10.3. COMPILATION OUTPUT

This is the output produced during the initial check of the program, often referred to as compila-
tion. It contains two or three parts: the echo print of the program, an explanation of any errors
detected, and the maps. The next four sub-sections will discuss each of these in detail.

10.3.1 ECHO PRINT OF THE INPUT FILE

The echo print of the program is always the first part of the output file. It is just a listing of the
input with the lines numbers added. Taflisting directive would turn off the listing of
the input file.

A Quadratic Programming Model for Portfolio Analysis (ALAN,SEQ=124a)

This is a mini mean-variance portfolio selection problem described in
'GAMS/MINOS: Three examples' by Alan S. Manne, Department of Operations
Research, Stanford University, May 1986.

9 * This model has been modified for use in the documentation

Note that the first line number shown is 9. If the lines on the input are counted, it can be seen that
this comment line shown above appears after 8 lines of dollar directives and comments.

The line startingptitte has caused text of the users choice to be put on the page header, re-
placing the default tile, which just announces GAMS. The follodinglirectives are used to
display more information in the output file and we be discussed. The text witlfiarttext-

$offtext pair is listed without line numbers, whereas comments starting with asterisks have
line numbers shown. Line numbers always refer to the physical line number in your input file.

' Dollar Control Directives are only listed if a directive to list them is enabled,
L‘ or if they contain errors.

10.2 THE ILLUSTRATIVE MODEL 83

Here is the rest of the echo print:

10

11 Set i securities /hardware,software,show-biz,t-bills/; alias (i,));
12

13 Scalartarget target mean annual return on portfolio % /10/,
14 lowyield yield of lowest yielding security,

15 highrisk variance of highest security risk ;

16

17 Parameters mean(i) mean annual returns on individual securities (%)
18

19 / hardware 8

20 software 9

21 show-biz 12
22 t-bills 7/

23

24 Table v(i,j) variance-covariance array (%-squared annual return)
25

26 hardware software show-biz t-bills

27

28 hardware 4 3 -1 0

29 software 3 6 1 0

30 show-biz -1 1 10 0

31 t-bills 0 0 0 0;

32

33 lowyield = smin(i, mean(i)) ;
34 highrisk = smax(i, v(i,i)) ;
35 display lowyield, highrisk ;

36

37 Variables x(i) fraction of portfolio invested in asset i
38 variance variance of portfolio

39

40 Positive Variable x;

41

42 Equations fsum fractions must add to 1.0

43 dmean definition of mean return on portfolio
44 dvar definition of variance;

45

46 fsum.. sum(i, x(i)) =e= 1.0 ;

47 dmean.. sum(i, mean(i)*x(i)) =e= target;
48 dvar.. sum(i, x(i)*sum(j,v(i,j)*x(j))) =e= variance;
49

50 Model portfolio /fsum, dmean, dvar /;

51

52 Solve portfolio using nlp minimizing variance;

That is the end of the echo of the input file. If errors had been detected, the explanatory messages
would be found in this section of the listing file. All discussion of error messages have been
grouped in the section on “ERROR REPORTING,” page 96 .

10.3.2 THE SYMBOL REFERENCE MAP

The maps are extremely useful if one is looking into a model written by someone else, or if trying
to make some changes in one's own model after spending time away from it.

The first map is the symbol cross reference, which lists the identifiers (symbols) from the model
in alphabetical order, identifies them as to type, shows the line numbers where the symbols ap-
pear, and classifies each appearance. The symbol reference map can be turned on by entering a
line containingbonsymxref at the beginning of the program. The map that resulted from

[ALAN] is shown.

84 GAMS OUTPUT

Symbol Listing

SYMBOL TYPE REFERENCES
DMEAN EQU DECLARED 43 DEFINED 47 IMPL-ASN 52

REF 50

DVAR EQU DECLARED 44 DEFINED 48 IMPL-ASN 52
REF 50

FSUM EQU DECLARED 42 DEFINED 46 IMPL-ASN 52
REF 50

HIGHRISK PARAM DECLARED 15 ASSIGNED 34 REF 35
| SET DECLARED 11 DEFINED 11 REF 11

17 24 33 2*34 37 46

2*47 2*48 CONTROL 33 34 46

a7 48
J SET DECLARED 11 REF 24 2*48

CONTROL 48

LOWYIELD PARAM DECLARED 14 ASSIGNED 33 REF 35
MEAN PARAM DECLARED 17 DEFINED 19 REF 33

PORTFOLIO I\;Ilz)DEL DECLARED 50 DEFINED 50 IMPL-ASN 52
TARGET PEREPI\:M D22CLARED 13 DEFINED 13 REF a7

\% PARAM DECLARED 24 DEFINED 24 REF 34
VARIANCE vi% DECLARED 38 IMPL-ASN 52 REF 48

X VAR IngCLARED 37 IMPL-ASN 52 REF 40

46 47 2*48

For each symbol, the name and type of the symbol are first provided. For example, the last sym-
bol listed isx which is defined to be of typéAR The complete list of data types are given be-
low.

Entry in symbol reference table GAMS Data Type
EQU equation
MODEL model
PARAM parameter
SET set
VAR variable

Then comes a list of references to the symbol, grouped by reference type and identified by the
line number in the output file. The actual reference can then be found by referring to the echo
print of the program, which has line numbers on it. In the case of the syritbtiie example

above, the list of references as shown in the symbol reference map are as follows,

DECLARED 37
IMPL-ASN 52
REF 40 46 47 2*48

This means that is declared on line 37, implicitly assigned througtolve statement on line
52, and referenced on lines 40, 46, and 47. The entry 2*48 means that there are two references to
X on line 48 of the input file .

The complete list of reference types is given below.

10.2 THE ILLUSTRATIVE MODEL 85

Reference
DECLARED

DEFINED

ASSIGNED

IMPL-ASN

CONTROL

REF

Description

This is where the identifier is declared as to type. This must be the first app
ance of the identifier

This is the line number where an initialization (a table or a data list between
slashes) or symbolic definition (equation) starts for the symbol.

This is when values are replaced because the identifier appears on the left
assignment statement.

This is an "implicit assignment": an equation or variable will be updated as &
sult of being referred to implicitly in a solve statement.

This refers to the use of a set as the driving index in an assignment, equatic
loop or other indexed operatiosufm, prod , smin or smax)

This is a reference: the symbol has been referenced on the right of an assig

ear-

of an

Lre-

n,

nment,

in adisplay ,in anequation , orin amodel orsolve statement.

10.3.3 THE SYMBOL LISTING MAP

The next map is called the "symbol listing.” All identifiers are grouped alphabetically by type
and listed with their explanatory texts. This is another very useful aid to have handy when first
looking into a large model prepared by someone else. The symbol listing map can be turned on
by entering a line containingpfisymlist at the beginning of the program.

Symbol Listing

SETS

| securities
J Aliased with |

PARAMETERS

HIGHRISK variance of highest security risk
LOWYIELD vyield of lowest yielding security

MEAN
TARGET

mean annual returns on individual securities (%)
target mean annual return on portfolio %

\% variance-covariance array (%-squared annual return)
VARIABLES

VARIANCE variance of portfolio
X fraction of portfolio invested in asset i

EQUATIONS

DMEAN definition of mean return on portfolio
DVAR definition of variance

FSUM fractions must add to 1.0

MODELS

PORTFOLIO

10.3.4 THE UNIQUE ELEMENT LISTING - MAP

The following map is called the "unique Element Listing." All unique elements are first are
grouped in entry order and then in sorted order with their explanatory texts. The unique element

listing map can be turned on by entering a line contaidamyelxref

program.

at the beginning of the

86 GAMS OUTPUT

Unique Element Listing
Unique Elements in Entry Order
1 hardware software show-biz t-bills
Unique Elements in Sorted Order
1 hardware show-biz software t-bills
ELEMENT REFERENCES
hardware DECLARED 11 REF 19 26 28
show-biz DECLARED 11 REF 21 26 30

software DECLARED 11 REF 20 26 29
t-bills DECLARED 11 REF 22 26 31

10.3.5 USEFUL DOLLAR CONTROL DIRECTIVES

This sub-section reviews the most useful of the Dollar Control Directives. These must not be
confused with the dollar exception-handling operators that will be introduced later: the similarity
of terminology is unfortunate. The Dollar Control Directives are compiler directives that can be
put in the input file to control the appearance and amount of detail in the output produced by the
GAMS compiler. The complete list is provided later.

' In all Dollar Control Directives, the $ symbol must be in the first character po-
L‘ sition on the line.

' Dollar Control Directives, are dynamic: they affect only what happens after
L‘ they are encountered, and they can be set and reset wherever appropriate.

They are remembered in "continued compilations" started from work files The directives that do
not have following text can be entered many to a line, as shown below for the map controls.

Dollar Control Di- | Description

rective

$offlisting This directive stops the echo print of the input flenlisting restores
the default.

$offsym>_<ref These four directives are used to control the production of symbol maps.

$offsymlist Maps are most often turned on or off at the beginning of the program and

Sonsymxref left as initially set, but it is possible to produce maps of part of the program

$onsymlist by using a "on-map" directive followed later by an "off-map." The symljst
lists all the symbols in the model. The symxref shows a complete cross-
reference list of symbols by number. Both these maps are produced Ry de-
fault.

$offuelxref These four directives are used to control the production of Unique Element

$offuellist maps which show set membership labels. Maps are most often turned on or

Sonuelxref off at the beginning of the program and left as initially set, but it is posgible

$onuellist to produce maps of part of the program by using a "on-map" directive ffol-
lowed later by an "off-map." The uellist lists all labels in both GAMS entry
and alphabetical order. The uelxref shows a complete cross-reference list
by number. These label maps are suppressed by default.

$offupper This directive causes the echo print of the portion of the GAMS program

10.4 EXECUTION OUTPUT 87

Dollar Control Di- | Description

rective

$onupper following the directive to appear on the output file in the case that it has
been entered in. This is the default on newer GAMS systems. It is neqges-
sary if case conventions have been used in the program, for example [to
distinguish between variables and equati®swupper , will cause all
echo print to be in upper case.

$ontext $ontext-$offtext pairs are used to create "block comments" that jare

$offtext ignored by GAMS. Evergontext must have a matching $offtext in the
same file. Theébofftext =~ must be on a line by itself.

$title 'text’ The text can have up to 80 characters. This causes every page of the|output
to have the title specified.

10.4 EXECUTION OUTPUT

The only output to the listing file while GAMS is executing (performing data manipulations) is
from thedisplay statement. All the user controls available to change the format will be dis-
cussed in detail later. The output from the display statement on line 41 of the example is shown
below. Note the wrap of the explanatory text.

---- 32 PARAMETER LOWYIELD = 7.000 yield of lowest
yielding security
PARAMETER HIGHRISK = 10.000 variance of highest

security risk

If errors are detected because of illegal data operations, a brief message indicating the cause and
the line number of the offending statement will appear.

10.5 OUTPUT PRODUCED BY A SOLVE STATEMENT

In this section, the content of the output produced when a solve statement is executed will be ex-
plained. In Chapter 9 all the actions that are triggered by a solve were listed. All output produced
as a result of a solve is labeled with a subtitle identifying the model, its type, and the line number
of the solve statement.

10.5.1 THE EQUATION LISTING

The first output is the EQUATION LISTING, which is marked with that subtitle on the output
file. By default, the first three equations in every block are listed. If there are three or fewer sin-
gle equations in any equation block, then all the single equations are listed. The EQUATION
LISTING section from the example is listed below. This model has three equation blocks, each
producing one single equation.

A Quadratic Programming Model for Portfolio Analysis (ALAN,SEQ=124a)
Equation Listing SOLVE PORTFOLIO USING NLP FROM LINE 48

---- FSUM =E= fractions must add to 1.0
FSUM.. X(hardware) + X(software) + X(show-biz) + X(t-bills) =E=1 ;

(LHS = 0, INFES = 1 *¥)

88 GAMS OUTPUT

---- DMEAN =E= definition of mean return on portfolio

DMEAN.. 8*X(hardware) + 9*X(software) + 12*X(show-hiz) + 7*X(t-bills) =E= 10
. (LHS = 0, INFES = 10 **¥)

---- DVAR =E= definition of variance

DVAR.. (0)*X(hardware) + (0)*X(software) + (0)*X(show-biz) - VARIANCE =E= 0

(LHS = 0)

The equation listing is an extremely useful debugging aid. It shows the vari-
" ables that appear in each constraint, and what the individual coefficients and
right-hand-side value evaluate to after the data manipulations have been done.

Most of the listing is self-explanatory. The name, text, and type of constraints are shown. The
four dashes are useful for mechanical searching.

All the terms that depend on variables are collected on the left, and all the con-
M" stant terms are combined into one number on the right, any necessary sign
changes being made.

Four places of decimals are shown if necessary, but trailing zeroes following the decimal point
are suppressed. E-format is used to prevent small numbers being displayed as zero.

The nonlinear equations are treated differently. If the coefficient of a variable
in the equation listing is enclosed in parentheses, then the corresponding con-
n straint is nonlinear, and the value of the coefficient depends on the activity
levels of one or more of the variables. The listing is not algebraic, but shows
the partial derivative of each variable evaluated at their current level values.

Note that, in the equation listing from our example, the equdtian is nonlinear. A simpler
example will help to clarify the point. Consider the following equation and associated level val-
ues.

eql.. 2*sqr(x)*power(y,3) + 5*x - 1.5y =e=2; x.| = 2;y.| = 3;

then the equation listing will appear as
EQL.. (221)*X + (216.1667)*Y =2= ; (LHS = 225.5 ***)

The coefficient ok is determined by first differentiating the equation above with resp&ct to

This results iR*(2*x.l)*power(y.l,3)+ 5 , which evaluates to 221. Similarly the coef-
ficient of y is obtained by differentiating the equation above with respect to y which results in
2*(sqr(x.n*3*sqr(y.l) + 1.5/sqr(y.l) , giving 216.1667. Notice that the coeffi-

cient ofy could not have been determined if its level had been left at zero. The attempted divi-
sion by zero would have produced an error and premature termination.

The result of evaluating the left-hand-side of the equation at the initial point is shown at the end
of each individual equation listing. In the example above it is 225.5, and the three asterigks (
are a warning that the constraint is infeasible at the starting point.

10.5 OUTPUT PRODUCED BY A SOLVE STATEMENT 89

The order in which the equations are listed depends on how the model was de-

fined. If it was defined with a list of equation names, then the listing will be in
n the order in that list. If it was defined &dl/ , then the list will be in the or-

der of declaration of the equations. The order of the entries for the individual

constraints is determined by the label entry order.

10.5.2 THE COLUMN LISTING

The next section of the listing file is the column listing. This is a list of the individual coeffi-

cients sorted by column rather than by row. Once again the default is to show the first three en-
tries for each variable, along with their bound and level values. The format for the coefficients is
exactly as in the equation listing, with the nonlinear ones enclosed in parentheses and the trailing
zeroes dropped. The column listing section from our example follows.

A Quadratic Programming Model for Portfolio Analysis (ALAN,SEQ=124a)
Column Listing SOLVE PORTFOLIO USING NLP FROM LINE 48

- X fraction of portfolio invested in asset |
X(hardware)
(.LO, .L, .UP =0, 0, +INF)
1 FSUM
8 DMEAN
(0) DVAR
X(software)
(.LO, .L, .UP =0, 0, +INF)
1 FSUM
9 DMEAN
(0) DVAR
X(show-biz)
(.LO, .L, .UP =0, 0, +INF)
1 FSUM
12 DMEAN
(0) DVAR

REMAINING ENTRY SKIPPED
---- VARIANCE variance of portfolio

VARIANCE
(.LO, .L, .UP =-INF, 0, +INF)
-1 DVAR
' The order in which the variables appear is the order in which they were de-
l‘ clared.

10.5.3 THE MODEL STATISTICS

The final information generated while a model is being prepared for solution is the statistics
block, shown below. Its most obvious use is to provide details on the size and nonlinearly of the
model.

90 GAMS OUTPUT

Model Statistics SOLVE PORTFOLIO USING NLP FROM LINE 48

MODEL STATISTICS

BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 3
BLOCKS OF VARIABLES 2 SINGLE VARIABLES 5
NON ZERO ELEMENTS 12 NON LINEAR N-Z 3
DERIVATIVE POOL 10 CONSTANT POOL 10
CODE LENGTH 87

GENERATION TIME = 0.020 SECONDS 0.1 Mb WAT-50-094

The BLOCKcounts refer to GAM®quations andvariables , theSINGLE counts to indi-
vidual rows and columns in the problem generated NGOl ZERO ELEMENT@&ntry refers to
the number of non-zero coefficients in the problem matrix.

There are four entries that provide additional information about nonlinear modeldORhe
LINEAR N-Z entry refers to the number of nonlinear matrix entries in the model.

All forms of nonlinearly do not have the same level of complexity. For exanipleis a simpler
form of nonlinearly thaexp(x*y) . So, even though both these terms count as 1 nonlinear en-
try in the matrix, additional information is required to provide the user with a feel for the com-
plexity of the nonlinearly. GAMS provides tRODE LENGTHentry as a good yardstick for this
purpose. There are two other entri@&ERIVATIVE POOL andCONSTANT POOthat provide
some more information about the nonlinearly. In general, the more nonlinear a problem is, the
more difficult it is to solve.

The times that follow statistics are also useful. GENERATION TIMEis the time used since

the syntax check finished. This includes the time spent in generating the model. The measure-
ment units are given, and represent ordinary clock time on personal computers, or central proces-
sor usage (CPU) time on other machines.

10.5.4 THE SOLVE SUMMARY

This is the point (chronologically speaking) where the model is solved, and the next piece of out-
put contains details about the solution process. It is divided into two parts, the first being com-
mon to all solvers, and the second being specific to a particular one.

The section of the solve summary that is common for all solvers is first discussed. The corre-
sponding section for the example model is shown below.

SOLVE SUMMARY

MODEL PORTFOLIO OBJECTIVE VARIANCE
TYPE NLP DIRECTION MINIMIZE
SOLVER MINOS5 FROM LINE 48

**** SOLVER STATUS 1 NORMAL COMPLETION
»*** MODEL STATUS 2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE 2.8990

RESOURCE USAGE, LIMIT 0.020 1000.000
ITERATION COUNT, LIMIT 5 10000
EVALUATION ERRORS 0 0

The common part of the solve summary is shown above. It can be found mechanically by
searching for four asterisks. The explanation for the information provided in this section follows.

10.5 OUTPUT PRODUCED BY A SOLVE STATEMENT 91

MODEL PORTFOLIO

This provides the name of the model being solved.
TYPE NLP

This provides the model type of the model being solved.
SOLVER MINOS5

This provides the name of the solver used to solve the model.
OBJECTIVE VARIANCE

This provides the name of the objective variable being optimized
DIRECTION MINIMIZE

This provides the direction of optimization being performed.

¥+ SOLVER STATUS 1 NORMAL COMPLETION
¥ MODEL STATUS 2 LOCALLY OPTIMAL

These provide the solver status and model status for the problem, and are discussed in greater
detail at the end of this subsection.

¥+ OBJECTIVE VALUE 2.8990

This provides the value of the objective function at the termination of the solve. If the Solver and
Model have the right status, this value is the optimum value for the problem.

RESOURCE USAGE, LIMIT 0.109 1000.000

These two entries provide the amount of CPU time (in seconds) taken by the solver, as well as
the upper limit allowed for the solver. The solver will stop as soon as the limit on time usage has
been reached. The default limit on time usage is 1000 seconds. This limit can be changed by en-
tering a line containing the statement optieslim = xx ; in the program before tleolve
statement, whenex is the required limit on CPU time in seconds.

ITERATION COUNT, LIMIT 5 1000

These two entries provide the number of iterations used by the solver, as well as the upper limit
allowed for the solver. The solver will stop as soon as this limit is reached. The default limit on
iterations used is 1000. This limit can be changed by entering a line containing the statement
option iterlim = nn ; in the program before thewlve statement, where nn is the re-

quired limit on the iterations used.

EVALUATION ERRORS 0 0

These two entries provide the number of numerical errors encountered by the solver, as well as
the upper limit allowed for the solver. These errors result due to numerical problems like division
by 0. This is suppressed foP, RMIP, andMIP models since evaluation errors are not applica-

ble for these model types. The default limit on evaluation errors used is 0. This limit can be
changed by entering a line containing the statement og¢iotim = nn ; in the program be-

fore thesolve statement, where nn is the required limit on the evaluation errors allowed.

92 GAMS OUTPUT

The SOLVER STATUS and MODEL STATUS require special explanation. The status for the
solver (the state of the program) and the model (what the solution looks like) are characterized,
and a complete list of possible MODEL STATUS and SOLVER STATUS messages is given
below.

Here is a list of possible MODEL STATUS messages:

Model Status Meaning

This means that the solution is optimal. It only applies
linear problems or relaxed mixed integer problems
(RMIP).

This message means that a local optimal. This is the mes-
sage to look for if the problem is nonlinear, since all that

can guarantee for general nonlinear problems is a locgl
optimum.

That is means that the solution is unbounded. This mes-

sage is reliable if the problem is linear, but occasionally it
appears for difficult nonlinear problem that are not truly
unbounded, but that lack some strategically paced bolinds
to limit the variables to sensible values.

This means that the linear problem is infeasible. Som¢
thing is probably wrongly specified in the logic or the
data.

This message means that no feasible point could be fpund
for the nonlinear problem from the given starting point. It
does not necessarily mean that no feasible point exist

This means that the current solution is not feasible, buit
that the solver program stopped, either because of a limit
(iteration or resource), or because of some sort of diff
culty. Check the solver status for more information.

This is again an incomplete solution, but it appears to|be
feasible.

An integer solution has been found to a MIP (mixed inte-
ger problem). There is more detail following about
whether this solution satisfies the termination criteria (set
by options optcr or optca

This is an incomplete solution to a MIP. An integer solu-
tion has not yet been found.

There is no integer solution to a MIP. This message
should be reliable.

ERROR UNKNOWN There is no squan in either of th_ese cases. Look care-
ERROR NO SOLUTION fully for more detail about what might have happened

—

1 OPTIMAL 0

2 LOCALLY OPTIMAL

3 UNBOUNDED

U
1

4 INFEASIBLE

5 LOCALLY INFEASIBLE

(%)

6 INTERMEDIATE INFEASIBLE

7 INTERMEDIATE NONOPTIMAL

8 INTEGER SOLUTION

9 INTERMEDIATE NON-INTEGER

10 INTEGER INFEASIBLE

10.5 OUTPUT PRODUCED BY A SOLVE STATEMENT 93

This is the list of possibISOLVER STATUSnessages:

Solver Status Meaning

This means that the solver terminated in a normal way:
i.e., it was not interrupted by an iteration or resource ljmit
or by internal difficulties. The model status describes the
characteristics of the accompanying solution.

This means that the solver was interrupted because it
used too many iterations. Use optiterlim to in-
crease the iteration limit if everything seems normal.

This means that the solver was interrupted because it
used too much time. Use optiogslim to increase the
time limit if everything seems normal.

This means that the solver encountered difficulty and was
unable to continue. More detail will appear following the
message.

Too many evaluations of nonlinear terms at undefined
values. You should use bounds to prevent forbidden gp-
erations, such as division by zero. The rows in which the
errors occur are listed just before the solution.

6 UNKNOWN ERROR AI_I these messages announce some sort of unanticipated
PREPROCESSOR(S) failure of GAMS, a solver, or between the two. Check|the

ERROR SETUP FAILURE output thoroughly for hints as to what might have gon¢
ERROR SOLVER FAILURE wrong

ERROR INTERNAL SOLVER ERROR :
ERROR POST-PROCESSOR ERROR(S)
ERROR SYSTEM FAILURE

1 NORMAL COMPLETION

2 ITERATION INTERRUPT

3 RESOURCE INTERRUPT

4 TERMINATED BY SOLVER

5 EVALUATION ERROR LIMIT

10.5.5 SOLVER REPORT

The next section in the listing file is the part of the solve summary that is particular to the solver
program that has been used. This section normally begins with a message identifying the solver
and its authors: MINOS was used in the example here. There will also be diagnostic messages in
plain language if anything unusual was detected, and specific performance details as well, some
of them probably technical. The Solver Manual will help explain these. In case of serious trouble,
the GAMS listing file will contain additional messages printed by the solver. This may help
identify the cause of the difficulty. If the solver messages do not help, a perusal of the solver
documentation or help from a more experienced user is recommended. The solver report from
our example follows.

GAMS/MINOS
B. A. Murtagh, University of New South Wales
and
P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright
Systems Optimization Laboratory, Stanford University.

94 GAMS OUTPUT

Work space allocated -- 0.04 Mb

EXIT -- OPTIMAL SOLUTION FOUND

MAJOR ITNS, LIMIT 11 200
FUNOBJ, FUNCON CALLS 0o 71
SUPERBASICS 4

INTERPRETER USAGE 0.02
NORM RG /NORM Pl 1.801E-09

The line "work space allocated - 0.04 MB" provides the

amount of memory used by the solver for the problem. If the amount of memory the solver esti-
mates that it needs is not available, GAMS will return a message saying that not enough memory
was allocated. GAMS will also return the maximum amount of memory available on the ma-
chine. The user can direct the solver to use less memory by entering a line containing the state-
mentmymodel.workspace = xx ; weremymodel is the name of the model being solved as
specified by thenodel statement, ankx is the amount of memory in Megabytes. Note that the
solver will attempt to solve the problem witk MB of memory, however it is not guaranteed to
succeed since the problem may require more memory.

More information can be obtained for a successful run by entering a line containing the statement
option sysout = on ; in the program above tis®lve statement.

10.5.6 THE SOLUTION LISTING

The next section of the listing file is a row-by-row then column-by-column listing of the solu-
tions returned to GAMS by the solver program. Each individual equation and variable is listed
with four pieces of information.

This section of the listing file can be turned off by entering a line containing the statgment
tion solprint = off ; in the program above the solve statement.

The solution listing section from our example is shown below.
LOWER LEVEL UPPER MARGINAL

---- EQU FSUM 1.000 1.000 1.000 -13.529
---- EQU DMEAN 10.000 10.000 10.000 1.933
---- EQU DVAR . . . -1.000

FSUM fractions must add to 1.0
DMEAN definition of mean return on portfolio
DVAR definition of variance

---- VAR X fraction of portfolio invested in asset i

LOWER LEVEL UPPER MARGINAL

hardware . 0.303 +INF .
software . 0.087 +INF EPS
show-biz . 0.505 +INF .
t-bills . 0.106 +INF EPS

LOWER LEVEL UPPER MARGINAL
---- VAR VARIANCE -INF 2.899 +INF

VARIANCE variance of portfolio
The order of the equations and variables are the same as in the symbol listing described before
and will be described later

10.5 OUTPUT PRODUCED BY A SOLVE STATEMENT 95

The four columns associated with each entry have the following meaning,

Heading in listing file Description
LOWER lower bound (o)
LEVEL level value ()
UPPER upper bound.(ip)
MARGINAL marginal (m)

For variables the values in th®& WERNJUPPERcolumns refer to the lower and upper bounds.
For equations they are obtained from the (constant) right-hand-side value and from the relational
type of the equation. These relationships were described in Chapter 8.

The LEVEL andMARGINALvalues have been determined by the solver, and

n the values shown are used to update the GAMS values. In the list they are
shown with fixed precision, but the values are returned to GAMS with full
machine accuracy. The single dotson the list represent zero.

EPSis the GAMS extended value that means very close to but different from zero. It is common
to see a marginal value givenEBBS since GAMS uses the convention that marginal are zero for
basic variables, and not zero for others.

EPS is used with non-basic variables whose marginal values are very close to,

n or actually, zero, or in nonlinear problems with superbasic variables whose
marginals are zero or very close to it. A superbasic variable is one between its
bounds at the final point but not in the basis.

There are brief explanations of technical terms used in this section in the Glossary. For models
that are not solved to optimality, some constraints may additionally be marked with certain flags.
The list of these flags and their description is given below.

Flag Description

INFES The row or column is infeasible. This mark is made for any entry whose
level value is not between the upper and lower bounds.

NOPT The row or column is non-optimal. This mark is made for any non-basiqg en-

tries for which the marginal sign is incorrect, or superbasic ones for whjch
the marginal value is too large.
UNBND The row or column that appears to cause the problem to be unbounded.

10.5.7 Report SUMMARY

The final section of the solution listing is the report summary, marked with four asterisks (as are
all important components of the output). It shows the count of rows or columns that have been
markedINFES, NOPT or UNBNUDnN the solution listing section. The sum of infeasibilities will

be shown if it the reported solution is infeasible. The error count in is only shown if the problem
is nonlinear.

96 GAMS OUTPUT

¥ REPORT SUMMARY : 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED
0 ERRORS

If our example had display output for reporting, it would come here.

10.5.8 FILE SUMMARY

The last piece of the output file is important: it gives the names of the input and output disk files.
If work files (save or restart) have been used, they will be named here as well.

*¥xx FILE SUMMARY

INPUT C:\PROGRAM FILES\GAMSIDE\ALAN.GMS
OUTPUT C:\PROGRAM FILES\GAMSIDE\ALAN.LST

10.6 ERROR REPORTING

All the comments and description about errors have been collected into this section for easy ref-
erence when disaster strikes.

Effective error detection and recovery are important parts of any modeling system. GAMS is de-
signed around the assumption that the "error State” is the normal state of modeling. Experience
shows that most compilations during the early stages of development will produce errors. Not to
Worry! The computer is much better at checking details that the human mind and should be able
to provide positive feedback and suggestions about how to correct errors or avoid ambiguities.
Developing a model is like writing a paper or an essay ; many drafts and rewrites are required
until the arguments are presented in the most effective way for the reader and meet all the re-
guirements of proper English. GAMS acts like a personal assistant with knowledge of mathe-
matical modeling and of the syntactic and semantic details of the language.

Errors are detected at various stages in the modeling process. Most of them are caught at the
compilation stage, which behaves like the proofreading stage of the modeling process. Once a
problem has passed through the rigorous test of this stage, the error rate drops almost to zero.
Most of the execution runs, which are much more expensive than compilation, proceed without
difficulties because GAMS "knows" about modeling and has anticipated problems. Many of the
typical errors made with conventional programming languages are associated with concepts that
do not exist in GAMS. Those error sources --such as address calculations, storage assignment,
subroutine linkages, input-output and flow control -- create problems at execution time, are diffi-
cult to locate, often lead to long and frustrating searches, and leave the computer user intimi-
dated. GAMS takes a radically different approach. Errors are spotted as early as possible, are re-
ported in a way understandable to the user, including clear suggestions for how to correct the
problem, and a presentation of the source of the error in terms of the user's problem.

' All errors are marked with four asterisks™ ' at beginning of a line in the
L‘ output listing.

As soon as an error is detected, processing will be stopped at the next convenient opportunity. A
model will never be solved after an error has been detected. The only remedy is to fix the error
and repeat the run.

10.6 ERROR REPORTING 97

Errors are grouped into the three phases of GAMS modeling: compilation, execution and model
generation (which includes the solution that follows). The following three sub-sections discuss
these types of errors.

10.6.1 COMPILATION ERRORS

Compilation errors were discussed in some detail in Chapter. There is some overlap between the
material in those sections and this one. Several hundred different types of errors can be detected
during compilation and can often be traced back to just one specific symbol in the GAMS input.
Most of the errors will be caused by simple mistakes: forgetting to declare an identifier, putting
indices in the wrong order, leaving out a necessary semicolon, or misspelling a label. For errors
that are not caused by mistakes, the explanatory error message text will help you diagnose the
problem and correct it.

When a compilation error is discovered$-aymbol and error number are
n printed below the offending symbol (usually to the right) on a separate line
that begins with the four asterisks.

If more than one error is encountered on a line (possibly because the first error caused a series of
other spurious errors) the $-signs may be suppressed and error number squeezed. GAMS will not
list more than 10 errors on any one line.

At the end of the echo print of the program, a list of all error numbers en-
M" countered, together with a description of the probable cause of each error, will
be printed. The error messages are self-explanatory and will not be listed here.

It is worth noting that it is easy to produce a model that does not do what you want it to do, but
does not contain errors in the sense that the term is being used in this section. The best precaution
is to check your work carefully and build in as many automatic consistency checks as possible.

One mistake that may cause confusion is if a GAMS reserved word is used for a label or an iden-
tifier. In this case, it is impossible to provide helpful messages for technical reasons.

In some cases, an error may not be detected until the statement following its
occurrence, where it may produce a number of error conditions whose expla-

n nations seem quite silly. Always check carefully for the cause of the first error
is such a group, and look at the previous statement (and especially for missing
semicolons) if nothing seems obvious.

The following example illustrates the general reporting format for compiler errors.

98 GAMS OUTPUT

1 set c crops / wheat, corn, wheat, longaname /

B $172

2 parameter price(c) / wheat 200, cotton 700 /
ok $170

3

Error Messages

170 Domain violation for element
172 Element is redefined

xx% 2 ERROR(S) 0 WARNING(S)
%o JSER ERROR(S) ENCOUNTERED

10.6.2 COMPILATION TIME ERRORS

The reporting format for errors found while analyzing solve statements is more complicated than
for normal compilation errors, mainly because many things must be checked. All identifiers ref-
erenced must be defined or assigned, the mathematics in the equations must match the model
class, and so on. More elaborate reporting is required to accurately describe any problems found.
The solve statement is only checked if the model has been found to be error free up to this point.
This is not only because the check is comparatively expensive, but also because many erroneous
and confusing messages can be produced while checking a solve in a program containing other
errors.

Solve error messages are reported in two places and in two formats. First, they

are shown immediately below the solve statement with a short text including
n the name of any offending identifier and the type of model involved. This will

be sufficient in most cases. Second, a longer message with some hints appears

with the rest of the error messages at the end of the compilation.

The example below illustrates how the general reporting format for compiler errors associated
with a solve statement.

1 variables x,y, z ;
2 equations eql, eqgz;
3
4 eql.. x**2-y=e=2z;
5 eq2.. min(x,y) =I= 20 ;
6
7 model silly /all /;
8 solve silly using Ip maximizing z ;
ko $54,51,256
**xx THE FOLLOWING LP ERRORS WERE DETECTED IN MODEL SILLY:
**xx 54 IN EQUATION EQ1 .. ENDOG OPERANDS FOR **
**xx 51 IN EQUATION EQ2 .. ENDOG ARGUMENT(S) IN FUNCTION
9

Error Messages

51 Endogenous function argument(s) not allowed in linear models

54 Endogenous operands for ** not allowed in linear models

256 Error(s) in analyzing solve statement. More detail appears
Below the solve statement above

#ox 3 ERROR(S) 0 WARNING(S)
x| JSER ERROR(S) ENCOUNTERED

10.6 ERROR REPORTING 99

10.6.3 EXECUTION ERRORS

Execution time errors are usually caused by illegal arithmetic operations such as division by zero
or taking the log of a negative number. GAMS prints a message on the output file with the line
number of the offending statement and continues execution. A GAMS program should never
abort with an unintelligible message from the computer’s operating system if an invalid operation
is attempted. GAMS has rigorously defined an extended algebra that contains all operations in-
cluding illegal ones. The model library problem [CRAZY] contains all non-standard operations
and should be executed to study its exceptions.

Recall that GAMS arithmetic is defined over the closed interldH,+INF] and contains val-
uesEPS(small but not zero), NA(not available), adtiDF (the result of an illegal operation).

The results of illegal operations are propagated through the entire system and can be displayed
with standard display statements. However remember that one cannot solve a model or save a
work file if errors have been detected previously.

10.6.4 SOLVE ERRORS

The execution of aolve statement can trigger additional errors called MATRIX errors, which
report on problems encountered during transformation of the model into a format required by the
solver. Problems are most often caused by illegal or inconsistent bounds, or an extended range
value being used as a matrix coefficient. The example below shows the general format of these
errors:

variable x;
equation eql;

eql..x=I=10;

xlo=10;

Xxup=5;

model wrong /eql/;

solve wrong using Ip maximizing X ;

OCoO~NOUITRWNEF

*ox MATRIX ERROR - LOWER BOUNDS > UPPER BOUND
X (LO,.L,.UP=10,0,5)

ik SOLVE from line 8 ABORTED, EXECERROR =1
*** USER ERROR(S) ENCOUNTERED

Some solve statement require the evaluation of nonlinear functions and the computation of de-
rivatives. Since these calculations are not carried out by GAMS but by other subsystems not un-
der its direct control, errors associated with these calculations are reported in the solution report.
Unless reset with the domlim option the subsystems will interrupt the solution process if arithm-
etic exceptions are encountered. They are then reported on the listing as shown in the following
example:

variable x, y;
equation one;

one.. y =e= sqrt(10/x);
x.I=10;
x.lo = 0;

model divide / all /;
solve divide maximizing y using nlp;

OCoO~NOUITRWNEF

100 GAMS OUTPUT

SOLVE SUMMARY

MODEL DIVIDE OBJECTIVE Y
TYPE NLP DIRECTION MAXIMIZE
SOLVER MINOS5 FROM LINE 9

¥ SOLVER STATUS 5 EVALUATION ERROR LIMIT
¥+ MODEL STATUS 7 INTERMEDIATE NONOPTIMAL
**+* OBJECTIVE VALUE 1.0000

RESOURCE USAGE, LIMIT 0.141 1000.000
ITERATION COUNT, LIMIT 0 10000
EVALUATION ERRORS 2 0

EXIT -- Termination requested by User in subroutine FUNOBJ after 7 calls

#x ERRORS(S) IN EQUATION ONE
2 INSTANCES OF - DIVISION BY ZERO (RESULT SET TO 0.1E+05)

#x REPORT SUMMARY : 1 NONOPT (NOPT)
0 INFEASIBLE
0 UNBOUNDED
2 ERRORS (****)

Note that the solver status returned with a value of 5, meaning that the solver has been inter-
rupted because more than domlim evaluation errors have been encountered. The type of evalua-
tion error and the equation causing the error are also reported.

If the solver returns an intermediate solution because of evaluation errors, the following solve
will still be attempted. The only fatal GAMS error that can be caused by a solver program is the
failure to return any solution at all. If this happens, as mentioned above, all possible information
is listed on the GAMS output file and any solves following will not be attempted.

10.7 SUMMARY

This is the end of teh sequentila discussion of the basic features of the GAMS language. All fur-
ther chapters are geared towards more advanced use of GAMS.

11

CONDITIONAL EXPRESSIONS, ASSIGNMENTS AND
EQUATIONS

11.1 INTRODUCTION

This chapter deals with the way in which conditional assignments, expressions and equations are
made in GAMS. The index operations already described are very powerful, but it is necessary to
allow for exceptions of one sort or another. For example, heavy trucks may not be able use a par-
ticular route because of a weak bridge, or some sectors in an economy may not produce export-
able product. The use of a subset in an indexed expression has already been shown to provide
some ability to handle exceptions.

11.2 LOGICAL CONDITIONS

Logical conditions are special expressions that evaluate to a value of True or False. Numerical
Expressions can also serve as logical conditions. Additionally, GAMS provides for numerical
relationship and logical operators that can be used to generate logical conditions. The next four
sub-sections discuss these various building blocks that can be used to develop complex logical
conditions.

Numerical expressions can also serve as logical conditions - a result of zero is
M" treated as a logical value of False, and a non-zero result is treated as a logical
value of True.

11.2.1 NUMERICAL EXPRESSIONS AS LOGICAL CONDITIONS

Numerical expressions can also serve as logical conditions - a result of zero is
M" treated as a logical value of False, and a non-zero result is treated as a logical
value of True.

The following numerical expression can be used to illustrate this point.

2*a—4

This expression results in a logical value of False véhen2 because the expression numeri-
cally evaluates to 0. For all other valuesapthe expression results in a non-zero value, and
therefore is equivalent to a logical value of True.

102 CONDITIONAL EXPRESSIONS, ASSIGNMENTS AND EQUATIONS

11.2.2 NUMERICAL RELATIONSHIP OPERATORS

Nmerical relationship operators compare two numerical expressions. For completeness all nu-
merical relationship operators are listed below.

Operator Description

It, < strictly less than

le, <= less than-or-equal to
eq, = equal to

ne, <> not equal to

ge, >= greater than or equal to
gt, > strictly greater than

The following example of a numerical relationship illustrates its use as a logical condition.

(sar(a) > a)

This condition evaluates to false-ifl< a < 1. For all other values &, this condition evaluates
to True. Note that the same expression can also be writ{egrés) gt a)

11.2.3 LOGICAL OPERATORS

The logical operators available in GAMS are listed below.

Operator Description
not not
and and
or inclusive or
xor exclusive or

The truth table generated by these logical operators is given below.

Operands Results
a b aandb aorb axorb not a
0 0 0 0 0 1
0 non-zero 0 1 1
non-zero 0 0 1 1
non-zero non-zero 1 1 0

11.2.4 SET MEMBERSHIP

Set membership can also be used as a logical condition. The label results in a logical value of
true if it is a member of the set in question, and false if it is not. This is used with subsets and dy-
namic sets.

Consider the following example for illustration.

/1*10/
11*3/ ;

set i
subif(i)

11.2 LOGICAL CONDITIONS 103

The sessubi(i) results in a logical value of true for all elements that belosglbd and false
for all elements of that do not belong teubi .

The use of set membership as a logical condition is an extremely powerful feature of GAMS and
while its use will be illustrated later on in this chapter, its full power becomes clear when consid-
ered with the description of dynamic sets later.

11.2.5 LOGICAL CONDITIONS INVOLVING ACRONYMS

Acronyms, which are character string values, can be used in logical conditions only witbrthe
<> operatorsnly.

Consider the following example of logical conditions involving the use of acronyms,

dayofweek = wednesday
dayofweek <> thursday

wheredayofweek is a parameter, andednesday andthursday are acronyms.

11.2.6 NUMERICAL VALUES OF LOGICAL CONDITIONS

The previous four sub-sections have described the various features in GAMS that can be used as
logical conditions. However, GAMS does not have a Boolean data type.

' GAMS follows the convention that the result of a relational operation is zero if
L‘ the assertion is false, and one if true.
Consider the following example for illustration,

X=(1<2)+(2<3)

The expression to the right of the assignment evaluates to 2 since both logical conditions within
parenthesis are true and therefore assume a value of 1. Note that this is different from the as-
signment below,

x=(1<2)or(2<3)

which evaluates to 1 due to the or operator behaving as explained above.

11.2.7 MIXED LOGICAL CONDITIONS - OPERATOR PRECEDENCE

The building blocks discussed in the first four subsections can be used to generate more complex
logical conditions. The default precedence order in a logical condition used by GAMS in the ab-
sence of parenthesis is shown below in decreasing order.

104 CONDITIONAL EXPRESSIONS, ASSIGNMENTS AND EQUATIONS

Operation Operator
Exponentiation **
Numerical Operators

- Multiplication, Division *

- Unary operators - Plus, Minus +, -
- Binary operators - addition, subtraction +, -
Numerical Relationship operators <, <E 5,35, 2
Logical Operators

- not not
-and and
- or, xor or, xor

Note that in the case of operators with the same precedence, the order in which the operator ap-
pears in the expression is used as the precedence criterion, with the order reducing from left to
right.

' It is always advisable to use parentheses rather than relying on the precedence
L‘ order of operators. It prevents errors and makes the intention clear.
Consider the following example for illustration,

x-5*yandz-5

is treated equivalent {x - (5*y)) and (z-5) . However, note that the use of parenthesis
does make the expression clearer to understand.

11.2.8 MIXED LOGICAL CONDITIONS - EXAMPLES

Some simple examples of logical conditions, containing the building blocks described in the pre-
vious sub-sections, are shown below to illustrate the generation and use of more complex logical
conditions.

Logical Condition Numerical Value Logical Value
(1<2)+(3<4) 2 True
(2<1l)and (3<4) 0 False
(4*5 - 3) + (10/8) 17.125 True
(4*5-3) or (10 - 8) 1 True
(4 and 5) + (2*3 <= 6) 2 True
(4and 0) + (2*3 < 6) 0 False

11.3 THE DOLLAR CONDITION

This section introduces the dollar operator, which is one of the most powerful features of GAMS.
The dollar operator operates with a logical condition. The $oondition) can be read as "such
that condition is valid" where condition is a logical condition.

' The dollar logical conditions cannot contain variables. Variable attributes (like
L‘ 1 and.m) are permitted however.

11.4 CONDITIONAL ASSIGNMENTS 105

The dollar operator is used to model conditional assignments, expressions, and equations. The
following subsection provides an example that will clarify its use. The next section will deal in-
dividually with the topic of using dollar conditions to model conditional assignments, expres-
sions, and equations respectively.

11.3.1 AN EXAMPLE

Consider the following simple condition,
if (b >1.5),thena=2

This can be modeled in GAMS using the dollar condition as follows,
as(b>15)=2;

If the condition is not satisfied, no assignment is made. Note that one can "refdisthsuch
that" to clarify the meaning:d, such thab is greater than 1.5, equals 2"

11.3.2 NESTED DOLLAR CONDITIONS

Dollar conditions can be also nested. The t&oondition1$(condition2)) can be
read asb(condition1 and condition2)

' For nested dollar conditions, all succeeding expressions after the dollar must
L‘ be enclosed in parentheses.

Consider the following example,

u(k)$(s(k)$t(k)) = a(k) ;

K, s(k), t(k) , andi are sets, while(k) anda(i) are parameters. The assignment will
be made only for those memberskahat are also members of batlandt . Note the position of
the parenthesis in the dollar condition. The statement above can be rewritten as

u(k)$(s(k) and t(k)) = a(k) ;

' To assist with the readability of statements, it is strongly recommended to use
L‘ the logical and operator instead of nesting dollar operators.

11.4 CONDITIONAL ASSIGNMENTS

The statement comprising the example in the Section before was a conditional assignment. In this
example, the dollar condition was on the left-hand-side of the assignment.

' The effect of the dollar condition is significantly different depending on which
L‘ side of the assignment it is in.

In many cases, it may be possible to use either of the two forms of the dollar

M" condition to describe an assignment. In such a case, clarity of logic should be
used as the criterion for choice.

The next two subsections describe the use of the dollar condition on each side of the assignment.

106 CONDITIONAL EXPRESSIONS, ASSIGNMENTS AND EQUATIONS

11.4.1 DOLLAR ON THE LEFT

The example illustrated in the section above uses the dollar condition on the left-hand side of the
assignment statement.

For an assignment statement with a dollar condition on the left-hand side, no
assignment is made unless the logical condition is satisfied. This means that
the previous contents of the parameter on the left will remain unchanged for
labels that do not satisfy the condition.

If the parameter on the left-hand side of the assignment has not previously
been initialized or assigned any values, zeroes will be used for any label for
which the assignment was suppressed.

N N

Consider the following example adapted from [CHENERY],
rho(i)$(sig(i) ne 0) = (1./sig(i)) - 1. ;

The parametesig(i) has been previously defined in the model and the statement above is
used to calculateho(i) . The dollar condition on the statement protects against dividing by
zero. If any of the values associated vgigyi) turn out to be zero, no assignment is made and
the previous values oho(i) remain. As it happengho(i) was previously not initialized,

and therefore all the labels for whisig(i) is 0 will result in a value of 0.

Now recall the convention, explained in Section 11.2.1 that non zero implies true and zero im-
plies false. The assignment above could therefore be written as

rho(i)$sig(i) = (1./sig(i)) - 1. ;

11.4.2 DOLLAR ON THE RIGHT

For an assignment statement with a dollar condition on the right hand side, an
M" assignment is always made. If the logical condition is not satisfied, the corre-
sponding term that the logical dollar condition is operating on evaluates to 0.

Consider the following example, which is a slight modification to the one described in Section
11.3.1,

X =2%(y > 1.5) ;
Expressed in words, this is equivalent to,
if (y>1.5) then(x=2), else(x=0)

Therefore an if-then-else type of construct is implied, but the else operation is predefined and
never made explicit. Notice that the statement in the illustrative example above can be re-written
with an explicit if-then-else and equivalent meaning as

x=2%(y gt 1.5) + 0$(y le 1.5) ;

11.4 CONDITIONAL ASSIGNMENTS 107

This use of this feature is more apparent for instances when an else condition needs to be made
explicit. Consider the next example adapted from [FERTD]. Thie gsetthe set of plants, and

are calculatingnur(i) , the cost of transporting imported raw materials. In some cases a barge
trip must be followed by a road trip because the plant is not alongside the river and we must
combine the separate costs. The assignment is:

mur(i) =(1.0 +. 0030*ied(i, barge"))$ied(i,'barge’)
+(0.5 + .0144*ied(i,'road"))$ied(i,'road");

This means that if the entry in the distance table is not zero, then the cost of shipping using that
link, which has a fixed and a variable components, is added to the total cost,. If there is no dis-
tance entry, there is no contribution to the cost, presumably because that mode is not used.

11.4.3 FILTERING CONTROLLING INDICES IN INDEXED OPERATIONS

The controlling indices can, in certain cases, be filtered through the conditional set without the
use of the dollar operator. Consider the example described in that section. The total cost of ship-
ment is obtained through the following equation,

variable shipped(i,j), totcost ;
equation costequ ;

cost.. totcost =e= sum((i,j)$ij(i,j), shipcost(i,j)*shipped(i,j));

whereshipped is the amount of material shipped fronto j , andtotcost is the total cost
of all shipment. The equation above can be written as,

cost.. totcost =e= sum(ij, shipcost(ij)*shipped(ij));
However, if the original equation is expressed as,

cost.. totcost =e= sum((i,j)$ij(i,j),
factor*congestfac(j)*distance(i,j) *shipped(i,j));

Indexj appears separately framin congestfac(j) . The equation then needs to be simpli-
fied as,

cost.. totcost =e= sum(ij(i,j),
factor*congestfac(j)*distance(ij) *shipped(ij));

Note that the presence ¢f separately in the indexed expression necessitated the use of
ij(i.) rather thanj

11.4.4 FILTERING SETS IN ASSIGNMENTS
Consider the following statement,

u(k)$s(k) = a(k) ;
wherek ands(k) are sets, while anda are parameters. This can be rewritten as,
u(s) = a(s) ;

Note that the assignment has been filtered through the conditionality without the use of the dollar
operator. This is a cleaner and more understable representation of the assignment. This feature
gets more useful when dealing with tuples (sets with multiple indices).

108 CONDITIONAL EXPRESSIONS, ASSIGNMENTS AND EQUATIONS

Consider the following example for calculating the travel cost for a fictional parcel delivery
service between collection sitéy (and regional transportation hulpg,(

set i /miami,boston,chicago,houston,sandiego,phoenix,baltimore/
j Inewyork,detroit,losangeles,atlanta/ ;
set ij(i,j) /
boston.newyork
baltimore.newyork
miami.atlanta
houston.atlanta
chicago.detroit
sandiego.losangeles
phoenix.losangeles /;

table distance(i,j) "distance in miles"

newyork detroit losangeles atlanta
miami 1327 1387 2737 665
boston 216 699 3052 1068
chicago 843 275 2095 695
houston 1636 1337 1553 814
sandiego 206
phoenix 2459 1977 398 1810;

parameter factor,shipcost(i,j) ; factor = 0.009 ;

The seij denotes the regional transportation hub for each collectiorfesiter is the cost
estimate per unit mile. The cost of transporting parcigp¢ost) from a local collection site
(i) to a regional hulp() is then provided by the following assignment,

shipcost(i,j)$ij(i,j) = factor*distance(i,j) ;

Note that andj do not appear separately in the assignment for shipcost. The assignment can
then be simply written as,

shipcost(ij) = factor*distance(ij) ;

If i orj appear separately in any assignment, the above simplification cannot be made. For ex-
ample, consider that travelcost depended not onfadonr and the distance between collec-
tion sites and regional hubs but also the load on the regional hub.
Parameter congestfac(j) /
newyork 1.5
detroit 0.7

losangeles 1.2
atlanta 0.9/

congestfac is a parameter used to model the congestion at each regional hub. The unit cost of
shipment is then computed as follows:

shipcost(i,j)$ij(i,j) = factor*cogestfac(j)*distance(i,j) ;
This camot be re-written as
shipcost(ij) = factor*congestfac(j)*distance(jj) ;

The above representation has the inden the right hand side, but not on the left hand side. As
explained before, GAMS will flag this assignment as an error. However, the following represen-
tation will work:

shipcost(ij(i,j)) = factor*congestfac(j)*distance(ij) ;

11.5 CONDITIONAL INDEXED OPERATIONS 109

In the above assignmeint is specifically denoted as a tupleio&ndj which then appear on the
left hand side.

11.5 CONDITIONAL INDEXED OPERATIONS

Another important use of the dollar condition is to control the domain of operation of indexed
operations. This is conceptually similar to the 'dollar on the left' described in Section 11.3.1.
Consider the following example adapted from [GTM].

tsubc = sum(i$(supc(i) ne inf), supc(i)) ;

This statement evaluates the sum of the finite valuespn .

A common use of dollar controlled index operations is where the control is it-
M" self a set. This importance of this concept will become apparent with the dis-
cussion of dynamic sets.

A set has been used to define the mapping between mines and ports in Chapter 4. Another typical
example is a set-to-set mapping defining the relationship between states and regions, used for ag-
gregating data obtained by state to the models requirements (by region)

sets r / west,east /
s / florida,texas,vermont,maine) /
corr(r,s) / north.(vermont,maine)
south.(florida,texas) /

parameter y(r)
income (s) "income of each state"
/ florida 4.5, vermont 4.2
texas 6.4, maine 4.1/;

The setorr provides a correspondence to show which states belong to which regions. The pa-
rameterincome is the income of each statgr) can be calculated with this assignment state-
ment:

y(r) = sum(s$corr(r,s), income(s)) ;

For each region, the summation ovex is only over those pairs ¢f,s) for which

corr(r,s) exists. Conceptually, set existence is analogous to the Boolean value ‘true’ or the
arithmetic value 'not zero.' The effect is that only the contributiongdonbnt ' and maine '

are included in the total fanorth ', andsouth 'includes onlytexas 'andflorida

Note that the summation above can also be writtesuiggs, income(s)$corr(r,s))

but this form is not as easy to read as controlling the index of summation.

11.5.1 FILTERING CONTROLLING INDICES IN INDEXED OPERATIONS

The controlling indices can, in certain cases, be filtered through the conditional set without the
use of the dollar operator. Consider the example described in that section. The total cost of ship-
ment is obtained through the following equation,

variable shipped(i,j), totcost ;
equation costequ ;

cost.. totcost =e= sum((i,j)$ij(i,j), shipcost(i,j)*shipped(i,j));

110 CONDITIONAL EXPRESSIONS, ASSIGNMENTS AND EQUATIONS

whereshipped is the amount of material shipped fronto j , andtotcost is the total cost
of all shipment. The equation above can be written as,

cost.. totcost =e= sum(ij, shipcost(ij)*shipped(ij));
However, if the original equation is expressed as,

cost.. totcost =e= sum((i,j)$ij(i,j),
factor*congestfac(j)*distance(i,j) *shipped(i,j));

Indexj appears separately framin congestfac(j) . The equation then needs to be simpli-
fied as,

cost.. totcost =e= sum(ij(i,j),
factor*congestfac(j)*distance(ij) *shipped(ij));

Note that the presence jofseparately in the indexed expression necessitated the use of
ij(i.) rather thanj

11.6 CONDITIONAL EQUATIONS

The dollar operator is also used for exception handling in equations. The next two subsections
discuss the two main uses of dollar operators within equations - within the body of an equation,
and over the domain of definition.

11.6.1 DOLLAR OPERATORS WITHIN THE ALGEBRA

A dollar operator within an equation is analogous to the dollar control on the right of assignments
as discussed in Section 11.4.2., and if one thinks of ‘on the right' as meaning on the right of the
.. 'then the analogy is even closer. An if-else operation is implied as it was with assignments. It
is used to exclude parts of the definition from some of the generated constraints.

Consider the following example adapted from [CHENERY],

mb(i).. x(i) =g=y(i) + (e(i) - m(i))$t() ;

The term is added to the right hand side of the equation only for those elemetisilbelong

to t(i)

Controlling indexing operations using the dollar condition can also be done as with any assign-
ment. Consider the following supply balansb) equation from [GTM],

sb(i).. sum(j$ij(i.j), x(i.))) == s() ;

11.6.2 DOLLAR CONTROL OVER THE DOMAIN OF DEFINITION

This is analogous to the dollar control on the left of assignments as discussed in section 11.4.1.,
and if one thinks of 'on the left' as meaning on the left of thethen the analogy is even closer.

The purpose of the dollar control over the domain of definition of equations is
M" to restrict the number of constraints generated to less than that implied by the
domain of the defining sets.

Consider the following example adapted from [FERTS]:

11.6 CONDITIONAL EQUATIONS 111

cc(m,i)$mpos(m,i)..
sum(p$ppos(p,i), b(m,p)*z(p,i)) =I= util*k(m,i);

cc is a capacity constraint defined for all unit$ &nd locationsi().

Not all types of units exist at all locations, however, and the mappimgpest(m,i) is used to
restrict the number of constraints actually generated. The control of the summatipnigtrer
ppos(p,i) is an additional one, and is required because not all procedsee possible at all
locations{).

11.6.3 FILTERING THE DOMAIN OF DEFINITION

The same rules that apply to filtering assignments and controlling indices in indexed operations
applies to equation domains as well. Consider the following equation using the same set defini-
tions as described before,

parameter bigM(i,)) ;
variable shipped(i,)) ;
binary variable bin(i,j) ;

equation logical(i,j) ;
logical(i,j)$ij(i,j).. shipped(i,j) =I= bigM(i,j)*bin(i,j) ;

The equatioogical relates the continuous varialsleipped(i,j) to the binary variable
bin(i,j) . This can be simplified as follows:

logical(ij).. shipped(ij) =I= bigM(ij)*bin(ij) ;

Note that if the right hand side of the equation contained any term that was indexedoyer
separately, then the equatiogical(l,j)$ij(i,j) would have to be simplified as
logical(ij(i,j))

12

DYNAMIC SETS

12.1 INTRODUCTION

All the sets that have been discussed so far had their membership declarestasitef was
declared, and the membership was never changed. In this chapter we will discuss changing the
membership oets . A set whose membership can change is called a dynamic set to contrast it
with a static set whose membership will never change. The distinction is important and will be
discussed in detail in this chapter. This is a topic that has been avoided until now because of a
potential confusion for new users. Advanced Users will, however, find it useful.

12.2 ASSIGNING MEMBERSHIP TO DYNAMIC SETS

Sets can be assigned in a similar way to other data types. One difference is that arithmetic opera-
tions cannot be performed on sets in the same way that they can on "value typed" identifiers
(parameters , orvariables andequations subtypes). A dynamic set is most often used

as a "controlling index" in an assignment or an equation definition, or as the controlling entity in

a dollar-controlled indexed operation.

12.2.1 THE SYNTAX
In general, the syntax in GAMS for assigning membership to dynamic sets is:

set_name(domain_name | domain_label) = yes | no;

set_name is the internal name of tleet (also called an identifier) in GAM¥.es andNo are
keywords used in GAMS to denote membership or absence respectively from the assigned set.

' The most important principle to follow is that a dynamic set should always be
L‘ domain checked at declaration time to be a subset of a static set (or sets).

It is of course possible to use dynamic sets that are not domain checked, and
n this provides additional power, flexibility, lack of intelligibility, and danger.
Any label is legal as long as the dimensionally, once established, is preserved.

12.2.2 ILLUSTRATIVE EXAMPLE

The following example, adapted from [ZLOOF], is used to illustrate the assignment of member-
ship to dynamic sets.

114 DYNAMIC SETS

setitem all items / dish,ink,lipstick,pen,pencil,perfume /
subitem1(item) first subset of item / pen,pencil /
subitem2(item) second subset of item;

subitem1('ink’) = yes ; subitem1('lipstick’) = yes;
subitem2(item) = yes ; subitem2('perfume’) = no;
display subiteml, subitem2;

Note that the sesubitem1 andsubitem2 are declared like any other set. The two sets be-
come dynamic because of assignments. They are also domain checked: the only members they
will ever be able to have must also be membereof . Anditem is a static set and henceforth

its membership is frozen. The first two assignments each add one new element to subiteml. The
third is an example of the familiar indexed assignmsuhitem2 is assigned all the members

of item . The output caused by the display statement, that will reveal the membership of the sets,
is shown below for verification.

---- 7SET SUBITEM1 first subset of item

INK , LIPSTICK, PEN , PENCIL
-~ T7SET SUBITEM2 second subset of item
DISH , INK , LIPSTICK, PEN , PENCIL
" The elements are displayed in the order specified in the declaration of item.

12.2.3 DYNAMIC SETS WITH MULTIPLE INDICES

Dynamic sets, like static sets, can have up to 10 dimensions. The following example illustrates
assignments for multi-dimensional sets.

Sets item items sold /pencil, pen/
sup suppliers /bic, parker, waterman /
supply(item,sup) ;

supply(‘pencil’,'bic’) = yes ;
supply(‘'pen’,sup) = yes ;

All the mechanisms using asterisks and parenthesized lists that we introduced in the discussion
on static sets in chapter 4 are available for dynamic sets as well.

12.2.4 ASSIGNMENTS OVER THE DOMAIN OF DYNAMIC SETS

One can make an assignment over the domain of a dynamic set because dynamic sets are known
to be proper subsets of static sets. This is not the same as doing domain checking using a dy-
namic set.

The following example, adapted from the Section 12.2.2 illustrates the use of dynamic sets as
domains:

subiteml1(item) = no
subiteml1(subitem2) = yes;

The first assignment ensures thabitem1 is empty. Note that this can also be done with pa-
rameters. For example,

parameter inventory(item) ;
inventory(subiteml) = 25 ;

12.3 USING DOLLAR CONTROLS WITH DYNAMIC SETS 115

12.2.5 EQUATIONS DEFINED OVER THE DOMAIN OF DYNAMIC SETS

It is sometimes necessary to define an equation over a dynamic set.

' The trick is todeclarethe equation over the entire domain detine it over
L‘ the dynamic set.

The following example illustrates its use,

set allr all regions / n,s,w, e, n-e,s-w /
r(alr) region subset for particular solution ;

scalar price /10/ ;
equations prodbal(allr) production balance ;

variables activity(allr) first activity
revenue(allr) revenue

prodbal(r).. activity(r)*price =e= revenue(r) ;

To repeat the important point: the equatiodeslaredoverallr but referenced over. Then
arbitrary assignments can be made toithin the membership dlir

12.3 USING DOLLAR CONTROLS WITH DYNAMIC SETS

The rest of this chapter requires an understanding of the dollar condition. All the dollar control
machinery is available for use with dynamic sets. In fact, the full power of dynamic sets can be
exploited using these dollar controls.

Note that the dynamic set has values of yes and no only, and can therefore be treated as a logical
statement. The only operations that can be performed on dynamic sets inside the dollar operator
are therefore not, and, or, or xor , as well as the set operations described in Chapter "SET
OPERATIONS," page 117.

The main uses of dynamic sets inside dollar conditions are in assignments, indexed operations
and in equations. Each of these will be discussed in detail in the following subsections. Examples
will be used to illustrate its use in each of the three cases.

12.3.1 ASSIGNMENTS

Dynamic sets can be used inside dollar conditions within assignments defining other dynamic
sets or parameters.

As an illustration of its use in defining other dynamic sets, the two statements in the example
from Section 12.2.4. can be written with equivalent effect as

subiteml(item) = yes$subitem2(item) ;
which is a terse form of the following statement
subitem1(item) = yes$subitem2(item) + no$(not subitem2(item)) ;

' The value used in the implied "else" that goes with "dollar on the right" is no
L‘ in a set assignment, rather than zero which is used with normal data.

116 DYNAMIC SETS

The second example from Section 12.2.4 can be rewritten as follows to illustrate the use of dy-
namic sets in defining parameters,

inventory(item)$subitem1(item) = 25 ;1

12.3.2 INDEXED OPERATIONS

Another important use of dollar controls with dynamic sets is to control the domain while per-
forming indexed operations likim andprod . Consider the following adaptation of the second
example from Section 12.3.1,

parameter totinv total inventory ;
totinv = sum(item$subiteml(item),inventory(item)) ;

This example has been shown only for illustration. Note that the second statement above can also
be rewritten tersely as

totinv = sum(subitem1,inventory(subitem1)) ;

This is not always possible. Consider the following artificially created example,

sets item items sold /pencil, pen/
sup suppliers /bic, parker, waterman /
dep department /stationery, household/

supply(item,sup) ;
supply(‘pencil’, 'bic') = yes ; supply('pen’,sup) = yes ;

parameter totsales(dep) ;
totsales(dep) = sum(item$supply(item,'bic’), sales(dep,item)) ;

The assignment above is used to find the total sales of all departments that sell items supplied by
bic . Note that the dynamic set is used to limit the domain of summation to those for which
supply(item,'bic") is true.

12.3.3 EQUATIONS

Dynamic sets can be used inside dollar conditions in equations both as part of the equation alge-
bra, or while defining the domain of the equation. The first case is similar to the case of assign-
ments discussed in Section 12.3.1. The latter case is used to restrict the equation over the domain
of a dynamic set. The equation defined in the example from Section 12.2.5 can be rewritten with
equivalent effect as follows,

prodbal(allr)$r(allr).. activity(allr)*price =e= revenue(allr) ;

The domain of definition of equatiggrodbal s restricted to those elements that belong to the
dynamic set .

12.3.4 FILTERING THROUGH DYNAMIC SETS

The filtering process explained in previous sections is valid when the conditional set is a dy-
namic one. Consider the following two examples as described before,

inventory(item)$subiteml(item) = 25 ;
prodbal(allr)$r(allr).. activity(allr)*price =e= revenue(allr) ;

These statements can be rewritten as,

12.4 SET OPERATIONS 117

inventory(subiteml) = 25 ;
prodbal(r).. activity(r)*price =e= revenue(r) ;

12.4 SET OPERATIONS

This section describes how various symbolic set operations can be performed in GAMS using
dynamic sets. The Union, Intersection, Complement, and Difference set operations are described
individually in the following subsections. Once again the example from Section 12.2.2 is used to
illustrate each operation.

12.4.1 SET UNION
The symbok performs the set union operation. Consider the following example,

subitem3(item) = subitem1(item) + subitem2(item) ;

The membership cfubitem3 is set equal to all the elementssobitem1 and all the ele-
ments ofsubitem2 . The operation above is equivalent to the following longer way of repre-
sentation,

subitem3(item)=no; subitem3(subitem2)=yes; subitem3(subiteml)=yes;

12.4.2 SET INTERSECTION
The symbot performs the set intersection operation. Consider the following example,
Subitem3(item) = subiteml(item) * subitem2(item) ;

The membership afubitem3 is set equal to only those present in kmthiteml andsu-
bitem2 . The operation above is equivalent to the following longer way of representation,

subitem3(item)=yes$(subiteml(item) and subitem2(item)) ;

12.4.3 SET COMPLEMENT
The operatonot performs the set complement operation. Consider the following example,

Subitem3(item) = not subitem1(item) ;

The membership cfubitem3 is set equal to all thoseit@m but not insubiteml1 . The op-
eration above is equivalent to the following longer way of representation,

subitem3(item)=yes; subitem3(subitem1)=no;

12.4.4 SET DIFFERENCE
The operator performs the set difference operation. Consider the following example,

Subitem3(item) = subitem1(item) - subitem2(item) ;

The membership afubitem3 is set equal to all elements that are membessilbtem1 but
subitem2 . The operation above is equivalent to the following longer way of representation,

subitem3(item)=yes$(subiteml(item)); subitem3(subitem2)=no;

118 DYNAMIC SETS

12.5 SUMMARY

The purpose of set assignments is to make calculations based on given data (the static sets) for
use in exception handling. It is one more example of the principle of entering a small amount of
data and building a model up from the most elemental information.

13

SETS AS SEQUENCES: ORDERED SETS

13.1 INTRODUCTION

In our original discussion of sets in Chapter 4, we said that unless there is a special need to do
things differently, a one-dimensional set should be regarded as an unordered collection of labels.
In this chapter we will discuss special features that can be used when you need to be able to deal
with a set as if it were a sequence.

For example, in economic models that explicitly represent conditions in different time periods, it
is necessary to refer to the "next" or "previous" time period, because there must be links between
the periods. As another example, stocks of capital are normally tracked through such models by
equations of the form "stocks at the end of peri@dle equal to stocks at the end of penetl

plus net gains during periad" Location problems, where the formulation may require a repre-
sentation of contiguous areas, as in a grid representation of a city, and scheduling problems are
other classes of problems in which sets must also have the properties of sequences.

Models involving sequences of time periods are often called dynamic models,

n because they describe how conditions change over time. This use of the word
"dynamic" unfortunately has a different meaning from that used in connection
with sets, but this is unavoidable.

13.2 ORDERED AND UNORDERED SETS

As with sets used in domain checking, restrictions are imposed when the set needs to be referred
as if it were a sequence. The notion of static sets was introduced already: the set must be initial-
ized with a list of labels enclosed in slashes at the time the set is declared, and never changed af-
terwards.

' Ordered sets must be static sets. In other words, no order is possible for dy-
L‘ namic sets.

GAMS maintains one list of "unique" elements - the labels that are used as
elements in one or more sets. The order of the elements in any one set is the

n same as the order of those elements in that unique element list. This means
that the order of a set may not be what it appears to be if some of the labels
were used in an earlier definition.

' The map of your labels in the GAMS order can be seen by putting the com-
L‘ piler directive$onuellist somewhere before the first set declaration.

120 SETS AS SEQUENCES: ORDERED SETS

' A good rule of thumb is that if the labels in a set one wants to be ordered have
L‘ not been used already, then they will be ordered.

The map is shown with the other compiler maps after the listing of your program. In the example
below we show ordered and unordered sets and the map showing the order. The input is:

$onuellist

set t1 /1987, 1988, 1989, 1990, 1991 /
t2 /1983, 1984, 1985, 1986, 1987 /
t3 /1987, 1989, 1991, 1983, 1985/ ;

The map below shows the entry order (the important one) and the sorted order, obtained by sort-
ing the labels into dictionary order. The single digits on the left are the sequence numbers of the
first label on that line.

General Algebraic Modeling System
Unique Element Listing

Unique Elements in Entry Order

1 1987 1988 1989 1990 1991 1983
7 1984 1985 1986

Unique Elements in Sorted Order
1 1983 1984 1985 1986 1987 1988
7 1989 1990 1991

A set can always be made ordered by moving its declaration closer to the beginning of the pro-
gram. With these restrictions in mind, we move on the operations that are used in dealing with
sets as sequences.

13.3 ORD AND CARD

In Chapter 4, it was explained that labels do not have a numerical value. The examples used were
that the label1986' does not have a numerical value of 1986 and the 'ldébel is different

from the labell'. This section introduces two operatorsd andcard that return integer val-

ues when applied to sets. While the integer values returned do not represent the numerical value
of the label, they can be used for the same purpose.

The next two subsections describe each of these two functions in turn.

13.3.1 THE ORD OPERATOR

Ord returns the relative position of a member in a set.

" ord can be used only with a one-dimensional, static, ordered set.

Some examples show the usage.

set t time periods /1985*1995 /
parameter val(t) ;
val(t) = ord(t);

As a result of the statements above, the valualkffL985") will be 1,val('1986" will
be 2 and so on.

13.4 LAG AND LEAD OPERATORS 121

A common use obrd is in setting up vectors that represent quantities growing in some analyti-
cally specified way. For example, suppose a country has 56 million people in the base period and
population is growing at the rate of 1.5 percent per year. Then the population in succeeding years
can be calculated by using:

population(t) = 56*(1.015**(ord(t) - 1)) ;

It is often useful to simulate general matrix operations in GAMS. The first index on a two dimen-
sional parameter can conveniently represent the rows, and the second the columns, and order is
necessary. The example below shows how to set the upper triangle of a matrix equal to the row
index plus the column index, and the diagonal and lower triangle to zero.

set i row and column labels /x1*x10 /; alias (i,j);
parameter a(i,j) a general square matrix;
a(i,j))$(ord() It ord(j)) = ord(i) + ord() ;

13.3.2 THE CARD OPERATOR

Card returns the number of elements in a €etrd can be used with any set, even dynamic or
unordered ones. The following example illustrates its use:

set t time periods /1985*1995 /
parameters ; s = card(t);

As a result of the statement aboseyill be assigned the value 11.
A common use of card is to specify some condition only for the final period, for example to fix a
variable. An artificial example is:

c.fx(t)$(ord(t) = card(t)) = demand(t) ;

which fixes the variable for the last member only: no assignment is made for other menhbers of
The advantage of this way of fiximgis that the membership bfcan be changed safely and this
statement will always fix for the last one.

13.4 LAG AND LEAD OPERATORS

The lag and lead operators are used to relate the "current” to the "next" or "previous" member of
a set. In order to use these operators the set in question must, of course, be ordered. GAMS pro-
vides two forms of lag and lead operators

e Linear Lag and Lead Operators ¢)
e Circular Lag and Lead OperatorsH, --)

The difference between these two types of operators involves the handling of endpoints in the
sequence. GAMS provides some built in facilities to deal with this issue, but in any work in-
volving sequences the user must think carefully about the treatment of endpoints, and all models
will need special exception handling logic to deal with them.

In the linear case, the members of the set that are endpoints are left hanging. In other words, there
are no members preceding the first member or following the last one. This may cause the use of
non-existent elements. The next section will describe how this is handled in GAMS. This form of
the lag and lead operators is useful for modeling time periods that do not repeat. A set of years
(say 1990 to 1997) is an example. The operators ared- .

122 SETS AS SEQUENCES: ORDERED SETS

' GAMS is able to distinguish linear lag and lead operators (+,-) from arithmetic
L‘ operators by context.

In the circular case, the first and last members of the set are assumed to be adjacent, so as to form
a circular sequence of members. The notion is firat - 1 " is a reference tddst " and

"last +2 " is the same adifst + 1 "and so on. All references and assignments are de-

fined. This is useful for modeling time periods that repeat, such as months of the year or hours in
the day. It is quite natural to think of January as the month following December. Agricultural

farm budget models and workforce scheduling models are examples of applications where circu-
lar leads occur naturally. The operators-&ateand-- .

The next two sections will describe the use of these lag and lead operators in assignment state-
ments and in equations respectively.

13.5 LAGS AND LEADS IN ASSIGNMENTS

One use of the lag and lead operator is in assignment statements. The use of a lag and lead op-
erator on the right-hand-side of an assignment is called a reference, while its use in the left-hand-
side is called an assignment and involves the definition of a domain of the assignment. The con-
cepts behind reference and assignment are equally valid for the linear and circular forms of the
lag and lead operator. However, the importance of the distinction between reference and assign-
ment is not pronounced for circular lag and lead operators because non-existent elements are not
used in this case.

A reference to a non-existent element causes the default value (zero in this
M" case) to be used, whereas an attempt to assign to a non-existent element results
in no assignment being made.

The next two sub-sections provide examples illustrating the use of the linear form of the lag and
lead operators for reference and assignment. Section 13.5.3 will illustrate the use of the circular
form of the lag and lead operator.

13.5.1 LINEAR LAG AND LEAD OPERATORS - REFERENCE

Consider the following example, where two parametesisdb are used to illustrate the linear
lag and lead operators for reference.

set t time sequence /y-1987*y-1991/;
parameter a(t), b(t) ;

a(t) = 1986 + ord(t) ;

b(t) = -1; b(t) = a(t-1) ;

option decimals=0; display a, b ;

Theoption statement suppresses the decimal places frodlighiay. The results are
shown below.

---- 6 PARAMETER A
Y-1987 1987, Y-1988 1988, Y-1989 1989, Y-1990 1990, Y-1991 1991

---- 6 PARAMETER B
Y-1988 1987, Y-1989 1988, Y-1990 1989, Y-1991 1990

13.5 LAGS AND LEADS IN ASSIGNMENTS 123

For a, as expected, the values 1987, 1988 up to 1991 are obtained corresponding to the labels
1987,y-1988 and so onb is initialized to -1.

Forb, the assignment is done over all membetts, @nd for each, the value of a from the previ-
ous period is assigned to the current membér. ¢ffno previous period, as withr1987 |, zero is
used, andb('y-1987") becomes zero, replacing the previous value of -1.

13.5.2 LNEAR LAG AND LEAD OPERATORS - ASSIGNMENT

Consider the following example, where two parametesigdc are used to illustrate the assign-
ment of linear lag and lead operators.

set t time sequence /y-1987*y-1991/;
parameter a(t), c(t) ;

a(t) = 1986 + ord(t) ;

c(t) = -1; c(t+2) = a(t) ;0; display a, c;

The results are shown below,

---- 6 PARAMETER A
Y-1987 1987, Y-1988 1988, Y-1989 1989, Y-1990 1990, Y-1991 1991

---- 6 PARAMETERC
Y-1987 -1, Y-1988 -1, Y-1989 1987, Y-1990 1988, Y-1991 1989

The assignment ta is explained in Section 13.5.1. The assignmenti®different. It is best to

spell it out in words. "For each membertoin sequence, find the membercohssociated with

t+2 . If it exists, replace its value with thataft) . If not (as withy-1990 andy-1991) make

no assignment.” The first membertofs y+1987 , and therefore the first assignment is made to
c('y-1989") which takes the value af'y-1987") , viz., 1987. No assignments at all are
made toc('y-1987") orc('y-1988") : these two retain their previous values of -1.

The lag (or lead) value does not have to be an explicit constant: it can be arbitrary expression,
provided that it evaluates to an integer. If it does not, error messages will be produced. A nega-
tive result causes a switch in sense (from lag to lead, for example). The following is guaranteed
to setd(t) to all zero:

d(t) = d(t- ord(t));

13.5.3 CIRCULAR LAG AND LEAD OPERATORS
The following example illustrates the use of circular lag and lead operators.

set seasons/ spring, summer, autumn, winter /;

parameter val(s) /spring 10, summer 15, autumn 12, winter 8/
lagval2(s)
leadval(s);

lagval2(s) = -1 ; lagval2(s) = val(s--2) ;

leadval(s) = -1 ; leadval(s++1) = val(s) ;

option decimals=0; display val, lagval2, leadval;

The results are shown below,

124 SETS AS SEQUENCES: ORDERED SETS

---- 7 PARAMETER VAL
SPRING 10, SUMMER 15, AUTUMN 12, WINTER 8

---- 7 PARAMETER LAGVAL2
SPRING 12, SUMMER 8, AUTUMN 10, WINTER 15

---- 7 PARAMETER LEADVAL
SPRING 8, SUMMER 10, AUTUMN 15, WINTER 12

The parametdagval2 is used for reference whilagvall if used for assignment. Notice

that the case of circular lag and lead operators does not lead to any non-existent elements. The
difference between reference and assignment is therefore not important. Note that the following
two statements from the example above,

lagval2(s) = val(s--2);
leadval(s++1) = val(s);

are equivalent to

lagval2(s++2) = val(s) ;
leadval(s) = val(s--1);

The use of reference and assignment have been reversed with no difference in effect.

13.6 LAGS AND LEADS IN EQUATIONS

The principles established in the previous section follow quite naturally into equation definitions.
A lag or lead operation in the body of an equation (to the right of thesymbol) is a refer-

ence, and if the associated label is not defined, the term vanishes. A lag or lead to the left of the
".. "is a modification to the domain of definition of the equation. The linear form may cause

one or more individual equations to be suppressed.

M All lag and lead operands must be exogenous.

The next two sub-sections provide examples illustrating the use of the linear form of the lag and
lead operators in equations for reference and to modify the domain of its definition. Section
12.5.3 will illustrate the use of the circular form of the lag and lead operator in equations.

13.6.1 LINEAR LAG AND LEAD OPERATORS - DOMAIN CONTROL
Consider the following example adapted from [RAMSEY],

sets t time periods /1990*2000/
tfirst(t) first period
tlast(t) last period;

tfirst(t) = yes$(ord(t) eq 1);
tlast(t) = yes$(ord(t) eq card(t)) ;
display ffirst, tlast;

variables k(t) capital stock (trillion rupees)
i(t) investment (trillion rupees per year) ;

13.6 LAGS AND LEADS IN EQUATIONS 125

equations kk(t) capital balance (trillion rupees)
tc(t) terminal condition(provides for post-term growth) ;

kk(t+1).. k(t+1) =e= k() + i(t);
tc(tlast).. g*k(tlast) =I= i(tlast);

The declaration df is included, as are a couple of dynamic sets that are used to handle the first
and last periods ("terminal conditions") in a clean way.

The interesting equation ik , the capital balance. The $etontains members 1990 to 2000,
and so there will be a capital stock constraint for 1991 to 2000. Spelling out the constraint for
1991,

k(1991") =e= k('1990") +i('1990") ;

The lead operator on the domain of definition has restricted the number of constraints generated
so that there are no references to non-existent variables: the generated problem wilkiave 10
constraints defining the relationship between th& tapital values.

The other interesting point in the [RAMSEY] excerpt is that the constraiig explicitly de-
fined only for the final period because of the assignment to thlastet . Notice the use of dy-
namic sets to control the domain of the two equations. Thérset is also used in other parts
of the model to set initial conditions, particularly the capital stock in the first period,
k('1990")

13.6.2 LINEAR LAG AND LEAD OPERATORS - REFERENCE

In the example discussed in Section 13.6.1., equikiotan be rewritten with equivalent effect
as

kk()$(not tfirst(t).. k(t+l) =e= k() + i(t);

The dollar condition will cause one of the individual equations to be suppressed.

However, note that using lags and leads in the equation domain will always cause one or more
individual equations to be suppressed, and this may not be desirable in every case. Consider the
following modified set of constraints to the one discussed in the previous example. It is ex-
pressed with the lag and lead operators being used to control the domain of the equation defini-
tion.

kk(t+1).. Kk(t+1) =e= k(t) +i(t);
kfirst(tfirst) K(tfirst) =e=kO ;

Here, the important boundary is the one at the beginning of the set rather than at the end. This
can be expressed more compactly as
kk().. k(t) =e= Kk(t-1) + kOStfirst(t) + i(t-1);

In general, the choice between using lag and lead operators as reference or in domain control is
often a matter of taste.

13.6.3 CIRCULAR LAG AND LEAD OPERATORS

In the case of circular lag and lead operators, the difference between its use in domain control
and as reference is not important because it does not lead to any equations or terms being sup-
pressed. Consider the following artificial example,

126 SETS AS SEQUENCES: ORDERED SETS

set s seasons/ spring, summer, autumn, winter /;

variable prod(s) amount of goods produced in each season
avail(s) amount of goods available in each season
sold(s) amount of goods sold in each season ;

equation matbal(s) ;

matbal(s).. avail(s++1) =e= prod(s) + sold(s) ;

In this example, four individual examples are generated. They are listed below.
avail(summer) =e= prodn(spring) + sold(spring) ;
avail(autumn) =e= prodn(summer) + sold(summer) ;
avail(winter) =e= prodn(autumn) + sold(autumn) ;
avail(spring) =e= prodn(winter) + sold(winter) ;

Note that none of the equations are suppressed.

13.7 SUMMARY

This chapter introduced the concept of ordering in sets. All the features in GAMS that dealt with
this issue including therd andcard functions, as well as the linear and circular forms of the
lag and lead operators were described in detail.

14

THE DISPLAY STATEMENT

14.1 INTRODUCTION

In this chapter we will provide more detail abdigplay statements, including the controls

that a user has over the layout and appearance of the output. These controls are a compromise to
provide some flexibility. Thelisplay statement will not provide a publication quality report-

ing function, but is instead aimed for functionality that is easy to use, and provides graceful de-
faults. The execution of thdisplay statement allows the data to be written into the listing file

only.

14.2 THE SYNTAX
In general, the syntax in GAMS for tdésplay statement is:

display ident-ref | quoted text {, ident-ref | quoted text}

Ident-ref means the nameithout domain lists or driving indices ofset or parameter
or a sub-field of aequation orvariable . The identifier references and the text can be
mixed and matched in any order, and the whole statement can be continued over several lines.

The output produced by a display consists of labels and data. For sets, the characyesstring
(indicating existence) is used instead of values.

M Only the non-default values are displayed for all data types.

The default value is generally zero, except for.ktbhe and.up subtypes oYariables and
equations . The default values for these are shown below.

Variable Equation o .up
positive =g= 0 +INF
free =n= -INF +INF
negative =l= -INF 0
integer 0 100
binary 0 1
n/a =e= 0 0

14.3 AN EXAMPLE

An example of a display statement is given below.

128 THE DISPLAY STATEMENT

set s /s1*s4/ , t t5*t7/ ;

parameter p(s) /sl 0.33,s3 0.67/;

parameter q(t) /t5 0.33,t7 0.67/;

variable v(s,t); v.I(s,t) = p(s)*q(t);

display 'first a set', s, 'then a parameter',p,
‘then the activity level of a variable',v.l;

The resulting listing file will contain the following section that corresponds to the display state-
ment.

---- Gfirstaset
—--- 5SET S

S1, S2, S3, sS4
---- 5then a parameter
-—-- 5 PARAMETER P
$10.330, S30.670
---- 5then the activity level of a variable
-—-- 5 VARIABLE V.L
T5 T7

S1 0.109 0.221
S3 0.221 0.449

Note that the only the non-zero values are displayed. In the case of multi-dimensional identifiers,
the data is reported in a tabular form that is easy to read.

14.4 THE LABEL ORDER IN DISPLAYS

The default layout of display for identifiers of different dimensionality is summarized in the
table below. The figures in the table refer to the index position in the domain list of the identifier.
As an example, if we display, wherec has been declared &@,j,k,l) , then the labels

(the first index) will be associated with the planes or individual sub-tablgs,ahek with the

row labels, and the (the fourth and last index) with the column headings.

Numbers of Indices | Plane | Index Position(s) on the Row | Column
1 List Format 1
2 - 1 2
3 - 1,2 3
4 1 2,3 4
5 1,2 3,4 5
6 1,2,3 4,5 6

For 7 to 10 indices, the natural progression is followed. The labels vary slowest for the first index
position, and quickest for the highest. Within each index position the order is the GAMS entry
order of the labels.

The order of the indices is always as in the declaration statement for the symbol. One can declare
them in the order that is found appealing, or make an assignment to a new identifier with a dif-
ferent order.

14.5 DISPLAY CONTROLS 129

The only way to change the order in which the labels for each index position
appear on display output is to change the order of appearance of the labels in

n the GAMS program. This is most easily done by declaring a set whose only
purpose is to list all the labels in the order that is needed. Make this set the
very first declaration in the GAMS program.

14.4.1 EXAMPLE

Consider the following examplg. has four dimensions or index positions. It is initialized using
parameter format and then displayed as shown below:

set i firstindex /first, second/
j secondindex /one, two, three /
k thirdindex /a,b/
| fourthindex /i,ii/ ;

parameter x(i,j,k,I) a four dimensional structure /
second.one.a.i +inf, first .three.b.i -6.3161
first .one.b.i 5.63559, second.two .b.i 19.8350
second.one.b.ii -17.29948, first.two .b.ii 10.3457
first .two.a.ii 0.02873, second.one .a.i 1.0037

second.two.a.ii +inf, first.two .a.i -2.9393
first .one.a.ii 0.00000 /;
display x;

This code fragment produces the following output:
---- 12 PARAMETER X a four dimensional structure
INDEX 1 = first

i i
one .b 5.636
two .a -2.939 0.029
two .b 10.346
three.b -6.316
INDEX 1 = second
[i

one.a +INF 1.004

one.b -17.299
two.a +INF
two.b 19.835

Notice that there are two sub-tables, one for each label in the first index position. Note that the
zero in the list fox (‘first' ;one' ,a'\ii ") has vanished, since zero values are suppressed in
each sub-table separately. The order of the labels is not the same as in the input data list.

14.5 DISPLAY CONTROLS

GAMS allows the user to modify the number of row and column labels in the display listing, as
well as the accuracy of the data being displayed. The global display controls allows the user to
affect more than one display statement. If specific data need to be listed in a particular format,
the local display controls can be used to over-ride the global controls. The next two sub-sections
will deal with each of these display controls in turn.

130 THE DISPLAY STATEMENT

14.5.1 GLOBAL DISPLAY CONTROLS

The simplest of these options is the one controlling the number of digits shown after the decimal
point. It affects numbers appearing in all display output following the option statement, unless
changed for a specific identifier as shown below. The general form of the statemepiios: *
decimals = "value"; "where 'value " is an integer between 0 and 8. If you use 0, the
decimal point is suppressed as well. The width of the number field does not change, just the
number of decimals, but this may cause numbers which would normally be displayed in fixed to
appear in E-format, i.e., with the exponent represented explicitly.

Consider the following extension to the example discussed in the previous section.
option decimals = 1; display x ;

GAMS has rounded or converted numbers to E-format where necessary and the output is as fol-
lows:

---- 12 PARAMETER X a four dimensional structure
INDEX 1 = first
i ii
one .b 5.6
two .a -2.9 2.873000E-2
two .b 10.3
three.b -6.3

INDEX 1 = second
i ii

one.a +INF 1.0

one.b -17.3
two.a +INF
two.b 19.8

14.5.2 LOCAL DISPLAY CONTROL

It is often more useful is to control the number of decimals for specific identifiers separately.
Using a statement whose general form is can do this:

option "ident":"d-value":

"ident " represent the name ofparameter ,variable orequation , and H-value
must be (as before) in the range 0 and 8 . Exadtlyalue " places of decimals will be shown
on all displays ofitent " that follow. This form can be extended to control layout of the data.
The general form is:

option:"ident":"d-value":"r-value":"c-value" ;

Here r-value " means the number of index positions that are combined to form the row label
and 't-value " means the number on the column headers.

The example discussed in the previous section is further extended in order to illustrate the local
display control.

option x :5:3:1; display x;

14.5 DISPLAY CONTROLS 131

and the output:

---- 12 PARAMETER X a four dimensional structure

i ii
first .one .b 5.63559
first two .a -2.93930 0.02873

first .two .b 10.34570
first .three.b -6.31610

second.one .a +INF 1.00370
second.one .b -17.29948
second.two .a +INF
second.two .b 19.83500

Five places of decimals are shown, and three labels are used to mark the rows and one on the
column. Since this is a four-dimensional structure, there are no remaining indices to be used as
sub-table labels (on the plane), and we now have the results in one piece. The option statement is
checked for consistency against the dimensionality of the identifier, and error messages issued if
necessary. Here is an example that puts two indices on each of the row and column labels, and
retains five decimal places:

option x:5:2;2; display x ;

The output is :

---- 12 PARAMETER X a four dimensional structure
a.i a.ii b.i b.ii

first .one 5.63559

first two -2.93930 0.02873 10.34570

first .three -6.31610

second.one +INF 1.00370 -17.29948

second.two +INF 19.83500

14.5.3 DISPLAY STATEMENT TO GENERATE DATA IN LIST FORMAT

This is a special use of the local display controls to generate data in list format using the display
statement. This is when all the labels are spelled out for each value as in the parameter style of
data initialization. The format of the optionaption :"d-value":0:"c-value” ;and in

this case thec-value " specifies the maximum number of items displayed on a line. The actual
number will depend on the page width and the number and length of your labels.

Using the same example as in the previous sections, the following extension:
option x:5:0:1; display x;

changes the output to look like below:

---- 12 PARAMETER X a four dimensional structure

first .one .b.i 5.63559
first .two .a.i -2.93930
first .two .a.ii 0.02873
first .two .b.ii 10.34570
first .three.b.i -6.31610
second.one .a.i +INF
second.one .a.i 1.00370
second.one .b.ii -17.29948
second.two .a.i +INF
second.two .b.i 19.83500

132 THE DISPLAY STATEMENT

This output nicely illustrates the label order used. The first index varies the slowest, the last the
fastest, and each one runs from beginning to end before the next one to the left advances. This
ordering scheme is also used on equation and column lists and on the solution report, all pro-
duced by the solve statement.

15

THE PUT WRITING FACILITY

15.1 INTRODUCTION

In this chapter, thput writing facility of the GAMS language is introduced. The purpose of this
writing facility is to output individual items under format control onto different files. Unlike the
display statement, the entire set of values for indexed identifiers cannot be output using a sin-
gleput statement (identifiers are the names given to data entities such as the ngraes for
rameters ,sets ,variables ,equations , models , etc.). While its structure is more

complex and requires more programming than is required for the display statement, there is much
greater flexibility and control over the output of individual items.

In this chapter, the working of theut writing facility is described as well as the syntax for ac-
cessing files and globally formatting documents using file suffixes for various attributes of a file.
Theput writing facility enables one to generate structured documents using information that is
stored by the GAMS system. This information is available using numerous suffixes connected
with identifiers, models, and the system. Formatting of the document can be facilitated by the use
of file suffixes and control characters.

Theput writing facility generates documents automatically when GAMS is executed. A docu-
ment is written to an external file sequentially, a single page at a time. The current page is stored
in a buffer, which is automatically written to an external file whenever the page length attribute

is exceeded. Consequently, the put writing facility only has control of the current page and does
not have the ability to go back into the file to alter former pages of the document. However,

while a particular page is current, information placed on it can be overwritten or removed at will.

15.2 THE SYNTAX
The basic structure of theut writing facility in its simplest form is:

file fname(s);
put fname;
put item(s);

wherefname represents the name used inside the GAMS model to refer to an external file.

Items are any type of output such as explanatory text, labels, parameters, variable or equation
values. In the basic structure shown above, the first line defines the one or more files which you
intend to write to. The second line assigns one of these defined files as the current file, that is the
file to be written to. Lastly, the third line represents the actual writing of output items to the cur-
rent file.

134 THE PUT WRITING FACILITY

15.3 AN EXAMPLE

It is instructive to use a small example to introduce the basics of the put writing facility. The ex-
ample will be based on the transportation model [TRNSPORT]. The following program segment
could be placed at the end of the transportation model to create a report:

file factors /factors.dat/, results /results.dat/ ;

put factors ;

put ‘Transportation Model Factors'///
'Freight cost ', f,
@1#6, 'Plant capacity'/;

loop(i, put @3, i.tl, @15, a(i)/);

put /'Market demand/;

loop(j, put @3, j.tl, @15, b(j)/);

put results;
put ‘Transportation Model Results'// ;
loop((i,j), puti.tl, @12, j.tl, @24, x.I(i,j):8:4 /);

In the first line, the internal file names factors and results are defined and connected to the exter-
nal file namedactors.dat andresults.dat . These internal file names are used inside

the model to reference files, which are external to the model. The second line of this example as-
signs the fildfactors.dat as the current file, that is the file which is currently available to be
written to.

In the third line of the example, writing to the document begins ugig sstatement with the

textual item Transportation Model Factors ". Notice that the text is quoted. The

slashes following the quoted text represent carriage returns. The example continues with another
textual item followed by the scalfir Notice that these output items are separated with commas.
Blanks, commas, and slashes serve as delimiters for separating different output items. As men-
tioned above, the slash is used as a carriage return. Commas and blank spaces serve as item de-
limiters. These delimiters leave the cursor at the next column position in the document following
the last item written. In most cases, the blank and the comma can be used interchangeably; how-
ever, the comma is the stronger form and will eliminate any ambiguities.

In the fifth line of the program above, the cursor is repositioned to the first column of the sixth
row of the output file where another textual item is written. The cursor control characted®
serve to reposition the cursor to a specific row or column as designated by the row or column
number following the cursor control character. Lastly, the put statement is terminated with a
semicolon.

Next, the parametessandb are written along with their corresponding set labels. Only one

element of the index set can be written using a put. To write the entire contents of the parameters
a andb, theput statement is embedded inside a loop which iterates over the index set. In the
example above, the set element labels are identified using their set identifier and th# suffix

As can be seen, the set element labels are located starting in the third column and the parameter a
at column 15. The example continues with the display of another quoted textual item followed by
the parameten. When executed, thfactors.dat file will look like:

15.4 OUTPUT FILES 135

Transportation Model Factors
Freight cost 90.00

Plant capacity
seattle 350.00
san-diego 600.00

Market demand
new-york 325.00
chicago 300.00
topeka 275.00

This output has been formatted using the default file format values. The methods to change these
defaults will be described later in this chapter.

In the last two lines of the example, the fiésults.dat IS made current and the values asso-
ciated with the variablg along with their corresponding set element index labels are written line

by line. The output results of the variaklare formatted by specifying a field width of eight

spaces with four of these spaces reserved for the decimal. Notice that the local formatting options
are delimited with colons. Thesults.dat file will look like:

Transportation Model Results

seattle new-york 0.0000
seattle chicago 300.0000
seattle topeka 0.0000
san-diego new-york 325.0000
san-diego chicago 0.0000
san-diego topeka 275.0000

With just this brief introduction to the put writing facility, it is easy to envision its many uses
such as report writing, providing output to a file for use by another computer program, or simply
the display of intermediate calculations. But, the surface of the put writing facility has just barely
been scratched. In the sections that follow, the many features and structure of the put writing fa-
cility are described in more detail, along with examples.

15.4 OUTPUT FILES

As noted earlier, the put statement allows the user to write to external files. This section de-
scribes the various features related to the use of external files.

15.4.1 DEFINING FILES
The complete syntax for defining files is:

file fname text / external file name /

wherefile is the keyword used to define fildeame is the internal file name and is used in-

side the GAMS model to refer to an external file. External files are the actual files that output is
written to. During file declaration, the external file name and explanatory text are optional. When
the external file name is omitted, GAMS will provide a system specific default external file
name, ofteriname.put . Note that multiple files can be defined using a single file statement.
Consider the following example:

file classl
class2 this defines a specific external file /report.txt/
con this defines access to the console (screen) for PC systems;

136 THE PUT WRITING FACILITY

The first output file is recognized in the model by the nalassl and corresponds to the de-
fault file classl.put for a PC system. The second output file is recognized in the model by
the nameclass2 and it corresponds to the defined external file report.txt. Lastly, the special
internal file nameon is defined to write output to the console (screen) for a PC systems. Writ-
ing to the screen can be useful to advise the user of various aspects of the model during the
model's execution.

15.4.2 ASSIGNING FILES

Theput statement is used both to assign the current file and to write output items to that file.
The complete syntax for using the put statement is:

put fname item(s) fname item(s) ...;

As indicated by this syntax, multiple files can be sequentially written using a single put state-
ment. Note that only one file is current at a time. After the output items following an internal file
name are written, the current file is reassigned based on the next internal file name in the state-
ment. The last internal file name used ipua statement remains as the current file until a sub-
sequent put statement uses an internal file name.

15.4.3 CLOSING A FILE

The keywordputclose is used to close a file during the execution of a GAMS program. The
syntax is as follows:

putclose myfile item(s)

wheremyfile is the internal name of the file to be closed, imui(s) are the final entries

into the file before it is closed. If the internal file name is omitted fitwerputclose state-
ment, the curremut file is closed. Note that after using fhgtclose = command, the file
does not have to be redefined in order to use it again. Simply make the file current pund use
statements as would be done normally. Of course, the existing file will either be overwritten or
appended to depending on the value of the append file suffix.

One application where this is useful is to write the solver option file from

n within the GAMS model. Option file statements can be written using put and
the file closed with @utclose prior to the solve statement. This makes the
option file available for use by the solver.

The following example shows the creation and closing of an option file for the MINOS solver:

file opt Minos option file / minos5.opt /;

put opt;

put 'lteration limit 500/
'Feasibility tolerance 1.0E-7'/;

putclose opt;

This program segment would be placed inside the GAMS model prior to the solve statement.

15.5 PAGE FORMAT 137

15.4.4 APPENDING TO A FILE

Theput writing facility has the ability to append to or overwrite an existing file. The file suffix
.ap determines which operation occurs. The default suffix value of zero overwrites the existing
file while the value of one causes appending to the file. Let's considespmut.txt file to

be an existing file.

Using the following statement appends output items to it:

class2.ap = 1;

Any items put intaeport.txt will from that point on be added to the end of the existing file
contents. If the file had not existed, the file would be created.

15.5 PAGE FORMAT

The pages within files can also be structured using file suffixes to specify many attributes such as
the printing format, page size, page width, margins, and the case which text is displayed in. The
following file suffixes can be used for formatting:

Suffix Description
pc print control | Used to specify the format of the external file. The last three optigns
create delimited files, which are especially useful when preparing jout-
put for the direct importation into other computer programs such as
spreadsheets.
0 standard paging based on the current page size. Partial pages ar¢ pad-
ded with blank lines. Note that thiem file suffix is only functional
when used with this print control option.

1 Fortran page format. This option places the numeral one in the first
column of the first row of each page in the standard Fortran conven-
tion

2 continuous page (default). This option is similar to .pc option zero

with the exception that partial pages in the file are not padded wit
blank lines to fill out the page.

=]

3 ASCII page control characters inserted.

4 formatted output; Non-numeric output is quoted, and each item ig de-
limited with a blank space.

5 formatted output; Non-numeric output is quoted, and each item ig de-
limited with commas.

6 formatted output; Non-numeric output is quoted, and each item ig de-
limited with tabs.

.ps page size Used to specify the number of rows (lines) which can be placed pn a

page of the document. Can be reset by the user at any place in the pro-
gram. However, an error will result if set to a value less than the num-
ber of rows which have already been written to the current page.
Maximum value is 130. The default value is 60

pw page width Used to specify the number of columns (characters) which can b
placed on a single row of the page. Can be reset by the user at any
place in the program. However, an error will result if set to a valug

D

1%

138 THE PUT WRITING FACILITY

Suffix Description
less than the number of rows or columns which have already been
written to the current page. The default value is 132.

.tm top margin Number of blank lines to be placed at the top margin of the page
These lines are in addition to the number of lines specified ipshe
file suffix. Default value is O.

.bm bottom mar- | Number of blank lines to be placed in the bottom margin of the pape
gin These lines are in addition to the number of lines specified in the |ps
file suffix. This is functional with .pc option 0 only. Default value i$
0.
.case alphabetic Used to specify the case in which alphabetic characters are displayed
case in the output file.
0 causes mixed case to be displayed.
1 causes the output to be displayed in upper case regardless of the case

used for the input.

To illustrate the use of these file suffixes, the following example involves formatting report.txt so
that the pages are 72 spaces wide with 58 lines of output, an additional top margin of 6 lines, us-
ing ASCII page control characters (inserted every 64 lines), and with the output displayed in up-
per case.

file class2 /report.txt/ ;
class2.pw = 72; class2.ps =58; class2.tm = 6;
class2.pc = 3; class2.case = 1;

Using a value of 4,5,6 for the print control suffipd) will cause data to be

n squeezed and therefore will ignore spacing information provided by the user
through the@character. However, these values can be used to pass data on to
be read by spreadsheets.

15.6 PAGE SECTIONS

There are three independent writing areas on each page of a document. These areas are the title
block, the header block, and the window. This is quite useful when there are sections of a page
which remain relatively constant throughout a document. Title and header blocks are often used
to provide organizational information in a document with the window being used for specific re-
porting.

These writing areas are always sequentially located on the page in the order shown on the fol-
lowing diagram. It is important to note that the title and header blocks are essentially the same as
the window and use exactly the same syntax rules. However, the window is required in each page
of your document, while the title and headers are optional. Also note that once the window is
written to, any further modifications of the title or header blocks will be shown on subsequent
pages and not the current page. Writing to the window is what ultimately forces a page to be
written

15.6 PAGE SECTIONS 139

Title Block
Header Block

Window

In the illustrative example described in Section 2, all the data was written to the window. A title
block might have been included, if more elaboration were needed, to provide the model name
along with the page number. In addition, a header block might have been used to display a dis-
claimer or an instruction, which we wanted consistently, repeated on every page. Once this in-
formation is placed in the title or header blocks, it is displayed on each page thereafter unless
modified. This could be especially useful for a long document covering many pages.

15.6.1 ACCESSING VARIOUS PAGE SECTIONS

Each of these areas of a page are accessed by using different variations of the jxetyword
These variations are:
puttl : write to title block
puthd write to header block
put write to window

The size of any area within a given page is based entirely on the number of lines put into it. Note
that the total number of lines for all areas must fit within the specified page size. If the total
number of lines written to the title and header block equals or exceeds the page size, an overflow
error will be displayed in the program listing. When this occurs, this means there is no room re-
maining on the page to write to the window.

As mentioned above, the syntax for writing an output item to any of the three possible writing ar-
eas of the page is basically the same, the only difference being the choice of put keyword. This is
illustrated by writing to the title block of oweport.dat file:

puttl class2 'GAMS Put Example';

In this case, the textGAMS Put Example " has been placed in the first column of the first row
of the title block. Any subsequent pages inréeort.dat file will now start with this infor-
mation.

If the title block was modified or the header block was started after the win-
" dow of the current page has been written to, these modifications would appear
in the next page and not the current page.

15.6.2 PAGING

Paging occurs automatically whenever a page is full. However, note that the window must be
used in order for the page to be written to the output file. When a page has no output in its win-
dow, the page is not written to file regardless of whether there are output items in the title or
header blocks. To force a page that has an empty window out to file, simply write something in-
nocuous to the window such as:

put ";

140 THE PUT WRITING FACILITY

Now the window of the page has been initiated and it will be written.

15.7 POSITIONING THE CURSOR ON A PAGE

The cursor is positioned at the space immediately following the last character written unless the
cursor is specifically moved using one of the following cursor control characters:

cursor control description
#n move cursor position to row n of current page
@n move cursor position to column n of current line
/ move cursor to first column of next line. Also acts as a delimiter between
output items.

In addition to numerals, any expression or symbol with a numeric value can be used to follow the
and@characters. The following example illustrates the use of these position controls to write
out the value of a paramet(i,j) in a tabular form:

file out; put out;

scalar col column number /1/ ;

loop(i,
loop (j, put @col a(i,j); col=col+10;) ; put /;
)

15.8 SYSTEM SUFFIXES

The complete list of system suffixes that can be used to recover information about the GAMS run
are:

System Suffix | Description

.date program execution date
ifile input file name

.ofile output file name

.page current file page

.rdate restart file date

Iile restart file name

.rtime restart file time

sfile save file name

time program execution time
title title of the model as specified by $title

As an illustration, consider the example discussed in the previous section. One can add page
numbers to the title of the report file by modifying the puttl statement to read

puttl class2 'GAMS Put Example', @65,'page ',system.page ///;

This causes the word page followed by the page number to appear on the title of every page
starting at column 65.

15.9 OUTPUT ITEMS 141

15.9 OUTPUT ITEMS

Output items for the put statement are of the following forms:

e text Any guoted text, set element label or text, any identifier
symbol text or contents of the system suffixes.

* numeric values associated with parameters, variables, equations, or
any of the model suffixes.

* setvalues represent existence of set elements and carry the values yes
or no only.

The methods for identifying and using each of these different types of output items are described
in the following sub-sections.

15.9.1 TEXT ITEMS

Output items, which are quoted text, are any combination of characters or numbers set apart by a
pair of single or double quotes. However, the length of quoted text, as well as any output item,
has a limit. No portion of the output item can be placed outside of the page margin. When the
page width is exceeded, several asterisks are placed at the end of the lipeitaeriax is

recorded in the program listing.

In addition to quoted text, the output of other text items is possible through the use of system and
identifier suffixes. The identifier suffixes are:

Suffix Description

s identifier symbol text displays the text associated with any identifief

Al set element labels displays the individual element labelsef a
te(index) set element text displays the text associated with an element pf a

set . Notice that thete suffix requires a drivingd
index. This driving index controls trset

which will be displayed and does not necessarily
have to be the same as the controfied . Often
a subset of indices of the controlleet is used.

te text fill used to control the display of missing text for set
elements. (default = 2)
0 no fill
1 fill existing only

2 fill always

142 THE PUT WRITING FACILITY

The following example illustrates these ideas:

file out; put out;
set i master set of sites /i1 Seattle, i2 Portland
i3 San Francisco, i4 Los Angeles
i5 /
j subsetofsites /i3*i5/;
putj.ts/;
loop(j, put j.il, i.te(j) /);

The resulting fileout.put will look like:

subset of sites

i3 San Francisco
i4 Los Angeles
i5 15

In this example, the symbol text for the identifier of the supsstwritten first. This is followed
with the labels for the subsietand the associated element text found in its domain, that is, the
seti . Notice the driving sgt is used for the element text specification of the s&ince there

was no set element text associated withihelement of seit, the set element label was dis-
played again. By placing the following before the last line:

out.tf = 0O;

The missing element text is now no longer replaced with the label text. The resulting file
out.put file would now look like:

subset of sites

i3 San Francisco
i4 Los Angeles
i5

15.9.2 NUMERIC ITEMS

The syntax used for the display of numeric items is generally easier to work with. To output a pa-
rameter, only the identifier along with its index set (as appropriate) has to be used. To output a
variable or equation value, the identifier is combined with one of the variable and equation suf-
fixes. The variable and equation suffixes are:

Suffix Description

i level or marginal value
Jo lower bound

.m marginal or dual value
prior priority

.scale scaling

up upper bound

15.9.3 SET VALUE ITEMS

Set value items are easy to work with. To output the set value, only the identifier along with its
index set has to be used. In the example from Section 8.1, consider altering the loop statement to
read:

loop(i, put i.t, j(), " "i.te() /);

15.10 GLOBAL ITEM FORMATTING 143

The resulting output file looks like follows:

subset of sites

i1 NO Seattle

i2 NO Portland

i3 YES San Francisco
i4 YES Los Angeles
i5 YES

The second columns represents whether the element belongs tor eit.

15.10 GLOBAL ITEM FORMATTING

It is often important to be able to control the display format of output items. In this section we
describe how this is done. For formatting purposes, output items are classified into four catego-
ries. These are labels, numeric values, set values, and text. For each, global formatting of the
field width and field justification is possible.

15.10.1 FIELD JUSTIFICATION
This is done using the following file suffixes:

Suffix | Description Default
i label justification 2
Nj numeric justification 1
S set value justification 1
4 text justification 2

The possible global justification values for any of the categories are:

Justification Option
right 1
left 2
center 3

15.10.2 FIELD WIDTH

This is done using the following file suffixes:

Suffix | Description Default | Maximum
Iw label field width 12

-nw numeric field width 12

SW set value field width 12 20
tw text field width 0

144 THE PUT WRITING FACILITY

The field width is specified with the number of spaces to be allocated to the field. Variable

length field widths are possible by using a suffix value of 0. This forces the field width to match
the exact size of the item being displayed. If a textual output item does not fit within the specified
field, truncation occurs to the right. For numeric output items, the decimal portion of a number is
rounded or scientific notation used to fit the number within the given field. If a number is still too
large, asterisks replace the value in the output file.

As an example, to set the global numeric field width to four spaces from its default of twelve in
the fileout.put , we would use the following statement:

out.nw = 4;

15.11 LOCAL ITEM FORMATTING

It is often useful to format only specifiut items. For this, we use the local format feature,
which overrides global format settings. The syntax of this feature is as follows:

item:{<>}width:decimals;

The item is followed by a justification symbol, the field width, and the number of decimals to be
displayed. The specification of the number of decimals is only valid for numeric output. The
following local justification symbols are applicable:

> right justified

< left justified

<> center justified

Omitting any of the components causes their corresponding global format settings to be used. As
with global formatting, when the field width is given a value of 0, the field width is variable in

size. The item, width, and decimals are delimited with colons as shown above. The use of the lo-
cal format feature as well as the inclusion any of the components for justification, field width, or
the number of decimals is entirely optional.

The following example shows some examples of the local formatting feature:

* default justification and a field width of variable size
* with no decimals
loop(i, put dist(i):0:0 /);

put 'Right justified comment':>50,
'Center justified truncated comment':<>20;

* left justified scalar with a six space field width and
* two decimals
put f:<6:2 ;

15.12 ADDITIONAL NUMERIC DISPLAY CONTROL

In addition to the numeric field width and the humeric justification as mentioned in the previous
section, the following file suffixes can also be globally specified for numeric display:

Suffix Description

.nd number of Sets the number of decimals displayed for numeric items. A valug of
decimals zero results in only the integer portion of a number being displayed.
displayed The maximum value is 10. The default value is 2.

15.12 ADDITIONAL NUMERIC DISPLAY CONTROL

145

Suffix
.nr

Nz

numeric
round format

0
1
2

numeric zero
tolerance

Description
Allows one to display a numeric value in scientific notation, which

would otherwise be displayed as zero because of being smaller than

the number of decimals allowed by tinel suffix. This situation oc-
curs when a number is smaller than e specification, but is large
than the zero tolerance level set.by . In many situations, it is im-
portant to know that these small values exist

displayed in F or E format
rounded to fit fields
displayed in scientific notation

Sets the tolerance level for which a number will be rounded to zerp for
display purposes. When it is set equal to zero, rounding is determjned

by the field width. Default value is 1.0e-5

The maximum size of a displayed number must fit within 20 spaces using at most 10 significant
digits. The remaining 10 spaces are used for the sign, exponential notation, or padding with ze-

ros.

15.12.1 ILLUSTRATIVE EXAMPLE

The following illustrative example shows the results of different combinations of these numeric
file suffixes. The example uses five combinations of the numeric file suffixes .nd, .nz, .nr, and
.nw. Four number values, each of which is shifted by three decimal places from its predecessor,
are used with these suffix combinations. The combinations are chosen to show various format re-
sults when these suffix values are used together in put statements:

set ¢ suffix combinations / combl * comb4 /

vV V

alue indices

/ valuel* value3 /;

table suffix(c,*) numeric suffix combinations

combl
comb?2
comb3
comb4
comb5

nd nz nr

3 0 0
3 1le-5
3 1le-5
8 0 0
6 1le-5

nw
12

parameter value(v) testvalues

/valuel 123.4567
value2 0.1234567
value3 0.0001234567 / ;

file out; put out; out.nj=2; out.lw=10;
out.cc=11;

loop(v,

put v.tl:21);

loop(c, out.nd=suffix(c,"nd");

out.nz=suffix(c,"nz");

out.

out.nw=suffix(c,"nw");

put

nr=suffix(c,"nr");

/ c.tl;

loop(v, put @(ord(v)*21-10), value(v)));

146 THE PUT WRITING FACILITY

For readability, the numeric values have purposely been made left justified using teaffix
since the numeric field width is changed as the model goes through the suffix combinations. The
following is the resulting filout.put , which shows the value/suffix combinations:

valuel value2 value3
combl 123.457 0.123 1.2345670E-4
comb2 123.457 0.123 1.2345670E-4
comb3 123.457 0.123 0.000
comb4 1.23457E+2 0.12345670 0.00012346
comb5 123.456700 0.123457 0.000123

Notice that in combl, the display of values switch to exponential notation when a value becomes
smaller than the number of decimal places allowed. This is triggered by the.suffbeing set

to zero. Of particular interest¥mlue3 for comb2 andcomb3. Value3 is greater than the

zero tolerance level imz , but smaller than the number of decimals allowechdy. In comb2,
since.nr is set to zero, the value is displayed in exponential formabmb3, .nr is set to

one, so this small value is rounded to zer@amb5, valuel is rounded to an integer because

of .nd being set to zero.

15.13 CURSOR CONTROL

Having described the display of various output items using the put statement, this section de-
scribes features available to position these items in the output file. GAMS has several file suf-
fixes which determine the location of the cursor and the last line of the file. These suffixes can
also be used to reposition the cursor or reset the last line. As such, they are instrumental in for-
matting output items in documents. These suffixes are grouped by the title, header, or window
writing area for which they are valid.

15.13.1 CURRENT CURSOR COLUMN

These suffixes have numeric values corresponding to coordinates in the window of the page. Be-
cause of this, they can be used in conjunction with cursor control characters to manipulate the
position of the cursor in the output file.

.CC current cursor column in window
.hdcc header current column
tlcc title current column

The convention for updating the values stored for the .cc suffix is that it are

n updated at the conclusion of a put statement. Consequently, the .cc value re-
mains constant throughout the writing of items for the next put statement, even
if multiple items are displayed.

The following example illustrates the updating of the cursor control suffixes and the use of cur-
sor control characters. The example is trivial but instructive:

scalar Imarg left margin /6/;

file out; put out;

put @(Imarg+2) 'out.cc =", out.cc:0:0" *;
put @out.cc X'/ @out.cc'y'/ @out.cc 'z '
put 'out.cc ="' out.cc:0:0;

The following is the resulting fileut.put

15.13 CURSOR CONTROL 147

outcc=1 X

y
Z out.cc =23

Initially, the scalatmarg is set to a specific value to use as an alignment tab. Symbols which
hold common alignment values such as margins or tabs are often useful for large structured
documents. The first put statement uses the current column cursor control character to relocate
the cursor. In this example, the cursor is moved to column eight whece and its value is
displayed.

The second put statement illustrates the updating of the cursor control suffixes by writing the
lettersx, y , andz on three different lines. Each is preceded by the cursor being moved to the
out.cc value. Initially, the value for the cursor control suffice is 20. Since a single put state-
ment is used for these three items,dbecc value remains constant and consequently the let-
ters end up in the same column. Following this put statemerdytiee value is updated to

23, which is the location of the cursor at the end of the second put statement (note the additional
blank spaces displayed with the legr

15.13.2 CURRENT CURSOR ROW

These suffixes have numeric values corresponding to coordinates in the window of the page. Be-
cause of this, they can be used in conjunction with cursor control characters to manipulate the
position of the cursor in the output file.

.Cr current cursor row in window
.hdcr header current row
ter title current row

The convention for updating the values stored forahe suffix is that it are updated at the con-
clusion of a put statement. Consequently,.the value remains constant throughout the writing

of items for the next put statement, even if multiple items are displayed. It's behavior is similar to
that of.cl

15.13.3 LAST LINE CONTROL

These suffixes control the last line used in a writing area.

Al last line used in window
.hdll header last line
Rl title last line

Unlike the row and column control, the last line suffix is updated continuously. Last line suffixes
are especially useful for modifying the various writing areas of a page.

The.tlll and.hdll suffixes may not hold values applicable to the current

n page because when the title or header blocks are modified, they correspond to
the title or header blocks of the next page whenever the window has been
written to on the current page.

148 THE PUT WRITING FACILITY

' Not only can this suffix be used to determine the last line used in a writing
L‘ area, but it can also be used to delete lines within this area.

In the following example, the header section will be completely deleted by resettihglthe
suffix to 0.

file out;
puthd out 'This header statement will be eliminated’;
out.hdll = 0;

In this example, a header is initially written. By changing.titdl suffix to zero, the cursor is
reset to the top of the header block. Consequently the header will not be written unless something
new is added to the header block.

15.14 PAGING CONTROL

In addition to the automatic paging, which occurs when the bottom of the page is reached, a page
can also be written to file early. The keywgnatpage is used to do thifutpage forces the

current page to immediately be written to file, making a new page available for put statements. In
its simplest form, the keyword putpage is used by itself to eject the current page. Additionally, it
can be used with output items. When it is used with output items, the page is written to file in-
cluding the output items contained in the putpage statemenpulpage statement is in fact

another variation of thput statement. In the following statement, the quoted text is placed in

the current page, which is then written to the dilg.put

putpage out 'This text is placed in window and the page ends'’;

Two additional file suffixes that can help the user in determining when to page a file are:

Suffix Description

Ip last indicates the number of pages that are already in the document. Note [that
page | setting this to zero does not erase the pages that have previously been writ-
ten to the file.

WS win- Shows the number of rows, which can be placed in the window, consider-

dow ing the number of lines that are in the title and header blocks of the cufrent
size page and the existing page size. Thg file suffix value is calculated by
GAMS and is not changeable by the user. This suffix is useful for manual
pagination when used in conjunction with the file suffix.

15.15 EXCEPTION HANDLING

In this section, the topic of exception handling is dealt with. As with other GAMS statements,
dollar control exception handling can be used with statements to control whether particular
output items are displayed. In the following example, the put statement is only displayed if the
dollar condition is true. If it is not, the put statement is ignored:

put$(flag gt 10) 'some output items';

15.16 SOURCE OF ERRORS ASSOCIATED WITH THE PUT STATEMENT 149

15.16 SOURCE OF ERRORS ASSOCIATED WITH THE PUT
STATEMENT

There are two types of errors that can occur when using the put writing facility:

* syntax errors
* put errors

The following subsections discuss each of these types of errors.

15.16.1 SYNTAX ERRORS

Syntax errors are caused by the incorrect usage of the GAMS language. These errors are the
same or are similar to what one finds elsewhere with GAMS such as unmatched parentheses, un-
defined identifiers, uncontrolled sets, or the incorrect use of a keyword or suffix. These errors are
detected during program compilation and are always fatal to program execution. Errors of this
kind are identified in the program listing at the location of the error witlsyanbol and corre-

sponding error numbers. The program listing includes a brief description of the probable cause of
the error.

15.16.2 PUT ERRORS

Put errors are unique to thpait writing facility. This type of error occurs during program exe-

cution and is caused when one or more of the file or page attributes are violated. These errors are
non-fatal and are listed at the end of the program listing. They typically occur when a put state-
ment attempts to write outside of a page, such as moving the cursor w@shiheacter to a lo-

cation beyond the page width. Other typical errors are the inability to open a specified file, the
overflow of a page, or an inappropriate value being assigned to a suffix. For many of these errors,
an additional set of asterisks will be placed at the location of the error in the output file.

Sinceput errors are non-fatal and are not overemphasized in the output file, their presence is
sometimes overlooked. Without reviewing the program listing, these put errors might go unde-
tected, especially in large output files. Consequently, GAMS has included the following file suf-
fix to help one detect errors:

.errors Allows one to display the number of put errors occurring in a file.

To illustrate its use, the following statement could be inserted at any point of a program to detect
the number of errors, which have occurred up to its location. The choice of output file could be
the same file, a different file, or the console as appropriate:

putpage error //[*** put errors: ', out.errors:0:0," ***/;

In this example it is assumed that the fibes .put anderror .put have previously been de-

fined with a file statement. With this statement, the number of put errors that occur in the file
out.put are displayed in the filerror.put . Usingputpage would allow the immediate

display to the screen of a PC system at the location of this statement if the console had been the
output device.

150 THE PUT WRITING FACILITY

15.17 Simple SPREADSHEET/DATABASE APPLICATION

This last section provides a simple example of the preparation of output for spreadsheets, data-
bases, or other software packages, which allow importation of delimited files. As mentioned in
section 15.2, output items can be prepared with comma delimiters and text items in quotes. This
is implemented by usingc suffix option 5. Delimited files are different than norrpat files.
All output items are written with variable field widths and separated by delimiters. Consequently,
all global and local format specifications for field widths and justification are ignored by GAMS.
Note that the number of decimals for numeric items can still be specified witidthide suf-
fix. Each item is written immediately following the previous delimiter on the same line unless the
cursor is reset.

Avoid horizontal cursor relocations in a program, which creates a delimited
n file. Horizontally relocating the cursor in a delimited file is potentially dam-

aging since a delimiter could be overwritten.

While the comma is the most common delimiting character for spreadsheets, other delimiters like
blank space and tab characters can also be used.

15.17.1 AN EXAMPLE

In the following example, the capacity sub-table of the [MEXSS] report program is prepared as a
delimited file. The following program segment demonstrgies suffix option 5. The program
segment could be placed at the end of the original [MEXSS] model:

file out; put out; out.pc=5;
put 'capacity (metric tons)'’;
loop(i, put i.tl);
loop(m,

put / m.te(m);

loop(i, put k(m,i));
);

The first line of this program segment creates theofiteput as the delimited file. Notice that
in the remainder of this program, field widths, justifications, and horizontal cursor relocations are
completely avoided. All text items are quoted. The following is the resulting output file:

"CAPACITY (tons)","AHMSA","FUNDIDORA","SICARTSA","HYLSA","HYLSAP"
"BLAST FURNACES",3.25,1.40,1.10,0.00,0.00

"oPEN HEARTH FURNACES",1.50,0.85,0.00,0.00,0.00

"BASIC OXYGEN CONVERTERS",2.07,1.50,1.30,0.00,0.00

"DIRECT REDUCTION UNITS",0.00,0.00,0.00,0.98,1.00

"ELECTRIC ARC FURNACES",0.00,0.00,0.00,1.13,0.56

Notice the each item is delimited with a comma and that textual output is quoted.

16

PROGRAMMING FLOW CONTROL FEATURES

16.1 INTRODUCTION

The previous chapters have focused on the ability of GAMS to describe models. This chapter
will describe the various programming features available in GAMS to help the advanced user.
The various programming flow control features discussed in this chapter are

e Loop Statement

« If-Else Statement

* For Statement

While Statement

Each of these statements will be discussed in detail in the following sections.

16.2 THE LOOP STATEMENT

Theloop statement is provided for cases when parallel assignments are not sufficient. This
happens most often when there is no analytic relationship between, for example, the values to be
assigned to a parameter. It is, of course, also useful to have a looping statement for general pro-
gramming - for example, the production of reports with the put statement.

16.2.1 THE SYNTAX
The syntax of théoop statement is,

loop(controlling_domain[$(condition)],
statement {; statement}

)
If the controlling_domain consists of more than oset , then parentheses are required
around it.
Theloop statement causes GAMS to execute the statements within the scope of the loop for
each member of the driving set (s) in turn. The order of evaluation is the entry order of the labels.
A loop is thus another, more general, type of indexed operatiolodpeset may be dollar-

controlled and does not need to be static or nested. Loops may be controlled by more than one
set.

" One cannot make declarations or define equations inside a loop statement

M It is illegal to modify any controlling set inside the body of the loop.

152 PROGRAMMING FLOW CONTROL FEATURES

16.2.2 EXAMPLES
Consider a hypothetical case when a growth rate is empirical:

set t /1985*1990 /
parameter pop(t) /1985 3456/
growth(t) /1985 25.3, 1986 27.3, 1987 26.2
1988 27.1, 1989 26.6, 1990 26.6 /;

Theloop statement is then used to calculate the cumulative sums
loop(t, pop(t+1) = pop(t) + growth(t)) ;

in an iterative rather than a parallel way. In this example there is one statement in the scope of
theloop , and one driving, or controllinget .

A loop is often used to perform iterative calculations. Consider the following example, which
uses finds square roots by Newton’s method. This example is purely for illustration - in practice,
the functionsqrt should be used. Newton’s method is the assertion tkas &n approximation

to the square root of then(x+v/x)/2is a better one

set i "set to drive iterations" / i-1*i-100 /;
parameter value(i) "used to hold successive approximations" ;

scalars
target "number whose square root is needed" /23.456 /
sqrtval "final approximation to sqrt(target)”
curacc "accuracy of current approximation”
reltol "required relative accuracy" /1.0e-06/;

abort$(target <= 0) "argument to newton must be positive", target;
value("i-1") = target/2 ; curacc = 1 ;
loop(i$(curacc > reltol),

value(i+1) = 0.5*(value(i) + target/value(i));

sqrtval = value(i+1);

curacc = abs (value(i+1)-value(i))/(1+abs(value(i+1)))

abort$(curacc > reltol) "square root not found"

option decimals=8;
display "square root found within tolerance”, sqrtval, value;

The output is:
---- 18 square root found within tolerance

---- 18 PARAMETER SQRTVAL = 4.84313948 final approximation
to sqrt(target)

---- 18 PARAMETER VALUE used to hold successive approximations

i-1 11.72800000, i-2 6.86400000, i-3 5.14062471, i-4 4.85174713
i-5 4.84314711, i-6 4.84313948, -7 4.84313948

16.3 THE IF-ELSEIF-ELSE STATEMENT

Theif-else statement is useful to branch conditionally around a group of statements. In some
cases this can also be written as a set of dollar conditions, but the if statement may be used to
make the GAMS code more readable. An opti@hs¢ part allows you to formulate traditional
if-then-else constructs.

16.3 THE IF-ELSEIF-ELSE STATEMENT

153

16.3.1 THE SYNTAX
The syntax for aif-elseif-else

if (condition,

statements;
{elseif condition, statements }
[else statements;]

);

where condition is a logical condition.

statement is:

" One cannot make declarations or define equations inside an if statement.

16.3.2 EXAMPLES
Consider the following set of statements

p()$(f <= 0) = -1;

p()$((f > 0) and (f < 1)) = p(i)**2 ;
p($(f > 1) = p(i)=3 ;
a()$(f<=0)=-1; _
a()$((f > 0) and (f < 1)) = q()**2 ;
a@)s$(f > 1) = a()*3;

They can be expressed using ifhelseif-else

if (f<=0,
p(i) =-1;
ag)=-1;
elseif ((f > 0) and (f < 1)),
p(i) = p(i)**2 ;
q() = aG)=2;
else
p(i) = p(i)**3 ;
)Q(J) =q()*3;

statement as

The body of thef statement can contasolve statements. For instance, consider the follow-

ing bit of GAMS code:

if ((ml.modelstat eq 4),
* model ml was infeasible
* relax bounds on x and solve again
x.up(j) = 2*x.up(j) ;
solve ml using Ip minimizing Ip ;
else
if ((ml.modelstat ne 1),
abort "error solving model ml ;
)i

);

The following GAMS code is illegal since one cannot defigaations inside an if statement.

if (sgto,
eqg.. sum(i,x(i)) =g=2;
)i

The following GAMS code is illegal since one cannot make declarations insifle statement.

154 PROGRAMMING FLOW CONTROL FEATURES

if (sgto,
scalary;y=5;

16.4 THE WHILE STATEMENT

Thewhile statement is used in order to loop over a block of statements.

16.4.1 THE SYNTAX

The syntax of the while statement is:
while(condition,

statements;

);

" One cannot make declarations or define equations inside a while statement.

16.4.2 EXAMPLES

One can use while statements to control the solve statement. For instance, consider the following
bit of GAMS code that randomly searches for a global optimum of a non-convex model:

scalar count ; count=1;
scalar globmin ; globmin = inf ;
option bratio=1;
while((count le 1000),
x.I(j) = uniform(0,1) ;
solve ml using Ip minimizing obj ;
if (obj.I le globmin,
globmin = obj.| ;
globinit(j) = x.1(j) ;
)
count = count+1 ;

)

In this example, a non-convex model is solved from 1000 random starting points, and the global
solution is tracked. The model [PRIME] from the model library illustrates the use white
statement through an example where the set of prime numbers less than 200 are generated

The following GAMS code is illegal since one cannot define equations ingitidea state-
ment.

while (s gt O,
eg.. sum(i,x(i)) =g= 2 ;

The following GAMS code is illegal since one cannot make declarations ingildiea state-
ment.

while(s gt O,
scalary;y=5;
);

16.5 THE FOR STATEMENT 155

16.5 THE FOR STATEMENT

Thefor statement is used in order to loop over a block of statements.

16.5.1 THE SYNTAX
The syntax is:

for (i = start to|downto end [by incr],
statements;
)i

Note that is not aset but aparameter .Start andend are the start and end, aindr is
the increment by which is changed after every pass of the loop.

" One cannot make declarations or define equations insmte atatement.

The values oftart , end andincr need not be integer. Tséart and
M" end values can be positive or negative real numbers. The vainerof has
to be a positive real number.

16.5.2 EXAMPLES

One can ustor statements to control tl®lve statement. For instance, consider the follow-
ing bit of GAMS code that randomly searches for a global optimum of a non-convex model:

scalari;
scalar globmin ; globmin = inf ;
option bratio=1;
for (i = 1 to 1000,
x.I(j) = uniform(0,1) ;
solve ml using nlp minimizing obj ;
if (obj.I le globmin,
globmin = obj.| ;
globinit(j) = x.I() ;
)

In this example, a non-convex model is solved from 1000 random starting points, and the global
solution is tracked.

The use of real numbersstart , end and thencrement can be understood from the fol-
lowing example,

for (s =-3.4t0 0.3 by 1.4,
display s ;

The resulting listing file will contain the following lines,

---- 2 PARAMETER S = -3.400
---- 2 PARAMETER S = -2.000
---- 2 PARAMETER S = -0.600

Notice that the value &f was incremented by 1.4 with each pass of the loop as long as it did not
exceed 0.3.
The following GAMS code is illegal since one cannot define equations inside a for statement.

156 PROGRAMMING FLOW CONTROL FEATURES

for(s=1to5hby1,
eg.. sum(i,x(i)) =g= 2 ;

The following GAMS code is illegal since one cannot make declarations inside a for statement.

for(s=1to 5 by 1,
scalary;y=5;

17

SPECIAL LANGUAGE FEATURES

17.1 INTRODUCTION

This chapter introduces special features in GAMS that do not translate across solvers, or are spe-
cific to certain model types. These features can be extremely useful for relevant models, and are
among the most widely used.

17.2 SPECIAL MIP FEATURES

Some special features have been added to GAMS to help in simplifying the modeling of MIP
problems. Two special types of discrete variables are defined and discussed. Finally, creating
priorities for the discrete variables is discussed. The solvers use this information when solving
the problem.

17.2.1 TYPES OF DISCRETE VARIABLES

The following types of discrete variables have been discussed so far in the book,

¢ Dbinary variables . These can take on values of 0 or 1 only.
e integer variables . These can take on integer values betweerand +o . The de-

fault lower and upper bounds are 0 and 100 respectively.

In addition to these two, two new types of discrete variables that are introduced in this section.
Both these variables exploit special structures in MIP models during the solution phase. These
are the following

e Special Ordered Sets (SOS)he precise definition of Special Ordered Sets differ from one
solver to another and the development of these features has been driven more by internal al-
gorithmic consideration than by broader modeling concepts. GAMS effels andsos2
variables as two types of compromise features that model Special Ordered Sets. Sections
17.2.2 and 17.2.3 discuss these two types of variables in greater detail.

* Semi-continuous variablesGAMS offerssemicont andsemiint variables to model
this class of variables. These are explained in Sections 17.2.3 and 17.2.4.

The presence of any of the above types of discrete variables requires a Mixed Integer Model and

all the discreteness is handled by the branch and bound algorithm in the same way as binary and
general integer variables are handled.

17.2.2 SPECIAL ORDER SETS OF TYPE 1 (SOS1)

Definition: At most one variable within 80S1set can have a non-zero value. This variable can
take any positive value. Special Ordered Sets of Type 1 are defined as follows,

158 SPECIAL LANGUAGE FEATURES

sosl Variable s1(i), t1(k,j), wi(i,k,j) ;

The members of the innermost (the right-most) index belongs to the same set. For example, in the
sets defined above]l represents one special ordered set of type liwdlementstl definesk
sets off elements each, andl defines(i,j) sets withk elements each.

' The default bounds f@OS1variables are 0 toet. As with any other vari-
l‘ able, the user may set these bounds to whatever is required.

The user can, in addition, explicitly provide whatever convexity row that the

n problem may need through an equation that requires the members of the SOS
set to be less than a certain value. Any such convexity row would implicitly
define bounds on each of the variables.

Consider the following example,

sosl Variable s1(i) ;
Equation defsoss1 ;
defsossl.. sum(i,s1(i)) == 3.5 ;

The equatiomefsossl implicitly defines the non-zero value that one of the elements of the
SOS1 variablsl can take.

A special case ddOS1lvariables is when exactly one of the elements of the set have to be non-
zero. In this case, thdefsossl equation will be

defsossl.. sum(i,s1(i)) =e= 3.5 ;

A common use of the use of this set is for the case where the non-zero value is 1. In such cases,
the SOS1variable behaves like a binary variable. It is only treated differently by the solver at the
level of the branch and bound algorithm. For example, consider the following example to model
the case where at most one oulNadptions can be selected. This is expressed as

sosl variable x(i)
equation defx ;
defx.. sum(i,x(i)) == 1 ;

The variablex can be made binary without any change in meaning and the solution provided by
the solver will be indistinguishable from tB®S1case.

The use of special ordered sets may not always improve the performance of the branch and
bound algorithm. If there is no natural ‘order’ the use of binary variables may be a better choice.
A good example of this is the assignment problem.

Not all MIP solvers allowsOS1variables. Furthermore, among the solvers
that allow their use, the precise definition can vary from solver to solver. Any

n model can contains these variables may not be transferable among solvers.
Please verify how the solver you are interested in haisfd&Zlvariables by
checking the relevant section of the Solver Manual.

17.2 SPECIAL MIP FEATURES 159

17.2.3 SPECIAL ORDER SETS OF TYPE 2 (SOS2)

Definition: At most two variables within 80S2set can have non-zero values. The two non-
zero values have to be adjacent. The most common &e®2sets is to model piece-wise lin-
ear approximations to nonlinear functions.

' The default bounds for SOS2 variables are Ox¢0As with any other vari-
l‘ able, the user may set these bounds to whatever is required.

Special Ordered Sets of Type 2 are defined as follows,
sos2 Variable s2(j), t2(k.j), w2(i,j.k) ;

The members of the innermost (the right-most) index belongs to the same set. For example, in the
sets defined above2 represents one special ordered set of type 2iwilementst2 definesk
sets off elements each, and? defines(i,j) sets withk elements each.

[PRODSCHX] showsSOStype formulations with binarf50S1andSOS2sets. The default
bounds for SOS variables are 0 t.4#s with any other variable, the user may set these bounds
to whatever is required.

Not all MIP solvers allowsOS2variables. Furthermore, among the solvers
that allow their use, the precise definition can vary from solver to solver. Any

n model can contains these variables may not be transferable among solvers.
Please verify how the solver you are interested in hasf&2variables by
checking the relevant section of the Solver Manual.

17.2.4 SEMI-CONTINUOUS VARIABLES

Semi-continuous variables are those whose values, if non-zero, must be above a given minimum
level. This can be expressed algebraically=iher x =0 orL< x< U.

By default, this lower bound_] is 1.0 and the Upper bound)(is . The lower and upper
bounds are set througle and.up . In GAMS, a semi-continuous variable is declared using the
reserved phrasgemicont variable . The following example illustrates its use.

semicont variable X ;
xlo=15;xup=231;

The above slice of code declares the variakie besemi-continuous variable that can ei-
ther be 0, or can behave as a continuous variable between 1.5 and 23.1.

Not all MIP solvers allow semi-continuous variables. Please verify that the
solver you are interested in can handle semi-continuous variables by checking
the relevant section of the Solver Manual.

N

The lower bound has to be less than the upper bound, and both bounds have to
be greater than 0. GAMS will flag an error if it finds that this is not the case.

N

160 SPECIAL LANGUAGE FEATURES

17.2.5 SEMI-INTEGER VARIABLES

Semi-integer variables are those whose values, if non-zero, must be integral above a given mini-
mum value. This can be expressed algebraicallgilser x =0 or x =[L,U]

By default, this lower bound.] is 1.0 and the upper bound)(is 100. The lower and upper
bounds are set througle and.up. In GAMS, a semi-integer variable is declared using the re-
served phrassemiint variable. The following example illustrates its use.

semiint variable X ;
xlo=2;xup=25;

The above slice of code declares the varialttebe semi-continuous variable that can either be
0, or can take any integer value between 2 and 25.

Not all MIP solvers allow semi-integer variables. Please verify that the solver
you are interested in can handle semi-integer variables by checking the rele-
vant section of the Solver Manual.

The lower boundL() has to be less than the upper boudg &nd both bounds
have to be greater than 0. GAMS will flag an error during model generation if
it finds that this is not the case.

N N

The bounds for semiint variables have to take integer values. . GAMS will flag
an error during model generation if it finds that this is not the case.

N

17.2.6 SETTING PRIORITIES FOR BRANCHING

The user can specify an order for picking variables to branch on during a branch and bound
search for MIP models through the use of priorities. Without priorities, the MIP algorithm will
determine which variable is the most suitable to branch on. The GAMS statement to use priori-
ties for branching during the branch and bound search is:

mymodel.prioropt = 1 ;

wheremymodel is the name of the model specified in thedel statement. The default value is

0 in which case priorities will not be used.

Using the .prior suffix sets the priorities of the individual variables. Note that there is one prior
value for each individual component of a multidimensional variable. Priorities can be set to any
real value. The default value is 1.0. As a general rule of thumb, the most important variables
should be given the highest priority.

The following example illustrates its use,

z.prior(i,'small’) =3;
z.prior(i,medium’) =2;
z.prior(i,'large’) =1;

In the above example(i,'large") variables are branched on befa(kg 'small’)
variables.

' The lower the value given to the .prior suffix, the higher the priority for
L‘ branching.

17.3 MODEL SCALING - THE SCALE OPTION 161

All members of any SOS1 or SOS2 set should be given the same priority value
n since it is the set itself which is branched upon rather than the individual
members of the set.

17.3 MODEL SCALING - THE SCALE OPTION

The rules for good scaling are exclusively based on algorithmic needs. GAMS has been devel-
oped to increase the efficiency of modelers, and one of the best ways seems to be to encourage
modelers to write their models using a notation that is as 'natural’ as possible. The units of meas-
urement are one part of this natural notation, and there is unfortunately a potential conflict be-
tween what the modeler thinks is a good unit and what constitutes a well-scaled model.

17.3.1 The Scale option

To facilitate the translation between a natural model and a well scaled model, GAMS has intro-
duced the concept of a scale factor, both for variables and equations. The notations and defini-
tions are quite simple. Scaling is turned off by default. Setting the model saffileopt to 1

turns on the scaling feature. For example,

model mymodel /all/ ;
mymodel.scaleopt =1 ;
solve mymodel using nlp maximizing dollars ;

The statement should be inserted somewhere after the model statement and before the solve
statement. In order to turn scaling off again, setbeel.scaleopt parameter to 0 before
the next solve.

The scale factor of a variable or an equation is referenced with the.sofflg , i.e. the scale
factor of variablex(i) is referenced asscale(i) . Note that there is one scale value for

each individual component of a multidimensional variable or equation. Scale factors can be de-
fined using assignment statements. The default scale factor is always 1.

GAMS scaling is in most respects hidden from the user. The solution values reported back from a
solution algorithm are always reported in the user's notation. The algorithm's versions of the
equations and variables are only reflected in the derivatives in the equation and column listings

in the GAMS output if the options limrow and limcol are positive, and the debugging output from
the solution algorithm generated wiisout option set to on.

17.3.2 Variable scaling

The scale factor on a variablés is used to relate the variable as seen by the \dgeip the
variable as seen by the algorithvfa, as follows:

va=Ju
Vs

For example, consider the following equation,

positive variables x1,x2 ;
equation eq ;

eg.. 200*x1 + 0.5*x2 =I=5;
x1.up =0.01; x2.up = 10;
x1.scale = 0.01; x2.scale = 10 ;

162 SPECIAL LANGUAGE FEATURES

By settingxl.scale to 0.01 and2.scale to 10, the model seen by the solver is,

positive variables xprimel,xprime2 ;
equation eq ;

eq.. 2*xprimel + 5*xprime2 =|=5;
xprimel.up = 1; xprime2.up =1 ;

Note that the solver does not see the variatllesr x2, but rather the scaled (and better-
behaved) variablesprimel andxprime2 .

' Upper and lower bounds on variables are automatically scaled in the same way
L‘ as the variable itself.

" Integer and binary variables cannot be scaled.

17.3.3 Equation Scaling

Similarly, the scale factor on an equati@s is used to relate the equation as seen by the user,
Gu, to the equation as seen by the algoritGa, as follows:

For example, consider the following equations,

positive variables y1,y2 ;
equation eql, eq2 ;

eql.. 200*y1 + 100*y2 =|= 500 ;
eg2.. 3*yl - 4*y2 =g=6 ;

By settingeql.scale to 100, the model seen by the solver is,

positive variables y1,y2 ;
equation egprimel, eq2 ;
egprimel.. 2*yl + 1*y2 =|=5;
eg2.. 3*yl - 4*y2 =g=6;

' The user may have to perform a combination of equation and variable scaling
L‘ until a well-scaled model is obtained.

Consider the following example,

positive variables x1,x2 ;
equation eql, eq2 ;

egl.. 100*x1 + 5*x2 =g= 20 ;
eg2.. 50*x1 - 10*x2 =I=5;
xlup=0.2;x2.up=15;

Setting the following scale values:
xl.scale=0.1;
eql.scale=5;
eg2.scale=5;

will result in the solver seeing the following well scaled model,

17.3 MODEL SCALING - THE SCALE OPTION 163

positive variables xprimel,x2 ;
equation egprimel, eqprime2 ;
egprimel.. 2*xprimel + x2 =g=4 ;
egprime2.. xprimel - 2*xprime2 == 1 ;
xprimel.up=2;x2.up=1.5;

17.3.4 Scaling of derivatives

For nonlinear models, the derivatives also need to be well scaled. The derivatives in the scaled
model seen by the algorithm, id{Ga)/d(Va)are related to the derivatives in the user's model,
d(Gu)/d(Vu)through the formula:

d(Ga) _d(Gu), Vs
d(va) d(Vu Gs

The user can affect the scaling of derivatives by scaling both the equation and variable involved.

18

GLOSSARY

Term:
acronym

alias
algorithm

assignment
basic

binding
bounds
column
compilation

constant set

constraint

continuous

controlling sets

data types

Explanations
A GAMS data type used to give logical classifications to data points.

An alternative name for a set.

This term may be used in two ways. It is either a prescription for how to
solve a problem, or a particular solver system.

The statement used to change values associated with an identifier.

A classification of a row or column that is in the basis maintained by solu-
tion methods that use linear programming iterations.

An inequality constraint is binding when the value of the associated slack
is zero.

Upper and lower limits on the possible values that a column may assume in
a feasible solution. May be "infinite", meaning that no limit is imposed.

An individual decision variable in the model seen by a solver program.
Many may be associated with one GAMS variable.

The initial phase of GAMS processing, when the program is being checked
for syntax and consistency.

A set is constant if it remains unchanged. It has to be initialized with a set
definition statement and cannot be changed using assignment statement.
Sets used in domain definitions must be constant. Sets used in lag opera-
tions must be ordered as well. Sometimes the word static is used instead of
constant.

A relationship between columns that must hold in a feasible solution.
There may be many constraints associated with one GAMS equation.

There are two contexts. First a classification of a function. A plot of the
function values will be a line without breaks in it. Second, a classification
of variables. A continuous variable may assume any value within its
bounds.

See driving sets.

Each symbol or identifier has to be declared to be one of the six data types,
which are set, parameter, variable, equation, model and acronym. The
keywords scalar and table do not introduce separate data types but rather
comprise a shorthand way to declare a symbol to be a parameter that will
use a particular format for specifying initial values.

166 GLOSSARY

Term:
declaration

default
definition

definition state-

ments

direction

discontinuous
discrete

dollar control op-
tion

dollar operator

domain checking

domain definition

domain restriction
condition

driving set
dynamic set
endogenous
equation
execution

execution state-
ments

exogenous

Explanations

The entry of a symbol and the specification of its data type. A declaration
may include the specification of initial values, and then it is more properly
called a definition.

The value used, or the action taken, if the user provides no information.

The definitions of the algebraic relationships in an equation are the as-
signment of initial values to parameters or of elements to sets as part of the
initial declaration of the identifier.

Units that describe symbols, assign initial values to them, and describe
symbolic relationships. Some examples of the set, parameter, table, and
model statements, and the equation definition statement.

Either maximization or minimization, depending on whether the user is in-
terested in the largest or the smallest possible value for the objective func-
tion.

A classification of a function. A plot of the function values will be a line
with breaks in it.

A discrete variable (type binary or integer) may not assume any value be-
tween the bounds, but must assume integer values.

Directives or options used to control input or output detail associated with
the GAMS compiler.

An operator used for exceptions handling in assignment statements and in
equation definitions.

The check that ensures that only legal label combination are used on every
assignment to, or reference of, an identifier.

The label combinations whose data will be updated in an assignment
statement, or that will generate an individual constraint in an equation
definition.

The alteration to the domain of definition caused when a dollar operator is
used on the left (of the "="in an assignment or of the ".." in an equation
definition).

The set that determine the domain of definition, or that control and index
operation such as sum.

A set is dynamic if it has been changed with an assignment statement. Dy-
namic sets cannot be used with lag operations or in domain definitions.

Data values that change when a solve statement is processed. In GAMS
most often associated with variables.

The GAMS data type used to specify required relationships between activ-
ity levels of variables.

The second phase of GAMS processing, when GAMS is actually carrying
out data transformations or generating a model.

Instructions to carry out actions such as data transformations, model solu-
tions, and report generation. Some examples are the assignment and the
option, display, loop and solve statements.

Data values known before a solve statement is processed, and not changed
by the solve. In GAMS most often parameters.

Term:
explanatory text

exponent

extended arithme-
tic

e-format
feasible
feasible solution

gams coordinator

identifiers
index position(s)

inequality con-
straint
infeasible
initialization
labels

list

list format

marginals

matrix element
model generation

167

Explanations
See TEXT.

A scale factor used to conveniently represent very large or small numbers.

The usual computer arithmetic is extended to include plus and minus infin-
ity (+inf and -inf) and a special value for an arbitrarily a small number (i.e.,
one which is close to zero) known as epsilgps(). Also, not available

(na) can be used to indicate missing data, and undefuredf () is the re-

sult of illegal operation. GAMS allows extended arithmetic for all opera-
tions and functions. The library problem [CRAZY] demonstrates extended
arithmetic by showing the results for all operations and functions.

The representation of numbers when an exponent is used explicitly. For
example, 1.1E+Q7.

Often used to describe a model that has at least one feasible solution (see
below).

A solution to a model in which all column activity levels are within the
bounds and all the constraints are satisfied.

The person who looks after the administration of a GAMS system, and who
will know what solvers are available and can tell you who to approach for
help with GAMS problems. Unlikely to apply to personal computer ver-
sions.

Names given to data entities. Also called symbols.

Another way of describing the set(s) that must be used when referencing a
symbol of dimensionality one or more (i.e., a vector or a matrix).

A constraint in which the imposed relationship between the columns is not

fixed, but must be either greater than or equal to, or less than or equal to, a
constant. The GAMS symbols =g= and =I= are used in equation definitions
to specify these relationships.

Used to describe either a model that has no feasible solution, or an inter-
mediate solution that is not feasible (although feasible solutions may exist).
See FEASIBLE, above.

Associating initial values with sets or parameters using lists as part of the
declaration or definition, or (for parameters only) using table statements.

Set elements. Sometimes called unique elements.

One of the ways of specifying initial values. Used with sets or parameters,
most often for one-dimensional but also for two and higher dimensional
data structures.

One of the ways in which sets and parameters, can be initialized and all
symbol classes having data can be displayed. Each unique label combina-
tion is specified in full, with the associated non-default value alongside.

Often called reduced costs or dual values. The values, which are meaning-
ful only for non-basic rows or columns in optimal solutions, contain infor-
mation about the rate at which the objective value will change of if the as-
sociated bound or right hand side is changed.

See NONZERO ELEMENT

The initial phase of processing a solve statement: preparing a problem de-

168 GLOSSARY

Term:
model list

nonbasic

nonlinear nonzero

nonoptimal

nonsmooth

nonzero element

objective row (or
function)

objective value
objective variable
optimal

option

ordered sets

output
output file

parameter
problem type

program

Explanations
scription for the solver.

A list of equations used in a model, as specified in a model statement.

A column that is not basic and (in nonlinear problems) not superbasic. Its
value will be the same as the one of the finite bounds (or zero if there are
no finite bounds) if the solution is feasible.

In a linear programming problem, the honzero elements are constant. In a
nonlinear problem, one or more of them vary because their values depend
on that of one or more columns. The ratio of nonlinear (varying) to linear
(constant) non linear zero elements is a good indicator of the pervasiveness
of non-linearities in the problem.

There are two contexts. First, describing a variable: a non-basic variable
that would improve the objective value if made basic. The sign of the mar-
ginal value is normally used to test for non-optimality. Second, for a solu-
tion: other solutions exists with better objective values.

A classification of function that does not have continuous first derivatives,
but has continuous function values. A plot of the function values will be a
line with "kinks" in it.

The coefficient of a particular column in a particular row if it is not zero.
Most mathematical programming problems are sparse meaning that only a
small proportion of the entries in the full tableau of dimensions "number of
rows" by "number of columns" is different from zero.

Solver system require the specification of a row on (for nonlinear systems)
a function whose value will be maximized or minimized. GAMS users, in
contrast, must specify a scalar variable.

The current value of the objective row or of the objective variable.
The variable specified in the solve statement.
A feasible solution in which the objective value is the best possible.

The statement that allows users to change the default actions or values in
many different parts of the system.

A set is ordered if its content has been initialized with a set definition
statement and the entry order of the individual elements of the set has the
same partial order as the chronological order of the labels. A set name
alone on the left-hand side of an assignment statement destroys the ordered
property. Lag and Ordinality operations rely on the relative position of the
individual elements and therefore require ordered sets. Ordered sets are by
definition constant.

A general name for the information produced by a computer program.

A disk file containing output. A GAMS task produces one such file that
can be inspected.

A constant or group of constants that may be a scalar, a vector, or a matrix
of two or more dimensions. Of the six data types in GAMS.

A model class that is dependent on functional form and specification. Ex-
amples are linear, nonlinear, and mixed integer programs.

A GAMS input file that provides a representation of the model or models.

Term:
relational operator

right hand side

scalar
set

simplex method
slack
slack variable

smooth

solver

statements

static set
superbasic

symbol

table

text

type

unique element
variable type

vector

zero default

169

Explanations

This term may be used in two ways. First, in an equation definition it de-
scribes the type of relationships the equation specifies, for example equal-
ity, as specified with the =e= symbol. Second, in a logical expression, the
symbolseq, ne, It and so on are also called relational operators, and are
used to specify a required relationship between two values.

The value of constant term in a constraint.

One of the forms of parameter inputs. Used for single elements.

A collection of elements (labels). The SET statement is used to declare and
find a set.

The standard algorithm used to solve linear programming problems.
The amount by which an inequality constraint is not binding.

An artificial column introduced by a solver into a linear programming
problem. Makes the implementation of simplex method much easier.

A classification of a function that has continuous first derivatives.
A computer code used to solve a given problem type. An example is

GAMS/MINQOS, which is used to solve either linear or nonlinear program-
ming problems.

Sometimes called units. The fundamental building block of GAMS pro-
grams. Statements or sentences that define data structures, initial values,
data madifications, and symbolic relationships. Examples are table, pa-
rameter, variable, model, assignment and display statements.

See CONSTANT SET

In nonlinear programming, a variable that it is not in the basis but whose
value is between the bounds. Nonlinear algorithms often search in the
space defined by the superbasic variables.

An identifier.

One of the ways of initializing parameters. Used for tow and higher dimen-
sional data structures.

A description associated with an identifier or label.
See data type, problem type or variable type.
A label used to define set membership.

The classification of variables. The default bounds are implicit in the type,
and also whether continuous or discrete. The types are free, positive, bi-
nary, integer and negative.

A one-dimensional array, corresponding to a symbol having one index po-
sition.
Parameter values are initially set to zero. Other values can be initialized

using parameter or table statements. Assignment statements have to be
used thereafter to change parameter values.

Appendix A: THE GAMS MODEL LIBRARY

A.1 INTRODUCTION

Professor Paul Samuelson is fond of saying that he hopes each generation economists will be
able to "stand on the shoulders" of the previous generation. The library of models included with
the GAMS system is a reflection of this desire. We believe that the quality of modeling will be
greatly improved and the productivity of modelers enhanced if each generation can stand on the
shoulders of the previous generation by beginning with the previous models and enhancing and
improving them. Thus the GAMS systems includes a large library of more than 170 models, col-
lectively called GAMSLIB.

The models included have been selected not only because they collectively provide strong shoul-
ders for new users to stand on, but also because they represent interesting and sometimes classic
problems. For example the trade-off between consumption and investment is richly illustrated in
the Ramsey problem, which can be solved using nonlinear programming methods. Examples of
other problems included in the library are production and shipment by firms, investment planning
in time and space, cropping patterns in agriculture, operation of oil refineries and petrochemical
plants, macroeconomics stabilization, applied general equilibrium, international trade in alumi-
num and in copper, water distribution networks, and relational databases.

Another criterion for including models in the library is that they illustrate the modeling capabili-
ties GAMS offers. For example, the mathematical specification of cropping patterns can be rep-
resented handily in GAMS. Another example of the system's capability is the style for specifying
initial solutions as staring points in the search for the optimal solution of dynamic nonlinear op-
timization problems.

Finally, some models have been selected for inclusion because they have been used in other

modeling systems. Examples are network problems and production planning models. These mod-
els permit the user to compare how problems are set up and solved in different modeling systems.

A.2 USING THE MODEL LIBRARY

This section contains a listing of each model by area of application, its sequence number and the
model name (model marked with an asterisk are too large to be solved using a demonstration li-
cense and require a full license), and the model type.

Most of the models have been contributed by GAMS users. The submission of new models is en-
couraged. If you would like to see your model in a future release of the library, please send the
model and associated documents and reports to GAMS Development Corporation.

The most convenient way to access the library is through the gamslib command. This command
copies a model from the library directory into the current directory. If you enter gamslib without
any parameters, the command syntax will be displayed as shown below:

172 ApPENDIX A: THE GAMS MODEL LIBRARY

> gamslib name [flename] or >gamslib seq [filename]

wherename is the modelnameeq is the model sequence number, filthame is the target
file name. If the target file name is not provided, the defaukme.gms. For example, the
transport model could be copied in any of the following ways

>gamslib trnsport target file: trnsport.gms

>gamslib 1 trsnsport.gms

>gamslib trnsport myname myname
>gamslib 1 myname myname

To copy the index file usgamslib index 'or gamslib 0

A.3 THE MODELS

Agricultural Economics No. | Name Model Type
Chance Constrained Feed Mix Problem 26 chance Ip, nlp
Farm Credit and Income Distribution Model 49 sarf* Ip
Pakistan Punjab Livestock Model 55 paklive Ip
Organic Fertilizer Use in Intensive Farming b6 china Ip
Egypt Agricultural Model 75 egypt* Ip

Turkey Agricultural Model with Risk 86 turkey* Ip, nip
North-East Brazil Regional Agricultural Model 87 nebrazil* Ip
Agricultural Farm Level Model of NE Brazil 88 agreste Ip
Indus Surface Water Network Submodule 89 iswnm gams
Indus Agricultural Model 9Q indus* Ip

Simple Farm Level Model 91 demol Ip
Nonlinear Simple Agricultural Sector Model 92 demo7 Ip, nip
Indus Basin Water Resource Model 181 indus89 Ip

Applied General Equilibrium
Cameroon General Equilibrium Model

Name Model Type
1 camcge nip

Macroeconomic Framework for India 7 ganges nip
General Equilibrium Model for Korea 1d0 korcge nip
Economic Framework for India - Tracking 107 gangesx] nlp
Cameroon General Equilibrium Model Using MCP 29 cammcq mcp
General Equilibrium Model for Korea as MCP 1B0 kormcp mcp
Simple 2 x 2 x 2 General Equilibrium Model two3mcp mcp
Scarf's Activity Analysis Example scarfmcp mcp
Oligopolistic Competition - Examples from MP 183 oligomcp mcp
Multi-Region Growth Model Based on Global 2100 34 mrSmcpf mcp
Hansen's Activity Analysis Example - MCP 185 hansmcp* mcp
General Equilibrium Variant of the Vonthunen Model 36 vonthmap mcp
GEMTAP: A general equilibrium model for tax policy 187 gemmcpt mcp
USDA-ERS CGE Model of the US 138 ers82mcy mcp

Corporate average fuel economy standards
Cameroon General Equilibrium Model - MPSGE Synt

139 cafemge mpsge
40 cammge mpsge

Increasing returns in intermediate inputs 41 cirimge mpsge
A General Equilibrium Model for Finland 145 finmge mpsge
GEMTAP: A general equilibrium model for tax policy 146 gemmge mpsge

Hansen's Activity Analysis Example - MPSGE 147 hansmge mpsge
Increasing returns with average cost pricing 48 harmge mpsge

A.3 THE MODELS

173

Applied General Equilibrium No. Name Model Type
Multiple equilibria in a simple GE model 149 kehomge mpsge
Carbon taxes with exemptions for heavy industry 151 sammge mpsge
Tax distortions in a small activity analysis model 152 scarfmge mpsge
The economic effects of UK membership in the EC 153 shovmge mpsge
Three Approaches to Differential Tax Policy Analysis 154 threemge mpsge
Globally Unstable Equilibria 155 unstmge mpsge
A General Equilibrium Version of the vonThunen Modlel 156 vonthmge mpsge
Chemical Engineering No. | Name Model Type
Alkylation Process Optimization 2D process nip
Chemical Equilibrium Problem 21 chem nip
Chemical Equilibrium Problem 76 wall nip
Structural Optimization of Process Plowsheets 116 procsel minlp
Simultaneous Optimization for Hen Synthesis 117 synheat minlp
Heat Integrated Distillation Sequences 118 minlphi nlp, mip
Optimal Design for Chemical Batch Processing 119 batchdes minlp
Synthesis of General Distillation Sequences 120 nonsharp nip, mip
Logical Inference for Reaction path synthesis 121 reactiorn Ip
Optimum Feed Plate Location 122 feedtray minlp
Synthesis: Hydrodealkylation of Toluene 1P3 hda* minlp
Chemical Equilibrium Problem as MCP 127 wallmcp mcp
Simplified Alkylation Process 165 alkyl nlp
Economic Development No. | Name Model Type
Substitution and Structural Change 33 chenery nip
Optimal Patterns of Growth and Aid 34 pak* Ip

A Dynamic Multi-Sectoral Multi-Skill Model 35 dinam* Ip

Market Equilibrium and Activity Analysis 41 prolog nlp
Savings Model by Ramsey 63 ramsey nlp
Accounting for economic growth with new inputs 143 dmcmge mpsge
GAMS Language Features No. | Name Model Type
The GAMS Model Library 101 gamsmod

MPS file for transportation problem 104 mpstrans

Calendar Function Examples 183 calendar

Energy Economics No. | Name Model Type
Optimal Pricing and Extraction for OPEC 28 pindyck nlp
Investment Planning in the Oil Shale Industry 46 shale Ip
OPEC Trade and Production 47 otpop Ip
Investment Planning in the Korean Oil-Petro Industry 48 korpet* mip
Single-Region Contingency Planning Model 52 srcpm Ip, nip
International Gas Trade Model 33 gtm nlp
Turkey Power Planning Model 54 turkpow* Ip
Tabora Rural Development - Fuelwood Production 57 tabora* Ip
ETA-MACRO Energy Model for the USA 8D etamac nip
Strategic Petroleum Reserve 82 markov Ip
Industrial Pollution Control 96 pollut nip

174 ApPENDIX A: THE GAMS MODEL LIBRARY

Energy Economics No. | Name Model Type
ETA-MACRO Energy Model for the US - MPSGE For{ 144 | etamge mpsge
mat

Launch Vehicle Design and Costing 161 launch nlp
Engineering No. | Name Model Type
House plan design 99 house nip
Structural Optimization 22 ship nlp
Design of a Water Distribution Network 68 water nip
Design of a Water Distribution Network (MINLP) 125 waterx minlp
Economic Load Dispatch Including Transmission Losses 166 dispatgh nip
Hydrothermal Scheduling Problem 167 hydro nip

Fuel Scheduling and Unit Commitment Problem 168 fuel minlp
Finance No. | Name Model Type
Simple Portfolio Model 50 port Ip
Repayment Factors for Loans /2 repay gams
Risk Management 110 immun Ip, nip
Worst Case Scenario for an Option Portfolio 111 worst nlp
Mean Variance model to manage residual risk 112 meanvar nlp
Mean Variance model to manage residual risk (a varia- 113 | meanvarx minlp
tion)

Collaterized Mortgage Obligations 114 cmo* mip
Forward delivery settlements of Mortgage backed securi115| tba* mip

ties

A Quadratic Programming Model for Portfolio Analysis 124 alan nlp, minlp
Standard QP Model 171 qgpl nip
Standard QP Model — symmetry exploitations 171 qgp2 nlp
Standard QP Model — intermediate variables 173 gp3 nip
Standard QP Model - no covariance matrix 174 qp4 nip
Standard QP Model — linear approximation 175 qp5 nlp
Forestry No. | Name Model Type
Antalya Forestry Model — Steady State 61 tforss Ip
Antalya Forestry Model — Dynamic g2 tfordy* Ip
International Trade No. | Name Model Type
World Aluminum Model 31 alum* mip
Modeling Investment in the World Copper Industry 45 copper* mip
Carbon-related trade model (static) 142 co2mge mpsge
North-South trade and capital flows 150 nsmge mpsge
Macro Economics No. | Name Model Type
A Miniature Version of Orani 78 40 orani Ip
Optimal Growth Model 43 chakra nlp
Linear Quadratic Control Problem 64 abel nlp
Household Optimization Problem by Fair 59 hhfair nlp

A.3 THE MODELS 175
Management Science and OR No. | Name Model Type
A Transportation Problem 1 trnsport Ip
Blending Problem | 4 blend Ip

A Production Mix Problem 3 prodmix Ip
Simple Warehouse Problem 4 whouse Ip
On-the-Job Training % jobt Ip

The Shortest Route Problem 6 sroute* Ip
Aircraft Allocation Under Uncertain Demand 8 aircraft Ip
APEX - Production Scheduling Model 9 prodsch mip
ARCNET - Production Distribution and Inventory 10 pdi Ip
UIMP - Production Scheduling Problem 11 uimp Ip
Magic Power Scheduling Problem 12 magic mip
Weapons Assignment 18 weapons nip
Relational Database Example P9 zloof gams
Elementary Production and Inventory Model 37 robert Ip
Opencast Mining 39 mine Ip

Ajax Paper Company Production Schedule 60 ajax Ip
Platoform Example Refinery 6b fawley Ip
AMPL Sample Problem 74 ampl Ip
Aluminum Alloy Smelter Sample Problem 79 ibml Ip
Shortest Route Algorithm 9B sroutex gams
Minimum Spanning Tree 94 mst gams
Thai Navy Problem 98 thai mip
Thai Navy Problem Extended 105 thaix* Ip
Vertically Integrated Company 1J2 paperco Ip
Military Manpower Planning from Wagner 108 sparta Ip
Production Scheduling Model using SOS1 and SOS2 109 prodschx mip
Transportation Model as Equilibrium Problem 126 transmcp mcp
Models of Spatial Competition in MCP Form 128 harkmcp mcp
Decomposition Principle — Animated 164 decomp Ip
Traffic Equilibrium Problem 169 traffic mcp, nlp
Lagrangean Relaxation of Assignment Problem 182 gapmin mip, rmig
Mathematics No. | Name Model Type
Area of Hexagon Test Problem 36 himmell§ nlp
Three-dimensional Noughts and Crosses 42 cube nip
Piece-wise Linear Approximation 59 imsl Ip
Examples of Extended Arithmetic 67 crazy gams
Simple Gaussian Elimination 70 pivot gams
Matrix Inversion with Full Pivoting 71 gauss gams
Great Circle Distances 73 great gams
Rosenbrock Test Function 83 rbrock nlp
Nonlinear Test Problem 84 mhw4d nlp
Himmelblau Test problem Number 11 D5 himmelll nlp
Integer Cut Example 16D icut mip
Pentium Error Test 162 pentium
Non-transitive Dice Design 176 dice

176 APPENDIX A: THE GAMS MODEL LIBRARY

Micro Economics No. | Name Model Type
Stigler's Nutrition Model 7 diet Ip

Egypt - Static Fertilizer Model 18 ferts* Ip

Egypt - Dynamic Fertilizer Model 14 fertd* mip
Mexico Steel - Small Static 15 mexss Ip
Mexico Steel - Small Dynamic 16 mexsd* mip
Mexico Steel - Large Static 17 mexis* Ip

Bid Evaluation 19 bid mip
Vietoriscz Manne Fertilizer Model 1961 30 vietman* mip, rmip
Mini Oil Refining Model 32| marco Ip

Sample Database of the US Economy 38 rdata mip
Andean Fertilizer Model 44 andean* Ip, nlp
Yemen Cement Model 51 yemcem* mip
Economies of Scale and Investment over Time 58 westmip Ip, mip
Morocco Fertilizer Distribution - Mode Selection 66 msm* Ip

Sea Distances for World Phosphate Model 78 phosdig* Ip
Models of Spatial Competition 8b harker nlp

Bid Evaluation with SOS2 Sets 163 bidsos

Recreational Models No. | Name Model Type
Maximum Chess Queen Problem 103 queens¥ mip
Prime Number Generation 157 prime gams
Maximum Knights Problem 158 knight mip

The Orthogonal Latin-Square Problem 159 latin mip
Alpahmetics - a Mathematical Puzzle 170 alphamet
Non-transitive Dice Design 176 dice

Traveling Salesman Problem — One 177 tspl

Traveling Salesman Problem — Two 178 tsp2

Traveling Salesman Problem — One 179 tsp3

Traveling Salesman Problem — Three 180 tsp4

Statistics No. | Name Model Type
Linear Regression with Various Criteria 23 linear nip
Nonlinear Regression Problem 24 least nip
Maximum Likelihood Estimation 2% like nlp
Stratified Sample Design 27 sample nip
Social Accounting Matrix Balancing Problem ¥7 sambal nlp

Appendix B: THE GAMS CALL

B.1 INTRODUCTION

The entire GAMS system appears to the user as a single call that reads the input file and pro-
duces an output file. Several options are available at this level to define the overall layout of the
output page, and when to save and restore the entire environment. Although details will vary with
the type of computer and operating system used, the general operating principles are the same on
all machines. All GAMS systems, however, require that an access path be established to the pro-
gram files.

2.1.1 THE GENERIC GAMS CALL
The simplest way to start GAMS is to enter the command

gams myfile

from the system prompt and GAMS will compile and execute the GAMS statements in the file
myfile . If a file with this name cannot be found, GAMS will look for a file with the extended
namemyfile.gms . The output will be written by default on the disk fihgfile.Ist on PC
and Unix systems, ardyfile.lis on OpenVMS systems.

For example, the following statement compiles and executes the example problem
trnsport.gms from the GAMS model library,

gams trnsport

The output goes by default to the fitesport.Ist

2.1.2 SPECIFYING OPTIONS THROUGH THE COMMAND LINE

GAMS allows for certain options to be passed through the command line. The syntax of the sim-
ple GAMS call described in Section B.2 is extended to look as follows,

gams myfile {[-]key_name [=] value}

wherekey name is the name of the option that is being set on the command lineakued is

the value to which the option is set. Depending on the optadue could be a character string,

or an integer number. The complete list of options, and the list of valid values for each option is
provided in Section B.4.

For example, consider the following commands to run [TRNSPORT] from the GAMS model li-
brary,

178 APPENDIX B: THE GAMS CALL

gams trnsport o myrun.Istlo 2
gams trnsport -0 myrun.Ist -lo 2
gams trnsport o=myrun.lIst lo=2
gams trnsport -o=myrun.Ist -lo=2

All the four commands above are equivalent, and each directs the output listing torthe file
run.Ist .o is the name of the option, and it is selrtgfile.Ist . In addition, in each case,
the log of the run is redirected to the fitgrrun.log

B.2 LIST OF COMMAND LINE PARAMETERS

The parameters available through the command line are grouped into the following functional
categories affecting

1. the specific GAMS run

2. system settings

3. input file processing

4. output in listing file

5. other files

The rest of this section will briefly define the various options in each of these categories in turn.
Section D.3. will provide a reference list of all options available through the option statement
with detailed descriptions for each.

B.2.1 PARAMETERS CONTROLLING THE SPECIFIC GAMS RUN

The parameters in this group affect the actions performed by GAMS during a run. These pa-
rameters are listed below.

Option Value Type Description

action string processing options

cerr integer sets compile time error limit
dumpopt integer workfile dump option

eolonly integer singe keyword-value pair option
error string parameter error message
errmsg integer error message option

expand string expands file name

forcework integer force workfile translation
nocheck integer ignores parameter errors

B.2.2 PARAMETERS CONTROLLING SYSTEM SETTINGS

The parameters in this group affect the actions performed by GAMS during a run. These pa-
rameters are listed below.

Option Value Type Description

curdir string sets current directory

inputdir string sets input search path

inputdirl string sets individual input search path
libincdir string sets library include directory
license string sets license file name

putdir string sets put directory

reference string symbol reference file

B.2 LIST OF COMMAND LINE PARAMETERS

179

Option
relpath
scrdir
subsys
sysdir
sysincdir
workdir

Value Type
integer
string

string

string

string

string

Description

relative or absolute path
sets scratch directory

sets configuration file name
sets system directory

sets system library directory
sets working directory

B.2.3 PARAMETERS AFFECTING INPUT FILE PROCESSING

The parameters in this group affect the reading of the input file. These parameters are listed be-

low.

Option Value Type Description

ctrim integer control-M indicator

ctrlz integer control-Z indicator

g205 integer sets version compatibility

input string sets input file name

multipass integer controls multiple pass facility
optfile integer option file indicator

stringchk integer controls string substitution check
tabin integer sets tab spacing

B.2.4 PARAMETERS AFFECTING OUTPUT IN LISTING FILE

The parameters in this group affect the output available in the listing file. These parameters are

listed below.

Option Value Type Description

appendout integer output listing file append option
botmargin integer sets bottom margin in listing file
case integer sets output case

dformat integer sets date format

leftmargin integer sets left margin in listing file
output string sets output file name

pagecontr integer page control

pagesize integer sets page size

pagewidth integer sets page width

profile integer global execution profiling option
stepsum integer controls step summary in listing file
suppress integer compilation listing option
tformat integer sets time format

topmargin integer sets top margin in listing file

B.2.5 PARAMETERS AFFECTING OTHER FILES

The parameters in this group affect the other input and output files closely connected to the
GAMS run. These parameters are listed below.

180 APPENDIX B: THE GAMS CALL

Option Value Type Description

appendlog integer log file append option

dumpparms integer controls parameter logging

ferr string sets compilation error message file name
logfile string sets log file name

logline integer controls amount of line tracing to log file
logoption integer log file option

restart string sets restart file name

save string sets save file name

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS

This section describes each of the command line parameters in detail. These parameters are in al-
phabetical order for easy reference. In each of the following parameters, the default value is in
bold print.

B.3.1 action

GAMS currently processes the input file in multiple passes. The three passes in order are:

« Compilation: During this pass, the file is compiled, and syntax errors are checked for. Data
initialization statements like scalar, parameter, and table statements are also processed during
this stage.

» Execution: During this stage, all assignment statements are executed.

* Model Generation: During this stage, the variables and equations involved in the model
being solved are generated.

Long Name action

Short Name a

Type string

Options C compile only
e execute only
ce compile and execute
r restart

Thea=e option can only be used during restart on files that have previously been compiled,
since models first need to be compiled before they can be executed.

B.3.2 appendlog

This option is used in conjunction with the lo=2 option where the log from the GAMS run is re-
directed to a file. Setting this option to 1 will ensure that the log file is appended to and not re-
written.

Long Name appendlog
Short Name al
Type integer
Options 0 reset log file
1 append to log file

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 181

B.3.3 appendout
Setting this option to 1 will ensure that the listing file is appended to and not rewritten.

Long Name appendout
Short Name ao
Type integer
Options 0 reset listing file
1 append to listing file

B.3.4 botmargin

This option controls the width of the bottom margin of the text in the listing fitenit greater
than 0, blank lines added at the end of a page. This option is used onpagéitontr=0

padding.

Long Name botmargin
Short Name bm

Type integer
Range O-inf
Default 0

B.3.5 case

This option controls the case in the listing file.

Long Name case
Short Name case
Type integer
Options 0 write listing file in mixed case
1 write listing file in upper case only
B.3.6 cerr

The compilation will be aborted after n errors have occurred. By default, there is no error limit
and GAMS compiles the entire input file and collects all the compilation errors that occur. If the
file is too long and the compilation process is time consurseng, could be used to setto a

low value while debugging the input file.

Long Name cerr
Short Name cerr
Type integer
Options 0 no error limit
n stop after n errors.

182 APPENDIX B: THE GAMS CALL

B.3.7 ctrim

The Control-M character appears as the end-of-line character when files have been incorrectly
transferred from PC to Unix platforms. This option allows for recognizing these Control-M char-
acters, and interpreting them as blanks.

Long Name ctrim
Short Name ctrlm
Type integer
Options 0 CTRL-M is not a valid input
1 CTRL-M will be interpreted as blank.

B.3.8 ctrlz

The Control-Z character appears as the end-of-file character when files have been incorrectly
transferred from PC to Unix platforms. This option allows for recognizing these Control-Z char-
acters, and interpreting them as blanks.

Long Name ctrlz
Short Name ctrlz
Type integer
Options 0 CTRL-Z is not a valid input
1 CTRL-Z will be interpreted as blank.

B.3.9 curdir

This option sets the current directory. This option is useful when GAMS is called from an exter-
nal system like Visual Basic. If not specified, it will be set to the directory the GAMS module is
called from.

Long Name curdir
Short Name curdir
Type strirg

B.3.10 dformat

This option controls the date format in the listing file. The three date formats correspond to the
various conventions used around the world. For example, the date December 2, 1996 will be
written as12/02/96 with the defauldf value of 0, a92.12.96 with df=1 , and a$96-12-

02 with df=2 .

Long Name dformat

Short Name df

Type integer

Options 0 mm/dd/yy
1 dd.mm.yy
2 yy-mm-dd

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 183

B.3.11 dumpopt

Extracts selected portions of the workfile and writes it in GAMS source format to another file
that has the extensiamp.

Long Name dumpopt

Short Name dumpopt

Type integer

Options 0 no dumpfile
1 use original element names
2 use new element names and change text
3 use new element names and drop text

To illustrate the use of trdumpopt option, [TRNSPORT] has been split into two files. The
first file (saytransl.gms) contains most of the original file except for the solve statement,
and looks as follows,

sets

i canning plants / seattle, san-diego /

j markets / new-york, chicago, topeka/ ;
parameters

a(i) capacity of plantiin cases
| seattle 350
san-diego 600 /

b(j) demand at market j in cases
/' new-york 325

chicago 300

topeka 275 /;

table d(i,j) distance in thousands of miles
new-york chicago topeka
seattle 25 1.7 1.8
san-diego 25 1.8 1.4 ;

scalar f freight in dollars per case per thousand miles /90/;
parameter c(i,j) transport cost in thousands of dollars per case ;
c(i,j) = f*d(,j) /1000 ;
variables
x(i,j) shipment quantities in cases
z total transportation costs in thousands of dollars ;
positive variable x ;
equations
cost define objective function
supply(i) observe supply limit at plant i
demand(j) satisfy demand at market j;
cost .. z =e= sum((i,j), c(i.j)*x(i.)) ;
supply(i) .. sum(j, x(i.j)) =I= a(j) ;
demand(j) .. sum(i, x(i,j)) =g= b(j) ;

model transport /all/ ;

184 APPENDIX B: THE GAMS CALL

All comments have been removed from [TRNSPORT] for brevity. Running this model and sav-
ing the work files through the save parameter leads to the generation of eight work files. The sec-
ond file (saytrans2.gms) generated from [TRNSPORT] looks as follows,

solve transport using Ip minimizing z ;
display x.I, x.m ;

One can then rutrans2 .gms restarting from the saved work files generated from running
transl.g ms. The result obtained is equivalent to running [TRNSPORT].

' In order to use thdumpopt parameter effectively, it is required that the first
L‘ line in the restart file be the solve statement.

To illustrate the use of tldumpopt option, run the second model using the following command
gams trans2 s=trans dumpopt=1

wheretrans is the name of the saved files generated througkal®e parameter from
transl.gms. A new filetrans2.dmp is created as a result of this call, and looks as follows,

* This file was written with DUMPOPT=1 at 01/06/97 08:42:39
* INPUT = C:\GAMS\TEST\TRANS2.GMS

* DUMP = CA\GAMS\TEST\TRANS2.DMP

* RESTART = C:\GAMS\TEST\TRANS.GO0?

* with time stamp of 01/06/97 08:42:19

*

* You may have to edit this file and the input file.

set labelorder dummy set to establish the proper order /
"seattle","san-diego","new-york","chicago”,"topeka" /;

model transport;
variable z "total transportation costs in thousands of dollars";

set i(*) "canning plants" /
"seattle","san-diego" /;

set j(*) "markets" /
"new-york","chicago”,"topeka" /;

parameter c(|,]) ‘transport cost in thousands of dollars per case"
/| "seattle"."new-york" 2.250000000000000e-001,
"seattle"."chicago" 1.530000000000000e-001,
"seattle"."topeka" 1.620000000000000e-001,
"san-diego”."new-york" 2.250000000000000e-001,
"san-diego”."chicago” 1.620000000000000e-001,
"san-diego”."topeka” 1.260000000000000e-001 /;

positive variable x(i,j) "shipment quantities in cases";

parameter a(i) "capacity of plantiin cases" /
"seattle” 3.500000000000000e+002,
"san-diego” 6.000000000000000e+002 /;

parameter b(j) "demand at market j in cases" /
"new-york" 3.250000000000000e+002,
"chicago" 3.000000000000000e+002,
"topeka” 2.750000000000000e+002 /;

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 185

equation demand(j) "satisfy demand at market j";
equation supply(i) "observe supply limit at plant i";

equation cost "define objective function”;
* ***EDI|TS FOR INPUT FILE ***

* %% END OF DUMP ***

Note that all the data entering the model in the solve statement has been regenerated. The pa-
rameterd has not been regenerated since it does not appear in the model, but the parsmeter
Changing the value of the paramedeampopt will result in alternate names being used for the
identifiers in the regenerated file.

B.3.12 dumpparms

Thedumpparms parameter provides more detailed information about the parameters used dur-
ing the current run.

Long Name dumpparms
Short Name dp
Type integer
Options 0 | nologging
1 lists accepted parameters
2 log of file operations plus parameters

Note that withdp=2, all the file operations are listed including the full path of each file on
which any operation is performed.

B.3.13 eolonly

The GAMS command line parameters are also passed througantsparm.txt file that is

present in the current directory. By default, any number of keyword-value pairs can be present on
the same line. This parameter is an immediate switch that forces only one keyword-value pair to
be read on a line. If there are more than one such pairs on a line, then this option will force only
the first pair to be read while all the other pairs are ignored.

Long Name eolonly
Short Name ey
Type integer
Options 0 any number of keys or values
1 only one key-value pair on a line

B.3.14 error

Forces a parameter error with given message string. This option is useful if one needs to incorpo-
rate GAMS within another batch file and need to have control over the conditions when GAMS
is called.

186 APPENDIX B: THE GAMS CALL

Long Name error
Short Name error
Type string

To illustrate the use of therror option, the default GAMS log file from running a model with
the optionerror=hullo

*** ERROR = hullo

*** Status: Terminated due to parameter errors
--- Erasing scratch files

Exit code = 6

B.3.15 errmsg

This option controls the location in the listing file of the messages explaining the compilation er-
rors.

Lond Name errmsg

Short Name errnts

Type intener

Ontions 0 error messaes at the end of comiler listin a
1 error messges immediatel following error line
2 No error Messes

To illustrate the option, consider the following slice of GAMS code:

seti/1*10/ ; setj(i) /10*11/;
parameter a(jj)/ 12 25.0 /;

The listing file that results from running this model contains the following section,

1 seti/1*10/; setj(i) /10*11/;

ok $170

2 parameter a(jj)/ 12 25.0 /;
*kkk $120

3

120 Unknown identifier entered as set
170 Domain violation for element

w2 ERROR(S) 0 WARNING(S)

Note that numbers ($170 and $120) flags the two errors as they occur, but the errors are ex-
plained only at the end of the source listing. However, if the code is run using the option
errmsg=1 , the resulting listing file contains the following,
1 seti/1*10/; set (i) /10*11/;
*kkk $170

***%% 170 Domain violation for element
2 parameter a(jj)/ 12 25.0 /;

*kkk $120
**x 120 Unknown identifier entered as set
3

**x 2 ERROR(S) 0 WARNING(S)

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 187

Note that the explanation for each error is provided immediately following the error marker.

B.3.16 expand

The expand parameter generates a file that contains information about all the input files proc-
essed during a particular compilation. The names of the input files are composed by completing
the name with the current directory.

Long Name expand
Short Name ef
Type string

The following example illustrates the use of the expand parameter. Consider the following slice
of code,

parametera;a=0;

$include file2.inc

$include file2.inc

The contents of the include file file2.inc is shown below,

a=atl;

display a ;
Running the model with the command line feagpand myfile.fil results in the creation
of the filemyfile.fil . The contents of this file are provided below,

1 INPUT 0 O 0 1 7 EATEMP\FILE1.GMS
2INCLUDE 1 1 2 2 4 E\TEMP\FILE2.INC
3INCLUDE 1 1 3 5 7 ENTEMP\FILE2.INC

The first column gives the sequence number of the input files encountered. The first row always
refers the parent file called by the gams call. The second column refers to the type of file being
referenced. The various types of files @UT (0) , INCLUDE (1) , BATINCLUDE (2) ,
LIBINCLUDE (3) , andSYSINCLUDE (4) . The third column provides the sequence number

of the parent file for the file being referenced. The fifth column gives the local line number in the
parent file where th8include appeared. The sixth column gives the global (expanded) line
number which contained tifiinclude statement. The seventh column provides the total num-
ber of lines in the file after it is processed. The eighth and last column provides the name of the
file In the example listed above, the include fiiiéesl .inc andfile2.inc were included

on lines 1 and 4 of the parent ftestl.gms

B.3.17 ferr

Instructs GAMS to write error messages into a file. Completing the name with the scratch direc-
tory and the scratch extension composes the file name. The default is no compilation error mes-
sages. This option can be used when GAMS is being integrated into other environments like Vis-
ual Basic. The error messages that are reported in the listing file can be extracted through this
option and their display can be controlled from the environment that is calling GAMS.

188 APPENDIX B: THE GAMS CALL

Long Name ferr
Short Name ferr
Type string

To illustrate the option, consider the following slice of GAMS code used to explain the errmsg
option. calling GAMS on this code witarr=myfile.err , will result in a file calledny-
file.err being created in the scratch directory. This file contains the following lines:

0 0O O OD:\GAMS\NEW.LST
1 1 170 31 D:\GAMS\NEW.GMS
2 2 120 14 D:\GAMS\NEW.GMS

The first column refers to the global row number of the error in the listing file. The second col-
umn refers to the row number of the error in the individual file where the problem occurs. This
will be different from the first column only if the error occurs in an include file. In this case, the
second column will contain the line number in the include file where the error occurs, while the
first number will contain the global line number (as reported in the listing file) where the error
occurs. The number in the third column refers to the error number of the error. The fourth num-
ber refers to the column number of the error in the source file. The fifth column contains the in-
dividual file in which the error occurred.

B.3.18 forcework

Most of the work files generated by GAMS using the save option are in binary format. The in-
formation inside these files will change from version to version. Every attempt is made to be
backward compatible and ensure that all new GAMS systems are able to read save files gener-
ated by older GAMS systems. However, at certain versions, we are forced to concede default in-
compatibility (regarding save files, not source files) in order to protect efficiency.

Theforcework option is used to force newer GAMS systems into translating and reading save
files generated by older systems.

Long Name forcework

Short Name fw

Type integer

Options 0 | no translation
1 | try translation

B.3.19 g205

This option sets the level of the GAMS syntax. This is mainly used for backward compatibility.
New key words have been introduced in the GAMS language since Release 2.05. Models devel-
oped earlier that use identifiers that have since become keywords will cause errors when run with
the latest version of GAMS. This option will allow one to run such models.

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 189

Long Name g205
Short Name g205
Type integer
Options 0 | latest syntax
1 | syntax from Release 2.05 only
2 | syntax from the first version of Release 2.25 only

For example, the wordl is a key word in GAMS introduced with the first version of Release
2.25. Setting the g205=1 option allows if to be used as an identifier since it was not a keyword in
Release 2.05.

As another example, the wolar is a key word in GAMS introduced with the later versions of
Release 2.25. Setting of the g205=2 option allows for to be used as an identifier since it was not a
keyword in the first version of Release 2.25.

Using values of 1 or 2 for g205 will not permit the use of enhancements to the
L‘ language introduced in the later versions.

B.3.20 input

Completing the input file name with the current directory composes the final name. If such a file
does not exist and the extension was not specified, the standard input extension is attached and a
second attempt is made to open an input file. This option is to be used only by advanced users di-
rectly affecting the gamsparm.txt file.

Long Name input
Short Name [
Type string

B.3.21 inputdir

In general, GAMS searches for input and include files in the current working directory only. This
option allows the user to specify additional directories for GAMS to search for the input files. A
maximum of 18 separate directories can be included with the directories separated by Operating
system specific symbols. On a PC the separator is a semicolon (;) character, and under Unix it is
the colon () character.

Note thatlibinclude andsysinclude files are handled differently, and their paths are
specified by libincdir and sysincdir respectively.

Long Name inputdir
Short Name idir
Type string

Consider the following illustration,
gams myfile idir \mydir;\mydir2

The search order for the fitayfile (ormyfile.gms) and all included files in PC systems is
as follows:

190 ArPPENDIX B: THE GAMS CALL

current directory
directories specified byputdir ~ (\mydir and imydir2 directories) in order
Under Unix, the corresponding command is

gams myfile idir \mydir:\mydir2

B.3.22 inputdirl to inputdirl8

The same information as inputdir ~ can be transferred to GAMS by entering the individual
directories separately. A maximum of 18 directories can be passed on in this manner. The num-
ber appended tmputdir is important because the earlier inputdir directories are searched
first.

Long Name inputdirl to inputdirl8
Short Name idirl to idirl8
Type string

The example used to illustrate the inputdir option can also be equivalently called as
gams myfile idirl \mydirl idir2 \mydir2

Note that the search order in this case is as follows:
current directory

\mydirl

\mydir2

However, if the command was altered to be

gams myfile idir3 \mydirl idir2 \mydir2

then the search order is altered to be as follows:

current directory

\mydir2

\mydirl

Note that it is not the order in which they are specified that matters but the number of the inputdir
that they have been assigned to.

B.3.23 leftmargin

This option controls the width of the left margin of the text in the listing fillen Ifs greater than
0, the output is shiftelin positions to the right. The default value is 0.

Long Name leftmargin
Short Name Im

Type integer
Range 0-inf
Default 0

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 191

B.3.24 libincdir

Used to complete a file name fdlibinclude . If theldir option is not set, the sub-directory
inclib in the GAMS system directory is searched.

Long Name libincdir
Short Name Idir
Type string

Unlike idir , additional directories cannot be set wdlt . The string
M" passed will be treated as one directory. Passing additional directories will
cause errors.

' Note that if thddir parameter is set, the default library include directory is
L‘ not searched.

Consider the following illustration,
gams myfile Idir \mydir

GAMS searches for any referenclibinclude file in the directory mydir.

B.3.25 license
This option is only to be used by advanced users attempting to override internal license informa-
tion. The file name is used as given. The default license fgarisslice.txt in the GAMS

system directory.

Long Name license
Short Name license
Type string
B.3.26 logfile

This option is used in conjunction with tlee option. Iflo is set to 2, then this option will

specify the name of the log file name. The name provided by the option is completed using the
current directory. If no logfile is given but the valudfis 2, then the file name will be input

file name with the extensialog

Long Name logfile
Short Name If
Type string

To illustrate the use of tHé option, run [TRNSPORT] with the optiofs=2
If=myfile.log . The resulting log file is redirected mayfile .log , and looks as follows:

192 APPENDIX B: THE GAMS CALL

--- Starting compilation
--- TRNSPORT.GMS(0)
--- TRNSPORT.GMS(33)
--- TRNSPORT.GMS(66)
--- TRNSPORT.GMS(66)

--- Starting execution

--- TRNSPORT.GMS(43)

--- Generating model TRANSPORT

--- TRNSPORT.GMS(56)

--- TRNSPORT.GMS(58)

--- TRNSPORT.GMS(60)

--- TRNSPORT.GMS(64) --- 6 rows, 7 columns, and 19 non-zroes.

--- Executing BDMLP

GAMS/BDMLP 1.1 Aug 1, 1994 001.049.030-033.030 386/486 DOS-W

READING DATA...

Work space allocated - 0.03 Mb
Iter Sinf/Objective Status Num Freq
1 2.25000000E+02 infeas 1 1
4 1.53675000E+02 nopt 0
SOLVER STATUS: 1 NORMAL COMPLETION
MODEL STATUS : 1 OPTIMAL
OBJECTIVE VALUE 153.67500

--- Restarting execution

--- TRNSPORT.GMS(64)

--- Reading solution for model TRANSPORT
--- TRNSPORT.GMS(66)

--- All done

B.3.27 logline

This option is used to limit the number of line tracing sent out to the log file during the compila-
tion phase of a GAMS run. Values of 0 or 1 generate the minimum amount of information to the

log. The default value is 33.

Long Name logline

Short Name Il

Type integer

Options 0 | allline tracing suppressed

1 | limited line tracing

n | full line tracing with increments of n

Values of 0 and 1 are special. Settil§ will cause the line tracing to be suppressed for all
phases of the GAMS processing. The log file that results from running [TRNSPORT] with the
is shown below,

optionll=0

--- Starting compilation

--- Starting execution

--- Generating model TRANSPORT

--- 6 rows, 7 columns, and 19 non-zeroes.
--- Executing BDMLP

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 193

GAMS/BDMLP 1.1 Aug 1, 1994 001.049.030-033.030 386/486 DOS-W
READING DATA...
Work space allocated -- 0.03 Mb
Iter Sinf/Objective Status Num Freq

1 2.25000000E+02 infeas 1 1

4 1.53675000E+02 nopt 0
SOLVER STATUS: 1 NORMAL COMPLETION
MODEL STATUS : 1 OPTIMAL
OBJECTIVE VALUE 153.67500

--- Restarting execution
--- Reading solution for model TRANSPORT
--- All done

Comparing this output to the one shown in Section B.3.27, one can see that the line numbers are
absent from the log file.

B.3.28 logoption

This option controls the location of the output log of a GAMS run. By default, GAMS directs the
log of the run to the screen.léi=2 , the log is redirected to a file. Witb=3 all the output goes

to the console. If no file name is provided for the log througlif theption, the file name will be

the input file name with the extension .log.

Long Name logoption

Short Name lo

Type integer

Options 0 | no log output

1 | log output to screen
2 | log output to file
3 | log output to console

To illustrate the use of the lo option, run [TRNSPORT] with the opfimr2 . The resulting log
file, trnsport.log , looks exactly as shown in Section B.3.26.

B.3.29 multipass

This option allows slices of GAMS code to be independently checked for syntax errors. This op-
tion is useful when a large model is being put together from smaller pieces.

Long Name multipass

Short Name mp

Type integer

Options 0 | standard compilation
1 | check out compilation

As an example, consider the following example,

a(i) = b(i)*s ;
b(i) = c() ;

194 APPENDIX B: THE GAMS CALL

By default, running a file containing just the two statements shown above results in the following
listing file,
1 a(i) = b(i)*5 ;
ek $140$120$140
2 (i) = c(j) ;
ok $140$120$149

120 Unknown identifier entered as set
140 Unknown symbol

149 Uncontrolled set entered as constant
**+x 6 ERROR(S) 0 WARNING(S)

None of the sets, orj have been defined or initialized, and the identifiers andc have not

been defined. Further, an assignment cannot be made without the right hand side of the assign-
ment being known. In both the assignments in the example above, there is no data available for
the right hand side.

Running the model with the settingp=1results in the following listing file,

1 a(i) = b(i)*s ;
2 b(i) = c(j) ;
$149

Error Messages
149 Uncontrolled set entered as constant
=+ 1 ERROR(S) 0 WARNING(S)

Note that the statements in the example have now been processed independently of its context.
They are now checked only for consistency. GAMS now assumes thata®ds, as well as the
identifiersa, b, andc are defined and, if necessary, initialized elsewhere. The only error that is
reported is the inconsistency of indices in the second statement.

B.3.30 nocheck

This options controls the report of parameter errors. The effect of this option is immediate and
affects all options that follow it on the command line.

Long Name nocheck

Short Name nocheck

Type integer

Options 0 | report parameter errors
1 | ignore parameter errors

Consider the following call,
gams myfile a=q

Since there is no option callegd GAMS will complain and provide the following message:

*** Incorrect action q
*** Status: Terminated due to parameter errors
--- Erasing scratch files

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 195

B.3.31 optfile

This option initializes thenodelname.optfile parameter to the value set. This parameter
has to be set to a value between 1 and 999 in order for GAMS to inform the solver to read the
solver option filemodelname is the name of the model specified in the model statement. For
example,

model m /all/ ;

m.optfile =1 ;
solve m using nlp maximizing dollars ;

The option file that is being used after this assignmestlirname.opt , where 'solver-
name' is the name of the solver that is specified. For CONOPT, the option file is called
conopt.opt ; for MINOSS5, it isminos5.opt The names that you can use are listed in the
solver manual.

n Setting modelname.optfile in the GAMS input file overrides the value of the
optfile parameter passed through the command line.

Long Name optfile

Short Name optfile

Type integer

Range 0-999

Default 0

To allow different option file names for the same solver, the optfile parameter can take other val-
ues as well. Formally, the ruleaptfile=n will usesolvename.opt if n=1 , and
solvername.opX , solvername.oXX orsolvername.XXX , whereX's are the characters
representing the value of for n>1 and will use no option file at all far=0. This scheme im-

plies an upper bound on n of 999. For example,

optfile value CONOPT option file name
0 no option file used
1 conopt.opt
2 conopt.op2
26 conopt.026
345 conopt.345

B.3.32 output

If no name is given, the input file name is combined with the current directory and the standard
output file extension is applied. If the output parameter is given as a file name without an abso-
lute path, using the current directory composes the final name. If the absolute path is included in
the file name, then the name is used as given.

Long Name output

Short Name o]

Type string

196 APPENDIX B: THE GAMS CALL

Consider the following examples,

gams trnsport
gams trnsport o=trnsport.out
gams trnsport o=c:\test\trnsport.out

The first call will create an output file calléuhsport.Ist (for PC and Unix platforms) in
the current directory. The second call will create a file cdtagport.out in the current di-
rectory. The last call will create the file as listed. If the directoftgst ~ does not exist,
GAMS will exit with a parameter error.

B.3.33 pagecontr

This option affects the page control in the listing file.

Long Name pagecontr

Short Name pc

Type integer

Options 0 | no page control with padding

Fortran style line printer format
no page control, no padding
Form feed character for new page

1
2
3

B.3.34 pagesize

This is the number of lines that are used on a page for printing the listing file. If value of the op-
tion is set to less than 30 it will be reset to the default of 60. Note that the total number of lines
on a page arps+2*bm Thebmlines are only added if padding is requesfed-0).

Long Name pagesize
Short Name ps

Type integer
Range 30-9999
Default 60

B.3.35 pagewidth

This option sets the print width on a page in the listing file. If the value is outside the range, the

default value of 132 will be used.

Long Name pagewidth
Short Name pw

Type integer
Range 72-255
Default 132

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 197

B.3.36 profile

This option initializes the profile option (see Appendix D) to the value set, and allows the profile
of a GAMS run to be printed in the listing file. The profile contains the individual and cumula-
tive time required for the various sections of the GAMS model.

Setting theprofile option through the option statement in the GAMS input

n file overrides the value of the profile parameter passed through the command
line.
Long Name profile
Short Name profile
Type integer
Options 0 no profiling
1 minimum profiling
2 detailed profiling

A value of 0 does not cause an execution profile to be generated. A value of 1 reports execution
times for each statement and the number of set elements over which the particular statement is
executed. A value of 2 reports specific times for statements inside control structures like loops.

Running [TRNSPORT] witlprofile=1 provides the following additional information in the
listing file,

- 1 EXEC-INIT 0.010 0.010 SECONDS

---- 43 ASSIGNMENT C 0.000 0.010 SECONDS 6
---- 63 ASSIGNMENT TRANSPORT 0.000 0.010 SECONDS
---- 65 SOLVE INIT TRANSPORT 0.000 0.020 SECONDS
---- 56 EQUATION COST 0.000 0.020 SECONDS 1
---- 58 EQUATION SUPPLY 0.030 0.050 SECONDS 2
---- 60 EQUATION DEMAND 0.000 0.050 SECONDS 3
---- 65 SOLVE FINI TRANSPORT 0.040 0.090 SECONDS

---- 65 GAMS FINI 0.030 0.120 SECONDS

- 1 EXEC-INIT 0.000 0.000 SECONDS

---- 65 SOLVE READ TRANSPORT 0.020 0.020 SECONDS
---- 67 DISPLAY 0.010 0.030 SECONDS

---- 67 GAMS FINI 0.000 0.030 SECONDS

The first column provides the line number in the input file of the statement being executed. The
second column provides the type of statement being executed. EXEC-INIT denotes the beginning
of the execution phase of the GAMS input file, and GAMS-FINI denotes the end of this phase.
Note that GAMS finishes processing of an input file as soon as a solve statement is processed,
and passes control to the solver being called. After the solver is done, GAMS restarts. This
causes twe&XEC-INIT-GAMS-FINI pairs to be generated for TRNSPORAESIGNMENT

C denotes an assignment statement involving the idergif@OLVE INIT andSOLVE FINI

are book ends enclosing the generation of the model TRANSPORT. Note that only equations are
listed, and not variables. This happens because GAMS uses an equation based scheme to gener-
ate a model. The third and fourth columns provide the individual time needed to execute the
statement, and the cumulative time taken by the GAMS system so far. The last column gives the
number of assignments generated in the specified line

198 APPENDIX B: THE GAMS CALL

B.3.37 putdir

This option specifies the directory where the put files are generated and saved. If not specified, it
will be set to the working directory. This option does not work if an absolute file name is pro-
vided through the file statement.

Long Name putdir
Short Name pdir
Type string

B.3.38 reference

If specified, all symbol references will be written to this file. If not specified, symbol references
are written to the listing file.

Long Name reference

Short Name rf

Type string

To illustrate the use of thé option, a part of thensport.ref file generated by running

[TRNSPORT] using the optiori=trnsport.ref is shown below,
1471 SETS DECLARED 26 26 90 1
E:\WORK\TRNSPORT.GMS
2 471 SETS DEFINED 26 2629 0 1
E:\WORK\TRNSPORT.GMS
348J SETS DECLARED 27 27 90 1
E:\WORK\TRNSPORT.GMS
4 48) SETS DEFINED 27 27290 1
E:\WORK\TRNSPORT.GMS

B.3.39 relpath

By default, the maximum length of a file name under DOS is 80, and the maximum length of a
command line is 127 characters. The internal call to GAMS requires five file names to be passed
as arguments. If these files are nested deep in the directory structure, the 80 or 127 character
limit may be crossed, and system errors may result. This option allows for relative paths to be
used instead of absolute paths (as is the default) in the file names. Note that this may not always
reduce the length of the file name.

Long Name relpath
Short Name relpath
Type integer
Options 0 pathnames are completed to be absolute
1 pathnames beginning with a "."' will be used as is"

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 199

B.3.40 restart

This option provides the name of the save files to restart from. The final name is composed by
completing the file name with the current directory and the standard workfile extension. The
name provided for the restart file follows the same convention as that of the save file (see Section
B.3.41.).

Long Name restart
Short Name r
Type string
B.3.41 save

The final name is composed by completing the save file name with the current directory and the
standard workfile extension. 8 save files are generated, so the name provided by the user for the
save file should be such that GAMS can generate 8 names from it. GAMS distinguishes file
names from their extensions.

If no extension is provided by the user, GAMS adds the extengfinshroughg08 to name the

eight saved work files. The presence 6f eharacter in the save file name is used by GAMS to
substitute the numbers 1 through 8 in its place.

Long Name save
Short Name S
Type string

The following table illustrates through examples, the generation of names for the save files by
GAMS from the name provided through the s parameter.

Name provided Names of saved work files

myfile myfile.g01, myfile.g02,..., myfile.g08
myfile? myfile1.g01, myfile2.902,..., myfile8.g08
myfile.00? myfile.001, myfile.002,..., myfile.008
myfile?.wrk myfilel.wrk, myfile2.wrk,..., myfile8.wrk
myfile?.??? myfilel.111, myfile2.222,..., myfile8.888

On Unix platforms the character is a special character and may require a
M backslash character)in front of it in order to be interpreted correctly. The
namemyfile? should be written on this platform ag/file\?

B.3.42 scrdir

This option sets the scratch directory where the intermediate files generated by GAMS and the
various solvers. The files in the scratch directory are used by GAMS and the various solvers to
communicate with each other. The scratch directory and all its contents are usually deleted at the
end of a GAMS run. If not specified, the scratch directory will be set to the default one generated
by GAMS.

200 APPENDIX B: THE GAMS CALL

Long Name scrdir
Short Name sd
Type string

B.3.43 stepsum

This option controls the generation of a step summary of the processing times taken by GAMS
during a given run.

Long Name stepsum
Short Name stepsum
Type integer
Options 0 | no step summary
1 | step summary printed

To illustrate the use of treepsum option, the default GAMS log file from running
[TRNSPORT] with the optiostepsum=1 contains the following step summaries.

STEP SUMMARY: 0.090 0.090 STARTUP
0.070 0.070 COMPILATION
0.090 0.090 EXECUTION
0.060 0.030 CLOSEDOWN
0.310 0.280 TOTAL SECONDS
0.000 ELAPSED SECONDS
STEP SUMMARY: 0.070 0.160 STARTUP
0.000 0.070 COMPILATION
0.030 0.120 EXECUTION
0.000 0.030 CLOSEDOWN
0.100 0.380 TOTAL SECONDS
1.000 ELAPSED SECONDS

The first step summary occurs before the model is sent to the solver, and the second occurs after
the solver completes its task and returns control back to GAMS. The first column reports time for
the individual section of the run, while the second column reports accumulated times including
previous sections.

B.3.44 stringchk

This option affects the result of the check%axxx%symbols.

Long Name stringchk

Short Name stringchk

Type integer

Options 0 | no substitution if symbol undefined
1 | error if symbol undefined
2 | remove %xxx% if symbol undefined

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 201

B.3.45 subsys

This option is only to be used by advanced users attempting to override internal sub-system in-
formation. The file name is used as given. The default sub-systemsg@dmgomp.txt in
the GAMS system directory.

Long Name subsys
Short Name subsys
Type string

B.3.46 suppress

This option suppresses the echoing of the contents of the input file(s) to the listing file. This pa-
rameter is similar in functionality to tt&offlisting dollar control option.

Long Name suppress

Short Name suppress

Type integer

Options 0 | standard compiler listing
1 | suppress compiler listing

The $offlisting and$onlisting dollar control options effect the list-
ing file only if suppress is set to 0. If suppress is set to 1, the input file(s) is not
echoed to the listing file, and these DCOs have no effect on the listing file.

V|

B.3.47 sysdir

This option sets the GAMS system directory. This option is useful if there are multiple systems
installed on the machine, or when GAMS is called from an external system like Visual Basic.

Long Name sysdir
Short Name sysdir
Type string

B.3.48 sysincdir

Used to complete a file name fésysinclude
tem directory is searched.

. If thesdir option is not set, the GAMS sys-

Long Name sysincdir
Short Name sdir
Type S
Unlikeidir , additional directories cannot be set vdthir . The string

passed will be treated as one directory. Passing additional directories will
cause errors.

N

Note that if thesdir
not searched.

parameter is set, the default system include directory is

N

202 APPENDIX B: THE GAMS CALL

Consider the following illustration,
gams myfile sdir \mydir

GAMS searches for any referenckgy/sinclude file in the directory mydir.

B.3.49 tabin

This option sets the tab spacing. By default, tabs are not allowed in GAMS. However, the most
common setting is 8 which results in the positions of the tabs corresponding to columns 1, 9,
17,... and the intermediate columns being replaced by blanks.

Long Name tabin

Short Name tabin

Type integer

Options 0 | tabs are not allowed
1 | tabs are replaced by blanks
n tabs are 1, n+1, 2n+1

B.3.50 tformat

This option controls the time format in the listing file. The three date formats correspond to the
various conventions used around the world. For example, the time 7:45 PM will be written as
19:45:00 with the defautf value of 0, and as 19.45.00 with2 .

Long Name tformat

Short Name tf

Type integer

Options 0 | hh:mm:ss
1 | hh.mm.ss

B.3.51 topmargin

This option controls the width of the top margin of the text in the listing file lis greater than

0, blank lines added at the top of a page.

Long Name topmargin
Short Name tm

Type integer
Range 0-inf
Default 0

B.3 DETAILED DESCRIPTION OF COMMAND LINE PARAMETERS 203

B.3.52 workdir

This option sets the working directory. This option is useful when GAMS is called from an ex-
ternal system like Visual Basic. If not specified, it will be set toctinelir ~ directory.

Long Name workdir
Short Name wdir
Type string
Default curdir

Appendix C: DOLLAR CONTROL OPTIONS

C.1 INTRODUCTION

The Dollar Control OptiondJCO) are used to indicated compiler directives and options. Dollar
Control Options are not part of the GAMS language and must be entered on separate lines recog-
nized by a $" symbol in the first column. A DCO line may be placed anywhere within a GAMS
program and it is processed during the compilation of the program$Tlsgrtibol is followed

by one or more options identified by spaced. Since the DCOs are not part of the GAMS language,
they do not appear on the compiler listing unless an error had been detected. DCO lines are not
case sensitive and a continued compilation uses the previous settings.

C.1.1 SYNTAX
In general, the syntax in GAMS for Dollar Control Options is as follows,

$option_name argument_list {option_name argument_list}

whereoption_name is the name of the dollar control option, whilgument_list is the
list of arguments for the option. Depending on the particular option, the number of arguments re-
quired can vary from O to many.

No blank space is permitted between the $ character and the first option that
follows.

In most cases, multiple dollar control options can be processed on a line.
However, some dollar control options require that they be the first option on a
line.

N N

The effect of the dollar control option is felt immediately after the option is
processed.

N

C.1.2 EXAMPLE
An example of a list of dollar control options is shown below,

$title Example to illustrate dollar control options
$onsymxref onsymlist

206 APPENDIX C: DOLLAR CONTROL OPTIONS

Note that there is no blank space betweer$tbbaracter and the option that follows. The first
dollar control optiorititle sets the title of the pages in the listing file to the text that follows
the option name. In the second line of the example above, two options gberstrmxref
andonsymlist . Both these options turn of the echoing of the symbol reference table and list-
ings to the listing file.

C.2 LIST OF DOLLAR CONTROL OPTIONS

The Dollar Control Options are grouped into five major functional categories affecting

¢ input comment format
e input data format

e output format

» reference maps

e program control

The rest of this section will briefly outline the various options in each of these categories in turn.
Section C.3. will provide a reference list of all Dollar Control Options in alphabetical order with
detailed descriptions for each.

Non-default settings are reported before the file summary at the end of a GAMS listing as a re-
minder for future continued compilations. This is only relevant if a restart file has been requested
with the GAMS call.

C.2.1 Options affecting input comment format

The Dollar Control Options in this group determine the interpretation of comments in the input
file. The options in this group are listed in the table below.

Option Value Type Description

comment character sets the comment character
eolcom character sets end of line comment character
inlinecom character sets in line comment character
maxcol integer sets right hand margin of input file
mincol integer sets left hand margin of input file
offeolcom turn off end-of-line comments
offinline turn off in-line comments

offmargin turn off margin marking

offnestcom turn off nested comments

offtext off text mode

oneolcom turn on end-of-line comments
oninline turn on in-line comments

onmargin on margin marking

onnestcom turn on nested comments

ontext on text -- following lines are comments

C.2.2 Options affecting input data format

The Dollar Control Options in this group determine the interpretation of language syntax in the
input file and can therefore alter the meaning of a GAMS program. The options in this group are
listed in the table below.

Appendix C: DOLLAR CONTROL OPTIONS 207

Option Value Type Description

dollar character sets the dollar character to char>

offdigit off number precision check

offempty disallow empty data initialization statements
offend disallow alternate program control syntax
offeps disallow interpretation oéps as 0.

offglobal disallow inheritance of DCO settings by parent file.
offwarning enforce domain checking for data

ondigit on number precision check

onempty allow empty data initialization statements
onend allow alternate program control syntax

oneps interpreteps as 0.

onglobal force inheritance of DCO settings by parent file.
onwarning relax domain checking for data

use205 Release 2.05 language syntax

use225 Release 2.25 Version 1 language syntax
use999 latest language syntax

C.2.3 Options affecting output format

The Dollar Control Options in this group only change the format of the compiler listing, leaving

the meaning of the input file unaltered. The options are listed in the table below.

Option Value Type Description

double double-spaced listing follows.

eject advance to next page

hidden text ignore text and do not list

lines integer next <integer> have to fit on page
offdollar turns the listing of DCO lines off.

offinclude turn off listing of include file names
offlisting turns off echoing input file(s) to listing file.
offupper following lines will be printed in case as entered
ondollar turns the listing of DCO lines on.

oninclude include file name echoed to listing file
onlisting input file(s) echoed to listing file.

onupper following lines will be printed in uppercase.
single single-spaced listing follows.

stars sets**** characters in listing file.

stitle text set subtitle and reset page

title text set title, reset subtitle and page

C.2.4 Options affecting listing of reference maps

The Dollar Control Options in this group affect the listing of the various cross references maps
stating the location and context of GAMS symbols or identifiers at the end of the compilation
listing. These options are listed in the table below.

208 APPENDIX C: DOLLAR CONTROL OPTIONS

Option Value Type Description

offsymlist off symbol list

offsymxref off symbol cross reference listing
offuellist off unique element listing
offuelxref off unique element cross reference
onsymlist on symbol list

onsymxref on symbol cross reference listing
onuellist on unique element listing
onuelxref on unique element cross listing

C.2.5 Options affecting program control

The Dollar Control Options in this group control the processing of the input file(s) and can there-
fore alter the meaning of a GAMS program. These options are listed in the table below.

Option Value Type Description

abort string abort compilation

batinclude string batch include file

call string executes program during compilation
clear string clear data connected with identifier
echo string echo text

error string generate compilation error

exit string exit from compilation

goto string go to line with given label name

if string conditional processing

include string include file

Kill string kill data connected with identifier
label string label name as entry point frégoto
libinclude string library include file

onglobal turns on global options

onmulti turns on redefinition of data
offglobal turns off global options

offmulti turns off redefinition of data
phantom string defines a special set element
shift string DOS shift operation

sysinclude string system include file

C.3 DETAILED DESCRIPTION OF DOLLAR CONTROL OPTIONS

This section describes each of the dollar control options in detail. The Dollar Control Options are
listed in alphabetical order for easy reference.

C.3.1 abort ‘text’

This option will issue a compilation error and abort the compilation.

Example
Consider the following code,

$if not %system.filesys% == UNIX
$abort We only do UNIX

Appendix C: DOLLAR CONTROL OPTIONS 209

This attempts to stop compilation if the operating system is not Unix. Running the above exam-
ple on a non-Unix platform results in the compilation being aborted, and the following listing
file,

2 $abort We only do UNIX
*kkk $343

Error Messages
343 Abort triggered by above statement

C.3.2 batinclude file argl arg2 ...

The$batinclude facility performs the same task as $ieclude facility in that it inserts

the contents of the specified text file at the location of the call. In addition, however, it also

passes on arguments which can be used inside the include filgbathrclude option can

appear in any place ti#nclude option can appear. The name of the batch include file may be
guoted or unquoted, whikrgl, arg2,.. are arguments that are passed on to the batch in-
clude file. These arguments are treated as character strings that are substituted by number inside
the included file. These arguments can be single unbroken strings (quoted or unquoted) or quoted
multi-part strings.

The syntax has been modeled after the DOS batch facility. Inside the batch file, a parameter sub-
stitution is indicated by using the charactfollowed immediately by an integer value corre-
sponding to the order of parameters on the list whelreefers to the first argumerg2to the

second argument, and so on. If the integer value is specified that does not correspond to a passed
parameter, then the parameter flag is substituted with a null string. The parametedifiag

special case that will substitute a fully expanded file name specification of the current batch in-
cluded file. The flagbo$is the curren$ symbol (seédollar). Parameters are substituted in-
dependent of context, and the entire line is processed before it is passed to the compiler. The ex-
ception to this is that parameter flags appearing in comments are not substituted.

' GAMS requires that processing the substitutions must result in a line of less
L‘ than or equal to the maximum input line length (currently 255 characters).

" The case of the passed parameters is preserved for use in string comparisons.

Example
Consider the following slice of code,

$batinclude "filel.inc" abcd "bbbb" "cccc dddd”

In this casefilel.inc is included withabcd as the first parametdsbbb as the second pa-
rameter, andgccc dddd as the third parameter.
Example

Consider the following slice of code

parameter a,b,c ;
a=1;b=0;c=2;
$batinclude inc2.inc b a
display b ;

$batinclude inc2.inc b ¢
display b ;

$batinclude inc2.inc b "a+5"
display b ;

210 APPENDIX C: DOLLAR CONTROL OPTIONS

whereinc2.inc contains the following line,
%1 = sqr(%2) - %2 ;
the listing file that results is as follows,

1 parameter a,b,c;
2a=1;b=0;c=2;
BATINCLUDE D:\GAMS\INC2.INC
4 b=sqr(a)-a;

5 display b ;

BATINCLUDE D:\GAMS\INC2.INC
7 b=sqr(c)-c;

8 display b ;

BATINCLUDE D:\GAMS\INC2.INC
10 b =sgr(a+b) - a+5;

11 display b ;

Note that the three calls &batinclude with the various arguments lead to GAMS interpret-
ing the contents of batch include file in turn as
b=sqgr(a)-a;
b=sqgr(c)-c;
b =sqgr(a+5) - a+5;
Note that third call is not interpreted sgr(a+5)-(a+5) , but instead asgr(a+5)-a+5
The results of the display statement are shown at the end of the listing file,

---- 5 PARAMETER B = 0.000
---- 8 PARAMETER B = 2.000
---- 11 PARAMETER B = 40.000

The third call leads tb = sqr(6)-1+5 which results in b taking a value of 40.If the state-
ment in the batch include file was modified to read as follows,

%1 = sqr(%2) - %2 ;

The results of the display statement in the listing file would read,

---- 5 PARAMETER B = 0.000
---- 8 PARAMETER B = 2.000
---- 11 PARAMETER B = 30.000

The third call leads tb = sqr(6)-6 which results in b taking a value of 30.

' A $batinclude call without any arguments is equivalent tbiaclude
\‘ call.

C.3.3 call command

Passes the string command to the current operating system command processor and interrupts
compilation until the command has been completed. The quotes around the command are op-
tional. If the command string is empty or omitted, a new interactive command processor will be
loaded.

Example
Consider the following slice of code,

$call ‘dir

This command makes a directory listing on a PC.

Appendix C: DOLLAR CONTROL OPTIONS 211

The command string can be passed to the system and executed directly without using a command
processor by prefixing the command with ahsign. Compilation errors are issued if the com-
mand or the command processor cannot be loaded and executed properly.

$call ‘gams trnsport’
$call ‘=gams trnsport’

The first call runs [TRNSPORT] in a new command shell. The DOS command shell does not
send any return codes from the run back to GAMS. Therefore any errors in the run are not re-
ported back. The second call, however, sends the command directly to the system. The return
codes from the system are intercepted correctly and available to the GAMS system through the
errorlevel DOS batch function.

Some commands (likeopy on a PC andd in Unix are shell commands and
M" cannot be spawned off to the system). Using these in a system call will create a
compilation error.

Example
Consider the following slice of code,

$call ‘copy myfile.txt mycopy.txt’
$call ‘=copy myfile.txt mycopy.txt’

The first call will work on a PC, but the second will not. The copy command can only be used
from a command line shell. The system is not aware of this command (Try this command after
clicking Run under the Start menu in Windows NT. You will find that it does not work).

C.3.4 clearidlid2 ...

This option resets all data for an identifier to its default vaidésid2, ... are the identifi-

ers whose data is being reset. Note that this is carried out during compile time, and not when the
GAMS program executes. Not all data types can be cleared - only set, parameter, equation and
variable types can be reset.

Example
Consider the following example,

seti/1*20/ ; scalar a /2/ ;
$clearia
display i, a ;

The$clear option resets anda to their default values. The result of the display statement in
the listing file shows that is now an empty set, ardtakes a value of 0.

—- 3SET |
(EMPTY)
3 PARAMETER A = 0.000

The two-pass processing of a GAMS file can lead to seemingly unexpected re-
sults. Both the dollar control options and the data initialization is done in the

n first pass, and assignments in the second, irrespective of their relative loca-
tions. This is an issue particularly wigiclear since data can be both ini-
tialized and assigned.

212 APPENDIX C: DOLLAR CONTROL OPTIONS

Example
Consider the following example,

scalara /12/;
a=5;

$clear a
display a ;

The scalar data initialization statement is processed during compilation and the assignment
statemend=5 during execution. In the order that it is processed, the example above is read by
GAMS as,

* compilation step
scalar a/12/;
$clear a

* execution step
a=5;

display a ;

The example results in a taking a value of 5. The display statement in the resulting listing file is
as follows,

---- 4 PARAMETER A = 5.000

C.3.5 comment c

This option changes the start-of-line comment to the single character specified as c. This should
be used with great care, and one should reset it quickly to the default $ymbol

' The case of the start-of-line comment character does not matter when being
L‘ used.
Example

Consider the following example,

$comment ¢

¢ now we use a FORTRAN style comment symbol
C case dosn’t matter

$comment *

* now we are back how it should be

C.3.6 dollar c

This option changes the curréhsymbol to the single character specified asvhen the include
file is inserted, all dollar control options are inherited, and the cu¥reptmbol may not be
known. The speci@o$substitution symbol can be used to get the correct symbdblisdia-
clude). The default is.

Example
Consider the following example,

$dollar #
#hidden now we can use # as the '$' symbol

Appendix C: DOLLAR CONTROL OPTIONS 213

C.3.7 double
The lines following thébdouble statement will be echoed double spaced to the listing file.

Example
Consider the following example,

seti/1*2/;
scalara/1/;
$double

set j/10*15/;
scalar b /2/ ;

The resulting listing file looks as follows,

1 seti/1*2/;
2 scalaral/l/;

4 set/10*15/;

5 scalarb /2/;

Note that lines before tlgouble option are listed singly spaced, while the lines after the op-
tion are listed with double space.

C.3.8 echo ‘text ' >file or echo ‘text '>> file

These options send the message ' ' to the filefile . Both the text and the file name can be
quoted or unquoted. The file name is expanded using the working directoi§edte state-

ment tries to minimize file operations by keeping the file open in anticipation of afettter

to be appended to the same file. The file will be closed at the end of the compilation or when a
$call or any kind offinclude statement is encountered. The redirection symbalsd>>

have the usual meaning of starting at the beginning or appending to an existing file.

Example
Consider the following example,

$echo > echo

$echo The message written goes from the first non blank >> echo
$echo 'to the first > or >> symbol unless the textis' >> echo
$echo "is quoted. The Listing File is %gams.input%. The" >> echo

$echo ‘file name "echo" will be completed with' >> echo
$echo %gams.workdir%. >> echo
$echo >> echo

The contents of the resulting file echo are as follows,

The message written goes from the first non blank

to the first > or >> symbol unless the text is

is quoted. The Listing File is C:\PROGRAM FILES\GAMSIDE\CC.GMS. The
file name "echo" will be completed with

C:\\PROGRAM FILES\GAMSIDE\.

C.3.9 gject
Advances the output to the next page.

Example
Consider the following example,

214 APPENDIX C: DOLLAR CONTROL OPTIONS

$eject

Seti,j;

Parameter data(i,j) ;
$eject

This will force the statements between the $egect calls to be reported on a separated page
in the listing file.

C.3.10 eolcom ¢

This option redefines the end-of-line comment symbol, which can be a one or two character se-
qguence. By default the system is initialized'to " but not active. Thé&oneolcom option is
used to activate the end-of-line comment. $aelcom option set$oneolcom automatically.

Example
Consider the following example,

$eolcom ->
seti/1*2/; ->set declaration
parameter a(i) ; -> parameter declaration

The character set serves as the end-of-line-comment indicator.

" GAMS requires that one not reset feolcom option to the existing symbol.

The following code is illegal sinckeolcom is being reset to the same symbol as it is currently,

$eolcom ->
$eolcom ->

C.3.11 error 'text '

This option will issue a compilation error and will continue with the next line.

Example
Consider the following example,

$if not exist myfile
$error File myfile not found - will continue anyway

This checks if the filenyfile exists, and if not, it will generate an error with the comment
'File not found - will continue anyway ', and then compilation continues with the
following line.

C.3.12 exit 'text '

This option will cause the compiler to exit (stop reading) from the current file. This is equivalent
to having reached the end of file.

Example
Consider the following example,

scalara;a=>5;
display a ;

$exit end
a=a+5;display a;

Appendix C: DOLLAR CONTROL OPTIONS 215

The lines following théexi t will not be compiled.

C.3.13 goto id

This option will cause GAMS to search for a line starting vithbel id ' and then continue

reading from there. This option can be used to skip over or repeat sections of the input files. In
batch include files, the target labels or label arguments can be passed as parameters because of
the manner in which parameter substitution occurs in such files. In order to avoid infinite loops,
one can only jump a maximum of 100 times to the same label.

Example
Consider the following example,
scalara;a=2>5;
display a ;
$goto next
a=a+5;display a;
$label next
a=a+10; display a ;

On reaching th&goto next option, GAMS continues frolabel next. All lines in between
are ignored. On running the example, a finally takes a value of 15.

' The$goto and$label have to be in the same file. If the target label is not
L‘ found in the current file, and error is issued.

C.3.14 hidden 'text '

This line will be ignored and will not be echoed to the listing file. This option is used to enter in-
formation only relevant to the person manipulating the file.

Example
Consider the following example,

$hidden You need to edit the following lines if you want to:
$hidden

$hidden 1. Change formatob

$hidden 2. Expand the set

The lines above serve as comments to the person who wrote the file. However, these comments
will not be visible in the listing file, and is therefore hidden from view.

C.3.15 if [not] condition new_input_line

The$if dollar control option provides the greatest amount of control over conditional process-
ing of the input file(s). The syntax is similar to tite statement of the DOS Batch language:

condition: exist filename
stringl == string2

The syntax allows for negating the conditional withod operator followed either of two types

of conditional expressions: a file operation or a string comparison. The result of the conditional
test is used to determine whether to read the remainder of the line, which can be any valid
GAMS, input line.

216 APPENDIX C: DOLLAR CONTROL OPTIONS

Theexist file operator can be used to check for the existence of the given file name specifica-
tion. The string compare consists of two strings (quoted or unquoted) for which the comparison
result is true only if the strings match exactly. Null (empty) strings can be indicated by an empty
quote:™

The case of the strings provided either explicitly or, more likely, through a pa-
rameter substitution, is preserved and therefore will effect the string compari-
son.

Quoted strings with leading and trailing blanks are not "trimmed" and the
blanks are considered part of the string.

If the string to be compared is a possibly empty parameter, the parameter op-
erator must be quoted.

N N N

New_input_line is the remainder of the line containing i option, and could be any
valid GAMS input line.

The first non-blank character on the line following the conditional expression
is considered to be the 1st column position of the GAMS input line. Therefore,

n if the first character encountered is a comment character the rest of the line is
treated as a comment line. Likewise if the first character encountered is the
dollar control character, the line is treated as a dollar control line.

An alternative to placingew_input_line on the same line as the conditional is to leave the
remainder of the line blank and plaw&w_input_line on the line immediately following the

if line. If the conditional is found to be false, either the remainder of the line (if any) is skipped
or the next line is not read.

Example
Consider the following example,

$if exist myfile.dat $include myfile.dat

The statement above includes the filgfile.dat if the file exists. Note that the character at
the beginning of th&include option is the first non-blank character after the conditional ex-
pressionjf exist myfile.dat and is therefore treated as the first column position. The
above statement can also be written as

$if exist myfile.dat
$include myfile.dat

Example
Consider the following additional examples,

$if not "%1a" == a $goto labelname
$if not exist "%1" display "file %1 not found" ;

Appendix C: DOLLAR CONTROL OPTIONS 217

The first statement illustrates the use of$ife option inside a batch include file where pa-
rameters are passed through$batinclude call from the parent file. Th&f condition
checks if the parameter is empty, and if not processeggthite option. Note that the string
comparison attemptetfpla" == a , can also be done usifgl ==""

The second statement illustrates using standard GAMS statements if the conditional is valid. If
the file name passed as a parameter througblthénclude call does not exist, the GAMS
display statement is processed.

In line and end of line comments are stripped out of the input file before proc-
M" essing fomew_input_line . If either of these forms of comments appears,
it will be treated as blanks.

Example
Consider the following example,

parameter a ; a=10 ;

$eolcom ! inlinecom /* */

$if exist myfile.dat

/*in line comments */ ! end of line comments
a=4,;

display a;

The fourth line is ignored, and the fifth line involving an assignment setting a to 4 will be treated
as the result of the conditional. So the result of the display statement would be the listing of a
with a value of 4 if the filenyfile.dat exists, and a value of 10 if the file does not exist.

It is suggested that®label not appear as part of the conditional input line.
The result is that if th@label appears on thif line, a$goto to this la-
n bel will re-scan the entire line thus causing a reevaluation of the conditional
expression. On the other hand, if $label appears on the next line, the
condition will not be reevaluated on subsequent gotos to the label.

Example

The following example illustrates how an unknown number of file specifications can be passed
on to a batch include file that will include each of them if they exist. The batch include file could
look as follows,

/* Batch Include File - inclproc.bch */

[* Process and INCLUDE an unknown number of input files */
$label nextfile

$if "%la" == a $goto end

$if exist "%1" $include "%1" /* name might have blanks */
$shift goto nextfile

$label end

The call to this file in the parent file could look like:

$batinclude inclproc.bch fill.inc fil2.inc fil3.inc fil4.inc

218 APPENDIX C: DOLLAR CONTROL OPTIONS

C.3.16 include ‘file

TheSinclude option inserts the contents of a specified text file at the location of the call. The
name of the file to be included may be quoted or unquoted. Include files can be nested.

The include file names are processed in the same way as the input file is handled. The names are
expanded using the working directory. If the file cannot be found and no extension is given, the
standard GAMS input extension is tried. However, if an incomplete path is given, the file name is
completed using the include directory. By default, the library include directory is set to the

working directory. The default directory can be reset with the idir command line parameter.

The start of the include file is marked in the compiler listing. This reference to the include file
can be omitted by using ti$effinclude option.

Example
The following example illustrates the use of an include statement,

$include myfile
$include "myfile"

Both statements above are equivalent, and the search order for the include file is as follows:
file myfile in current working directory

file myfile.gms in current working directory

files (myfile andmyfile.gms in that order) in directories specified ioyr parameter.

The current settings of the Dollar Control Options are passed on to the lower

' level include files. However, the dollar control options set in the lower level
L‘ include file are passed on to the parent file only if&veglobal option is
set.

Compiler errors in include files have additional information about the name of the include file
and the local line number.

At the end of the compiler listing, an include file summary shows the context and type of include
files. The line number where an include file has been called is given. For example, in the Include
File summary below we see that:

SEQ GLOBALTYPE PARENT LOCAL FILENAME

1 1INPUT 0 0 CATEST\TEST1.GMS
2 1 INCLUDE 1 1 .CA\TEST\FILEL.INC
3 6 INCLUDE 1 4 .CA\TEST\FILE2.INC

The first column name8EQgives the sequence number of the input files encountered. The first
row always refers the parent file called by the gams call. The second columnGa@®BAL

gives the global (expanded) line number which containeflittebude statement. The third
column named YPErefers to the type of file being referenced. The various types of files are
INPUT, INCLUDE BATINCLUDE LIBINCLUDE, andSYSINCLUDE The fourth column
namedPARENTprovides the sequence number of the parent file for the file being referenced.
The fifth column nametd OCALgives the local line number in the parent file where$ihe

clude appeared. In the example listed above, the includefifiddsinc andfile2.inc

were included on lines 1 and 4 of the parenttékl.gms

Appendix C: DOLLAR CONTROL OPTIONS 219

C.3.17 inlinecom ¢

This option redefines the in-line comment symbols, which are a pair of one or two character se-
qguence. By default, the system is initialized*toand*/ , but is not active. Thgoninline

option is used to activate the in-line comments. $ihknecom option sets th&oninline
automatically.

Example
Consider the following example,

$eolcom ->
seti/1*2/; ->set declaration
parameter a(i) ; -> parameter declaration

The character set serves as the end-of-line-comment indicator.

' GAMS requires that one not reset gielinecom option to an existing
l‘ symbol.

The following code is illegal sincginlinecom is being reset to the same symbol as it is cur-
rently,

$inlinecom {{ }}
$inlinecom {{ }}

" The$onnestcom enables the use of nested comments.

C.3.18 kill id1 id2

Removes all data for an identifier and resets the identifier, only the type and dimension are re-
tained. Note that this is carried out during ‘compile time’, and not when the GAMS program exe-
cutes. Not all data types can be killed - only set, parameter, equation and variable types can be
reset.

Example

Consider the following example,

seti/ 1*20 /; scalar a /2/
$kill i a

Note that this is different frofficlear in that after settingkill ,i anda are treated as
though they have been only defined and have not been initialized or assigned. The result of the
$kill statement above is equivaleni tanda being defined as follows,

seti; scalara;

Unlike the$clear , adisplay statement for anda after they are killed will trigger an error.

C.3.19 label id

This option marks a line to be jumped to b§gmto statement. Any number of labels can be

used in files and not all of them need to be referenced. Re-declaration of a label identifier will
not generate an error, and only the first occurrence encountered by the GAMS compiler will be
used for futurebgoto references.

Example

220 APPENDIX C: DOLLAR CONTROL OPTIONS

Consider the following example,

scalara;a=5;
display a ;

$goto next
a=a+5;display a;
$label next
a=a+10; display a ;

On reaching th&goto next option, GAMS continues froflabel next. All lines in between
are ignored. On running the example, a finally takes a value of 15.

' The$label statement has to be the first dollar control option of multiple
\‘ DCOs that appear on the same line.

C.3.20 libinclude file argl arg?2 . . .

Equivalent tdbbatinclude . However, if an incomplete path is given, the file name is com-
pleted using the library include directory. By default, the library include directory is set to the
inclib directory in the GAMS system directory. The default directory can be reset with the
Idir command line parameter.

Example
Consider the following example,

$libinclude abc x y

This call first looks for the include fil[ESAMS System Directory]/inclib/abc , and if
this file does not exist, GAMS looks for the fllBAMS System Direc-

tory]/inclib/abc.gms . The arguments andy are passed on to the include file to inter-
pret as explained in tHgbatinclude section of this chapter.

Example
Consider the following example,

$libinclude c:\abc\myinc.inc x y

This call first looks specifically for the include fite\abc\myfile.inc . The arguments
andy are passed on to the include file to interpret as explained $b#imclude section of
this chapter.

C.3.21linesn

This option starts a new page in the listing file if less théines are available on the current
page.
Example
Consider the following example,
$hidden Never split the first few lines of the following table

$lines 5
table io(i,j) Transaction matrix

This will ensure that the if there are less than five lines available on the current page in the listing
file before the next statement (in this case, the table statement) is echoed to it, the contents of this
statement are echoed to a new page.

Appendix C: DOLLAR CONTROL OPTIONS 221

C.3.22 log text

This option will send a message to the log file. By default, the log file is the console. The default
log file can be reset with tHe andlf command line parameters.

' Leading blanks are ignored when the text is written out to the log file using the
L‘ $log option.

' All special% symbols will be substituted out before the text passed through
L‘ the$log option is sent to the log file.

Example
Consider the following example,

$log

$log The following message will be written to the log file

$log with leading blanks ignored. All special % symbols will
$log be substituted out before this text is sent to the log file.
$log This was line %system.incline% of file %system.incname%
$log

The log file that results by running the lines above looks as follows,

--- Starting compilation
--- CC.GMS(0) 138 Kb

The following message will be written to the log file

with leading blanks ignored. All special % symbols will

be substituted out before this text is sent to the log file.

This was line 5 of file C\PROGRAM FILES\GAMSIDE\CC.GMS

--- CC.GMS(7) 138 Kb
--- Starting execution - empty program
*** Status: Normal completion

Note that¥osystem.incline% has been replaced by 5 which is the line number where the
string replacement was requested. Also notedtgtstem.incname% has been substituted by
the name of the file completed with the absolute path. Also note that the leading blanks on the
second line of the example are ignored.

C.3.23 maxcol n

Sets the right margin for the input file. All valid data is before and including column n in the in-
put file. All text after column n is treated as comment and ignored.

Default: 255
Example
Consider the following example,
$maxcol 30
set i /vienna, rome/ set definition
scalar a /2.3/ ; scalar definition
The text stringsset definition " and ‘scalar definition " are treated as comments

and ignored since they begin on or after column 31.

222 APPENDIX C: DOLLAR CONTROL OPTIONS

Any changes in the margins wvizaxcol ormincol will be reported in the listing file with the
message that gives the valid range of input columns. For example, the Dollar Control Option
$mincol 20 maxcol 110 will trigger the message:

NEW MARGIN = 20-110

M GAMS requires that the right margin set®ipaxcol is greater than 15.
' GAMS requires that the right margin set®ipaxcol is greater than the left
L‘ margin set bysmincol

C.3.24 mincol n

Sets the left margin for the input file. All valid data is after and including columrthe input
file. All text before columm is treated as comment and ignored.

Default: 1
Example
Consider the following example,
$mincol 30
set definition set i /vienna, rome/
scalar definition scalar a /2.3/ ;
The text stringsset definition " and ‘scalar definition " are treated as comments

and ignored since they begin before column 30.

Any changes in the margins via maxcol or mincol will be reported in the listing file with the mes-
sage that gives the valid range of input columns. For example, the Dollar Control $pien
col 20 maxcol 110 will trigger the message:

NEW MARGIN = 20-110

' GAMS requires that the left margin set$®mpincol is smaller than the right
L‘ margin set bysmaxcol .

C.3.25 [on|off]digit

Controls the precision check on numbers. Computers work with different internal precision.
Sometimes a GAMS problem has to be moved from a machine with higher precision to one with
lower precision. Instead of changing numbers with too much precisicioffuigit tells

GAMS to use as much precision as possible and ignore the rest of the number. If the stated preci-
sion of a number exceeds the machine precision an error will be reported. For most machines, the
precision is 16 digits.

Default: $ondigit

Example
Consider running the following slice of code,
parameter y(*) /toolarge 12345678901234.5678

$offdigit
ignored 12345678901234.5678 /

The resulting listing file contains,

Appendix C: DOLLAR CONTROL OPTIONS 223

1 parameter y(*) /toolarge 12345678901234.5678
* $103

3 ignored 12345678901234.5678 /
Error Messages

103 Too many digits in number

($offdigit can be used to ignore trailing digits)

*%

Note that the error occurs in the 17th significant digig(&tfoolarge™) . However, after the
$offdigit line, y("ignored") is accepted without any errors even though there are more than
16 significant digits.

C.3.26 [on]off]dollar

This option controls the echoing of dollar control option lines in the listing file.
Default: $offdollar

Example

Consider running the following slice of code,
$hidden this line will not be displayed
$ondollar
$hidden this line will be displayed

$offdollar
$hidden this line will not be displayed

The listing file that results looks like,

2 $ondollar
3 $hidden this line will be displayed

Note that all lines between tBendollar and$offdollar are echoed in the listing file.
Also note that this action of this option is immediate, i.e $tredollar line is itself echoed on
the listing file, while theboffdollar line is not.

C.3.27 [on]offlempty

This option allows empty data statements for list or table formats. By default, data statements
cannot be empty.

Default: $offempty

Example
Consider running the following slice of code,

seti/1,2,3/;
setj(i)/ /;
parameter x(i) empty parameter / /;
table y(i,i) headers only
123

$onempty
setk()/ /;
parameter xx(i) empty parameter/ /;
table yy(i,i)
123

The listing file that results looks like,

224 APPENDIX C: DOLLAR CONTROL OPTIONS

1 seti/1,2,3/;

2 setj(iy/ /;
*kkk $460

3 parameter x(i) empty parameter/ /;
*kkk $460

4 table y(i,i) headers only

5 123

R $462

8 setk(i)/ /;

9 parameter xx(i) empty parameter/ /;
10 table yy(i,i)

11 12 3

12 ;

Error Messages

460 Empty data statements not allowed. You may want to use $ON/OFFEMPTY
462 The row section in the previous table is missing

Note that empty data statements are not alloweddis , parameters ortables . These are
most likely to occur when data is being entered into the GAMS model by an external program.
Using thebonempty DCO allows one to overcome this problem.

The empty data statement can only be used with symbols, which have a known
n dimension. If the dimension is also derived from the databphantom
DCO should be used to generate ‘phantom’ set elements.

C.3.28 [on]offlend

Offers alternative syntax for flow control statemegtsdloop , endif , endfor , andend-
while are introduced as key-words with the use offileend option that then serves the pur-
pose of closing theop , if ,for , andwhile language constructs respectively.

The following table provides the standard and alternate syntax for the four language constructs
mentioned above. The syntax has been explained through examples. Consider the following data
initialization to be valid for all the examples,

set i/1*3/ ; scalar cond /0/;

Construct Standard Syntax Alternate Syntax
loop oop (i, loopido
statements ; statements ;
); endloop
if-else if (cond, $onend
statements ; if (cond) then
else statements ;
statements ; else
); statements ;
endif ;

Appendix C: DOLLAR CONTROL OPTIONS 225

Construct Standard Syntax Alternate Syntax
for or(cond=1to05, forcond=1to 5 do
statements ; statements ;
: endfor
while while (cond < 2, while cond < 2 do
statements ; statements ;
); endwhile

wherestatements refers to one or more valid GAMS statements. Note that the alternate syn-
tax is more in line with syntax used in some of the popular programming languages.

Both forms of the syntax will never be valid simultaneously. Setting the
L‘I' $onend option will make the alternate syntax valid, but makes the standard
syntax invalid.

C.3.29 [on]offleoclcom

Switch to control the use of end-of-line comments. By default, the end-of-line comments are set
to ! ' but the processing is disabled.

Default: $offeolcom

Example

Consider running the following slice of code,

$oneolcom
seti/1*2/; !l set declaration
parameter a(i) ; !! parameter declaration

Note that comments can now be entered on the same line as GAMS code.

" $eolcom automatically set$oneolcom

Example
Consider the following example,
$eolcom ->

seti/1*2/; ->set declaration
parameter a(i) ; -> parameter declaration

The character set serves as the end-of-line-comment indicator.

C.3.30 [on]offleps

This option is used to treat a zero agps in a parameter or table data statement. This can be
useful if one overloads the value zero with existence interpolation.

Default: $offeps

Example
Consider running the following slice of code,

226 APPENDIX C: DOLLAR CONTROL OPTIONS

set i/lone,two,three,four/ ;
parameter a(i) /

$oneps

one O
$offeps

two O

three eps /;
display a ;

The result of the display statement in the listing file is as follows,
---- 8 PARAMETER A

one EPS, three EPS

Note that only those entries specifically entered as 0 are treagpd as

C.3.31 [on|off]global

When an include file is inserted, it inherits the dollar control options from the higher level file.
However, the DCO settings specified in the include file do not affect the higher level file. This
convention is common among most scripting languages or command processing shells. In some
cases, it may be desirable to break this convention. This option allows an include file to change
options of the parent file as well.

Default: $offglobal

Example
Consider running the following slice of code,

$include 'inc.inc'

$hidden after first call to include file
$onglobal

$include 'inc.inc'

$hidden after second call to include file

where thdfile inc.inc contains the lines,

$ondollar
$hidden text inside include file

The resulting listing file is as follows,

INCLUDE D:\GAMS\INC.INC

2 $ondollar

3 $hidden text inside include file
INCLUDE D:\GAMS\INC.INC

7 $ondollar

8 $hidden text inside include file

9 $hidden after second call to include file

Note that the effect of tHBondollar DCO inside the include file does not affect the parent
file until $onglobal is turned on. Th&hidden text is then echoed to the listing file.

C.3.32 [on]off]include
Controls the listing of the expanded include file name in the listing file.

Default: $oninclude

Example
Consider running the following slice of code,

Appendix C: DOLLAR CONTROL OPTIONS 227

$include 'inc.inc'
$offinclude
$include 'inc.inc'

where the file inc.inc contains the line,

$ondollar
$hidden text inside include file

The resulting listing file is as follows,

INCLUDE D:\GAMS\INC.INC
2 $ondollar
3 $hidden text inside include file
6 $ondollar
7 $hidden text inside include file

Note that the include file name is echoed the first time the include file is used. However, the in-
clude file name is not echoed aff&ffinclude is set.

C.3.33 [on]off]inline

Switch to control the use of in-line comments. By default, the in-line comments are set to the
two character pairg®' ' and*/ ' but the processing is disabled. These comments can span lines
till the end-of-comment characters are encountered.

Default: $offinline

Example
Consider running the following slice of code,

$oninline

/* the default comment symbols are now
active. These comments can continue
to additional lines till the closing
comments are found */

" $inlinecom automatically set$oninline

Example
Consider running the following slice of code,
$inlinecom << >>

<< the in-line comment characters have been
changed from the default. >>

" Nested in-line comments are illegal uni§ssnestcom is set.

C.3.34 [on]off]listing

Controls the echoing of input lines to the listing file. Note that suppressed input lines do not gen-
erate entries in the symbol and reference sections appearing at the end of the compilation listing.
Lines with errors will always be listed.

Default: $onlisting

Example

Consider running the following slice of code,

228 APPENDIX C: DOLLAR CONTROL OPTIONS

set i /0234*0237/
jlab,cl

table x(i,j) very long table

abec

0234 1 2 3

$offlisting

0235 4 5 6

0236 5 6 7

$onlisting

0237 1 1 1

The resulting listing file looks as follows,
1 seti/0234*0237/

2 jlabecl
3 table x(i,j) very long table
4 abec

50234 1 2 3
10 0237 1 1 1

Note that the lines in the source file between®biisting and$onlisting settings are
not echoed to the listing file.

C.3.35 [on]offlmargin

Controls the margin marking. The margins are set $ntincol and$maxcol .
Default: $offmargin

Example
Consider running the following slice of code,

$onmargin mincol 20 maxcol 45

Now we have setiplant /US, UK/ This defines |

turned on the scalar x/3.145/ A scalar example.

margin marking. parameter a, b; Define some
parameters.

$offmargin

Any statements between columns 1 and 19, and anything beyond column 45 are treated as com-
ments.

C.3.36 [on]|offimulti

Controls multiple data statements or tables. By default, GAMS does not allow data statements to
be redefined. If this option is enabled, the second or subsequent data statements are merged with
entries of the previous ones. Note that all multiple data statements are executed before any other
statement is executed.

Default: $offmulti

Example
Consider running the following slice of code,

$eolcom !

seti/ 1*10 /;

parameter x(i) / 1*3 1/ 11=1,2=1,3=1

$onmulti

parameter x(i) / 7*9 2/ 11=1,2=1,3=1,7=2,8=2,9=2
parameter x(i) / 2*6 3/ !1=1,2=3,3=3,4=3,5=3,6=3,7=2,8=2,9=2
parameter x(i) / 3*5 0/ !1=1,2=3,6=3,7=2,8=2,9=2

display x;

Appendix C: DOLLAR CONTROL OPTIONS 229

This would have been illegal without the presence of the $onmulti option. The result of the dis-
play statement in the listing file is as follows,

---- 8 PARAMETER X

11.000, 23.000, 63.000, 72.000, 82.000, 92.000

Note thatx("1") has a value of lafter the first data statement since none of the subsequent data
statements affect ik("2") on the other hand is reset to 3 by the third data statement.

The two-pass processing of a GAMS file can lead to seemingly unexpected re-
sults. Both the dollar control options and the data initialization is done in the

M first pass, and assignments in the second, irrespective of their relative loca-
tions. This is an issue particularly wilonmulti since it allows data ini-
tializations to be performed more than once.

Example
Consider the following example,

scalar a/12/;
a=a+1;
$onmulti
scalar a /20/ ;
display a ;

The twoscalar data initialization statements and enmulti option are processed before
the assignment statemeasta+1. In the order that it is processed, the example above is read by
GAMS as,

* compilation step
scalar a/12/;
$onmulti

scalar a /20/ ;

* execution step
a=a+l1;

display a ;

The example results in a taking a value of 21. The display statement in the resulting listing file is
as follows,

---- 5 PARAMETER A = 21.000

C.3.37 [on]offlnestcom

Controls nested in-line comments. Make sure that the open-comment and close-comment char-
acters have to match.

Default: $offnestcom

Example

Consider running the following slice of code,

$inlinecom { } onnestcom
{ nesting is now possible in comments { braces
have to match } }

230 APPENDIX C: DOLLAR CONTROL OPTIONS

C.3.38 [on]off]symlist

Controls the complete listing of all symbols that have been defined and their text, including pre-
defined functions and symbols, in alphabetical order grouped by symbol type.

Default: $offsymlist
Example

The symbol listing in the listing file generated by running [TRNSPORT] $otisymlist is
as follows,

Symbol Listing
FUNCTIONS

*kkkkkkkkk
ABS
ARCTAN
CEIL

SETS
| canning plants
J markets

PARAMETERS

capacity of plant i in cases

demand at market j in cases

transport cost in thousands of dollars per case
distance in thousands of miles

freight in dollars per case per thousand miles

MmoOwm>

VARIABLES
X shipment quantities in cases
z total transportation costs in thousands of dollars

EQUATIONS

COST define objective function
DEMAND satisfy demand at market j
SUPPLY observe supply limit at plant i

MODELS
TRANSPORT

FILES
FILE Current file name for FILE.xxx use

PREDEFINED
DIAG
SAMEAS

This serves as a simple description of the symbols used in a model, and can be used in reports
and other documentation.

C.3.39 [on]offlsymxref

This option controls the following,

e Collection of cross references for identifiers like sets, parameters, and variables.

» Cross-reference report of all collected symbols in listing file

» Listing of all referenced symbols and their explanatory text by symbol type in listing file.
This is also reported by usignsymlist

Default: $onsymxref

Example

Appendix C: DOLLAR CONTROL OPTIONS 231

Consider the following slice of code,

$offsymxref

set j(i) will not show / 1*3/
display i;

$onsymxref

k(1) = yes;

The resulting listing file will contain the following symbol reference reports,

SYMBOL TYPE REFERENCES

| SET DECLARED 1 DEFINED 1 REF 1
K SET DECLARED 1 ASSIGNED 6

SETS

| this is set declaration

K some more

C.3.40 [on]off]text

The$ontext - $offtext pair encloses comment lines. Line numbers in the compiler list-
ing are suppressed to mark skipped lines.

Default: none

Example
Consider the following,

* standard comment line

$ontext

Everything here is a comment

until we encounter the closing $offtext
like the one below

$offtext

* another standard comment line

The resulting listing file is as follows,

1 * standard comment line
Everything here is a comment
until we encounter the closing $offtext
like the one below

7 * another standard comment line

' GAMS requires that eve§ontext has a matchingofftext , and vice
L‘ versa.
Example

The following two programs are both illegal since the other half obtimext-$offtext
pair is missing in each case,

$ontext

This is a comment

$offtext
set i/1*2/;

232 APPENDIX C: DOLLAR CONTROL OPTIONS

C.3.41 [on]offluellist

This option controls the complete listing of all set elements that have been entered, in the listing
file.

Default: $offuellist

Example
The unique element listing in the listing file generated by running [TRNSPORT$wiithel-
list is as follows,
Unique Element Listing
Unique Elements in Entry Order
1 SEATTLE SAN-DIEGO NEW-YORK CHICAGO TOPEKA

Unique Elements in Sorted Order
1 CHICAGO NEW-YORK SAN-DIEGO SEATTLE TOPEKA

Note that the sorted order is not the same as the entry order. This is explained in Section 12.2.

C.3.42 [on|off]uelxref

This option controls the collection and listing (in the listing file) of cross references of set ele-
ments.

Default: $offuelxref

Example
Consider the following slice of code,

$onuelxref

set i this is set declaration / one, two, three /, k(i)
$offuelxref

set j(i) will not show / two /;

$onuelxref

k('one') = yes;

The resulting listing file will contain the following unique element reference reports,

ELEMENT REFERENCES

ONE DECLARED 2 INDEX 6
THREE DECLARED 2

TWO DECLARED 2

C.3.43 [on]offlupper

This option controls the upper casing of input lines when echoed to the listing file.
Default: $offupper

Exampe

Consider the following slice of code,
$onupper
* now we list everything in upper case

$offupper
* now we are back to list lines as entered

The resulting listing file is as follows,

2 * NOW WE LIST EVERYTHING IN UPPER CASE
4 * now we are back to list lines as entered

Appendix C: DOLLAR CONTROL OPTIONS 233

Note that all the characters in the lines betwkmmupper and$offupper are capitalized.

C.3.44 [on]offlwarning

Switch for data domain checking. In some cases it may be useful to accept domain errors in data
statements that are imported from other systems and report warnings instead of errors. Data will
be accepted and stored, even though it is outside the domain.

Default: $offwarning

' This switch affects three types of domain errors usually referred to as error
L‘ numbers 116, 170 and 171.

' This can have serious side affects and one has to exercise great care when us-
L‘ ing this feature.

Example
Consider the following slice of code,

seti /one,two,three/
$onwarning

j@) / four, five /;
parameter x(i) Messed up Data/ one 1.0, five 2.0/;
X('six’) = 6; x(j) = 10; x(two') = x('seven’);
$offwarning
display i,j,x;

Note that the sgt, although specified as a subset ptontains elements not belonging to its
domain. Similarly, the parametercontains data elements outside its domain. The skeleton list-

ing file that results from running this code is as follows,
1 seti /one,two,three/
3 i)/ four, five /;

ol $170 $170

4 parameter x(i) Messed up Data / one 1.0, five 2.0/;
*kkk $17O

5 x('six’) = 6; x(j) = 10; x('two') = x('seven’);
ol $170 $116,170

7 display i,j,x;

Error Messages

116 Label is unknown

170 Domain violation for element
****x) ERROR(S) 6 WARNING(S)

Execution

- 7SET |

one , two , three

- 7SET J

four, five

---- 7 PARAMETER X Messed up Data

one 1.000, four 10.000, five 10.000, six 6.000

The domain violations are marked like normal compilation errors but are only treated as warn-
ings and one can execute the code.

234 APPENDIX C: DOLLAR CONTROL OPTIONS

C.3.45 Phantom id

Used to designate id as a phantom set element. Syntactically, a phantom element is handled like
any other set element. Semantically, however, it is handled like it does not exist. This is some-
times used to specify a data template that initializes the phantom records to default values.

Example
Consider the following example,
$phantom null
seti/ null/
j/a,b,null/;
display i, ;
The resulting section of the listing file is shown below,

— 4SET |
(EMPTY)

- 4SET J
a b

Note that null does not appear in the listing file.

" Assignment statements on the phantom label are ignored.

Example
Consider the following extension to the previous example,

Parameter p(j)/a 1, null 23 /;
display p ;

The resulting section of the listing file is shown below,
---- 6 PARAMETER P
a 1.000

C.C.46 shift

The$shift option is similar to the DOS batch shift operator. It shifts the order of all parame-
ters passed once to the ‘left’. This effectively drops the lowest numbered parameter in the list.

Example
Consider the following example,
scalara,b,c;a=1;

$batinclude inc.incab c
display a, b, ¢ ;

where the batch include file inc.inc is as follows,
%2 =%1+1;

$shift
%2 =%1+1;

The resulting listing file is,

Appendix C: DOLLAR CONTROL OPTIONS 235

1 scalara,b,c;a=1;
BATINCLUDE C:\PROGRAM FILES\GAMSIDE\INC.INC
3b=a+1;
5c=b+1;
6 display a, b, c;

In the first statement in the include fikblis the first argument in tHgbatinclude call and
is interpreted in this case as%?2is the second argument in thieatinclude call and is in-
terpreted ab. This leads to the overall assignment being interpretbdasl .

The$shift option shifts the arguments to the left. So n&ijs interpreted ab, and%?2is
interpreted as. This leads to the second assignment being interpretethad .
The result of the display statement in the input file is therefore,

---- 6 PARAMETER A = 1.000
PARAMETER B = 2.000
PARAMETER C = 3.000

C.3.47 single

The lines following @single option will be echoed single spaced on the compiler listing. This
option is the default, and is only useful as a switch to turn oBdioeble option.

Example
Consider the following example,

seti/1*2/;
scalara/l/;
$double
setj/10*15/ ;
scalar b /2/;
$single

set k /5%10/ ;
scalar c /3/;

The resulting listing file looks as follows,

seti/1*2/;
scalara/l/;

N

setj/10*15/ ;

scalar b /2/;
set k /5%10/ ;
scalar c /3/;

o ~NO e

Note that lines between ti$elouble and$single options are listed double spaced, while the
lines after thebsingle option revert back to being listed singly spaced.

C.3.48 stars cccc

This option is used to redefine th&* * marker in the GAMS listing file. By default, important
lines like those denote errors, and the solver/model status are prefixettith.*

Default: ****

Example

Consider the following example,

$stars ##t#
garbage

236 APPENDIX C: DOLLAR CONTROL OPTIONS

The resulting listing file looks as follows,

2 garbage
ittt $140
#H# $36,299 UNEXPECTED END OF FILE (1)

Error Messages

36 '='or'..'or =" or '$=' operator expected
rest of statement ignored

140 Unknown symbol

299 Unexpected end of file

C.3.49 stitle ‘text '

This option sets the subtitle in the page header of the listing fitexb “. The next output line
will appear on a new page in the listing file.

Example
Consider the following example,

$stitle data tables for input/output

C.3.50 sysinclude file argl arg2

Equivalent tdbbatinclude . However, if an incomplete path is given, the file name is com-
pleted using the system include directory. By default, the library include directory is set to the
GAMS system directory. The default directory can be reset with the sdir command line parame-
ter.

Example
Consider the following example,

$sysinclude abc x y

This call first looks for the include filESAMS System Directory]/abc , and if this file
does not exist, looks f§6AMS System Directory]/abc.gms . The arguments andy
are passed on to the include file to interpret as explained $b#tmclude section of this
chapter.

Example
Consider the following example,

$sysinclude c:\abc\myinc.inc x y

This call first looks specifically for the include fite\abc\myfile.inc

C.3.51 title ‘text ’

This option sets the title in the page header of the listing fileekd ‘. The next output line will
appear on a new page in the listing file.

Example
Consider the following example,

$title Production Planning Model
$stitle Set Definitions

Appendix C: DOLLAR CONTROL OPTIONS 237

C.3.52 use205

This option sets the GAMS syntax to that of Release 2.05. This is mainly used for backward
compatibility. New key words have been introduced in the GAMS language since Release 2.05.
Models developed earlier that use identifiers that have since become keywords will cause errors
when run with the latest version of GAMS. This option will allow one to run such models.

Example
Consider the following example,

$use205
set if /1.2.3/; scalar X ;

The wordif is a key-word in GAMS introduced with the first version of Release 2.25. The set-
ting of the$use205 option allows if to be used as an identifier since it was not a keyword in
Release 2.05.

C.3.53 use225

This option sets the GAMS syntax to that of first version of Release 2.25. This is mainly used for
backward compatibility. New key words have been introduced in the GAMS language since the
first version of Release 2.25. Models developed earlier that use identifiers that have since be-
come keywords will cause errors when run with the latest version of GAMS. This option will al-
low one to run such models.

Example
Consider the following example,

$use225
set for /1.2.3/; scalar x ;

The wordfor is a key-word in GAMS introduced with the later versions of Release 2.25. The
setting of thebuse225 option allowsfor to be used as an identifier since it was not a keyword
in the first version of Release 2.25.

C.3.54 use999

This option sets the GAMS syntax to that of the latest version of the compiler. This option is the
default.

Example

Consider the following example,
$use225
set for /1.2.3/; scalar x ;

$use999
for (x=1 to 3, display x) ;

The wordfor is used as a set identifier by setting the opfiose22 5, and later the keyword
for is used as a looping construct by setting the language syntax to that of the latest version by
setting$use999 .

Appendix D: THE OPTION STATEMENT

D.1 INTRODUCTION

Theoption statement is used to set various global system parameters that control output detail,
solution process and the layout of displays. They are processed at execution time unlike the Dol-
lar Control Options discussed in Appendix C. They are provided to give flexibility to the user

who would like to change the way GAMS would normally do things. GAMS does provide de-
fault values that are adequate for the most purposes, but there are always cases when the user
would like to maintain control of aspects of the run.

D.1.1 THE SYNTAX
The general form of an option statement is

option 'keyword1' [= 'valuel']l {,|EOL 'keyword2' ="'value2'};

where thekeyword1 ' and keyword2 ' are recognized option names (but not reserved words) and
the valuel 'andvalue2 'are valid values for each of the respective options. Note that commas
or end-of-line characters are both legal separators between options.

' Option names are not reserved words and therefore do not conflict with other
L‘ uses of their name.

There are five possible formats:

adisplay specifier.

a recognized name, number followmgign or value

a recognized name, number following=agign, then an unsigned integer value.

a recognized name, number following=agign, then an unsigned real number.

a recognized name, number following=amign, then either of two recognized words.

An option statement is executed by GAMS in sequence with other instructions.
Therefore, if an option statement comes between two solve statements, the
new values are assigned between the solves and thus apply only to the second
one.

The values associated with an option can be changed as often as necessary,
with the new value replacing the older one each time.

N N

240 APPENDIX D: THE OPTION STATEMENT

D.1.2 EXAMPLE
An example of a list of option statements is shown below,

option profit:0:3:2;
option eject
iterlim = 100 , solprint = off ;
solve mymodel using Ip maximizing profit ;
display profit.| ;
input("vall") =5.3;
option iterlim = 50 ;
solve mymodel using Ip maximizing profit ;

Theoption statement in the second line affects the display format of the ideptidifr

More details on this option can be found under the headiteptdfier > in the following

two sections. The option on the second line has no value associated with it, and serves to advance
the output in the listing file to the next page. The third line contains two optiemm , and

solprint . The values associated with the two options on the fourth line are of different types -
iterlim has an integer value while solprint requires a character string as a value. Note also that the
end of line and the comma serve as legal separators between two options.

Theoption iterim serves to limit the number of iterations taken by the solver while at-
tempting to solve thpp modelmymodel. After mymodel is solved for the first time, some of

the input data is changed and the model is solved again. However, before the second solve state-
ment, theoption iterlim is changed to 50. The effect of the sequence above is to limit the

first solve to less than 100 iterations and the second to less than 50.

D.2 LIST OF OPTIONS

The options available through the option statement are grouped into the following functional
categories affecting

e output detalil

» solver specific parameters

» choice of solver

e input program control

The rest of this section will briefly define the various options in each of these categories in turn.
Section D.3. will provide a reference list of all options available through the option statement
with detailed descriptions for each.

D.2.1 OPTIONS CONTROLLING OUTPUT DETAIL

The options in this group affect the amount of information available in the listing file. These op-
tions are listed below.

Option Value Type Description

<identifier> integer controls print format for identifier display
Decimals integer global control of print format lisplay

Eject advances output in the listing file to next page
Limcol integer number of columns listed for each equation
Limrow integer number of rows listed for each equation
Profile integer lists program execution profile

Profiletol real sets tolerance time for execution profile

Appendix D: THE OPTION STATEMENT 241

Option
Solprint
Solveopt
Sysout

Value Type
on/off
integer
on/off

Description

controls printing of model solution

controls type of information in equation listing
controls printing of solver status file

D.2.2 OPTIONS CONTROLLING SOLVER SPECIFIC PARAMETERS

The options in this group affect the computer resources used by the respective solvers. These op-

tions are listed below.

Option
Bratio
Domlim

Iterlim
Optca
Optcr
Reslim

Value Type
real
integer

real
real
real
real

Description

use of advanced basis

limits number of domain errors performed

by solver

limits number of iterations used by the solver
sets absolute optimality tolerance for MIP models
sets relative optimality tolerance for MIP models
limits amount of time used by the solver

D.2.3 OPTIONS CONTROLLING CHOICE OF SOLVER

The options in this group affect the solvers being used to solve a particular model. These options
are listed below.

Option
cns
dnlp
Ip
mcp
minlp
mip
mpec
nlp
rminlp
rmip

Value Type
string
string
string
string
string
string
string
string
string
string

Description

sets solver fazns model type
sets solver fainlp model type
sets solver fdp model type
sets solver fancp model type
sets solver faninlp model type
sets solver fanip model type
sets solver fanpec model type
sets solver farlp model type
sets solver faminlp model type
sets solver famip model type

D.2.4 OPTIONS AFFECTING INPUT PROGRAM CONTROL

The options in this group affect the input program. These options are listed below.

Option
seed
solveopt

Value Type
integer
merge/replace

Description
resets seed for pseudo random number generator,
controls return of solution values to GAMS.

D.3 DETAILED DESCRIPTION OF OPTIONS

This section describes each of the dollar control options in detail. The Dollar Control Options are

listed in alphabetical order for easy reference.

242 APPENDIX D: THE OPTION STATEMENT

Option

<identifier>
ident:d
ident:d:r:c

bratio

cns

decimals

dnlp

domlim

Value
Type

real

character

integer

character

integer

Description

Display specifier. Defines print formats fidlent when used
in a display statemend. is the number of decimal placesis
the number of index positions printed as row lakeis, the

number of index positions printed as column labels; the ret

maining index positions (if any) will be used to index the
planes (index order: plane, row, column; ifs zero list for-
mat will be used.

Certain solution procedures can restart from an advanced
that is constructed automatically. This option is used to sp
ify whether or not basis information (probably from an earl
solve) is used. The use of this basis is rejected if the numt
of basic variables is smaller than bratio times the size of th

basis. Settindpratio to 1 will cause all existing basis infort

mation to be discarded, which is sometimes needed with 1
linear problems. Aratio of O accepts any basis, and a
bratio of 1 always rejects the basis. Settimgtio to 0

basis
er
er
e

on-

forces GAMS to construct a basis using whatever information

is available. Iforatio has been set to 0 and there was no
previous solve, an "all slack" (sometimes called 'all logical
basis will be provided. This option is not useful for MIP
solvers.

Range: 0 to 1 (default = 0.25)

The default cns solver is set during installation. The user
change this default by setting this option to the required
solver. The list of cns solvers available with your system ¢
be obtained by reading the gamscomp.txt file that is prese
the GAMS system directory. A value of default will change
the cns solver back to the default one as specified in gam-
scomp.txt. (default = default)

Number of decimals printed for symbols not having a spe
print format attached.

Range: 0 to 8 (default = 3)

The default dnlp solver is set during installation. The use
change this default by setting this option to the required
solver. The list of dnlp solvers available with your system ¢
be obtained by reading the gamscomp.txt file that is prese
the GAMS system directory. A value of default will change
the dnlp solver back to the default one as specified in gam
scomp.ixt. (default = default)

This controls the number of domain errors (undefined ope
tions like division by zero) a nonlinear solver will perform,
while calculating function and derivative values, before it t4
minates the run. Nonlinear solvers have difficulty recoverin
after attempting an undefined operation.

can

an
ntin

ific

can

an
ntin

(default = 0)

Appendix D: THE OPTION STATEMENT 243

Option

eject
iterlim

limcol

limrow

mcp

minlp

mip

nlp

optca

Value
Type

integer

integer

integer

character

character

character

character

character

real

Description

Advances output in the listing file to the next page.
This option will cause the solver to interrupt the solution p

cess after iterlim iterations and return the current solution Val-

ues to GAMS. (default = 1000)

This controls the number of columns that are listed for eagh

variable in the COLUMN LISTING section of the listing file
Specify zero to suppress the COLUMN LISTING altogethe
(default = 3)

This controls the number of rows that are listed for each €
tion in the EQUATION LISTING section of the listing file.
Specify zero to suppress the EQUATION LISTING altoget
(default = 3)

This option controls the solver used to solve Ip models.
(default = default)

The default dnlp solver is set during installation. The use
change this default by setting this option to the required
solver. The list of dnlp solvers available with your system ¢
be obtained by reading the gamscomp.txt file that is prese
the GAMS system directory. A value of default will change
the dnlp solver back to the default one as specified in gam
scomp.ixt. (default = default)

The default minlp solver is set during installation. The usg
can change this default by setting this option to the require
solver. The list of minlp solvers available with your system
can be obtained by reading the gamscomp.txt file that is p
ent in the GAMS system directory. A value of default will
change the minlp solver back to the default one as specifie
gamscomp.txt. (default = default)

The default mip solver is set during installation. The user
change this default by setting this option to the required
solver. The list of mip solvers available with your system c
be obtained by reading the gamscomp.txt file that is prese
the GAMS system directory. A value of default will change
the mip solver back to the default one as specified in gam-
scomp.ixt. (default = default)

The default nlp solver is set during installation. The user
change this default by setting this option to the required
solver. The list of nlp solvers available with your system ca
be obtained by reading the gamscomp.txt file that is prese
the GAMS system directory. A value of default will change
the nlp solver back to the default one as specified in gam-
scomp.txt. (default = default)

This option is only used with problems containing discrete|
variables (i.e. the GAMS model type mip). General mixed

=

qua-

ner.

can

an
ntin

o

(€S-

od in

can

an
ntin

can

1]
ntin

teger problems are often extremely difficult to solve, and

244 APPENDIX D: THE OPTION STATEMENT

Option

optcr

profile

profiletol

reslim

rmip

rminlp

Value
Type

real

integer

real

real

character

character

Description

proving that a solution found is the best possible can use
enormous amounts of resources. This option sets an "abs
termination tolerance,"” which means that the solver will st(
and report on the first solution found whose objective valu
within optca of the best possible solution. (default = 0.0)

This option is only used with problems containing discrete
variables (i.e. the GAMS model type mip). General mixed
teger problems are often extremely difficult to solve, and
proving that a solution found is the best possible can use
enormous amounts of resources. This option sets a "relati
termination tolerance,” which means that the solver will stq
and report on the first solution found whose objective valu
within 100*optcr of the best possible solution. (default = 0.

This option is used to generate more information on progt
execution profiles. This option is equivalent in function to t
profile command line parameter.

Range: 0 to 2 (default = 0)
No execution profile generated in listing file.

The listing file reports execution times for each statement
the number of set elements over which the particular state
is executed.

Specific times for statements inside control structures like
loops.

sets profile tolerance in seconds. All statements that take
time to execute than this tolerance are not reported in the
ing file. (default = 0.0)

This option causes the solver to terminate the solution prd
after reslim units of processor time have been used, and tl
current solution values are returned to GAMS. The units a
seconds on the "wall clock” for personal computers, or CP
seconds for larger machines. The SOLUTION SUMMARY
part of the listing file shows the limit was used. (default =
1000.0)

The default rmip solver is set during installation. The user

change this default by setting this option to the required

solver. The list of rmip solvers available with your system ¢

be obtained by reading the gamscomp.txt file that is prese
the GAMS system directory. A value of default will change
the rmip solver back to the default one as specified in gan
scomp.txt. (default = default)

The default rminlp solver is set during installation. The ug
can change this default by setting this option to the require
solver. The list of rminlp solvers available with your systen
can be obtained by reading the gamscomp.txt file that is p

plute

P
eis

ve
p.
b is
1)
am
he

and
ment

less
list-

cess
ne
re
U

can

an
ntin

er
d

(€S-

ent in the GAMS system directory. A value of default will

Appendix D: THE OPTION STATEMENT 245

Option

seed

solprint

solslack

solveopt

sysout

Value
Type

integer

character

on

off

integer

character
merge
replace

character

on
off

Description

change the rminlp solver back to the default one as specif
in gamscomp.txt. (default = default)

This option resets the seed for the pseudo random numbg
generator. (default =3141)

This option controls the printing of the model solution in t
listing file. Using this specification suppresses the list of th
solution following a solve. (default = on)

The solution is printed one line per row and column in the
listing file.

Solution details are not printed. Although this saves paper
do not recommend it unless you understand your model vé
well and solve it often.

This option causes the equation output in the listing file to
contain slack variable values instead of level values. (de-
fault=0)

Equation output in listing file contains level values betwee
lower and upper bound values

Equation output in listing file contains slack values betweg
lower and upper bound values

Controls the way solution values from a solve are returne
GAMS. (default = merge)

Old and new values merged together, and new values ov
write old ones

All old values associated with a variable or equation are r
to default values before new solution values are returned

This option controls the printing of the solver status file a
part of the listing file. The contents of the solver status file
useful if you are interested in the behavior of the solver. If
solver crashes or encounters any difficulty, the contents of

solver status file will be automatically sent to the listing file|

(default = off)
Prints the system output file of the solver
No subsystem output appears on output file unless a subs

ed

418

(4

we
Bry

eset

are
the
the

ys-

tem error has occurred.

Appendix E: THE SAVE AND RESTART FEATURE

E.1 INTRODUCTION

GAMS saves the information provided in the input files in intermediate, mostly binary, files.
These files are referred to as "work files" or "scratch files". Some of these files are used to ex-
change information between GAMS and the various solvers. Just before a GAMS run is com-
plete, these files are usually deleted.

Input files can be processed in parts through the use of these intermediate files. This is an ex-
tremely powerful feature that can reduce the time needed when several runs of the same model
are being made with different data.

It may be clearer if the process is described in a different way. Imagine taking a large GAMS
program and running it, producing one output file. Then think of splitting the program into two
pieces. The first piece is run and the resulting work files are saved along with the resulting listing
file. Then the second piece is run after reading in the data from the work files saved previously.
A new listing file is generated for the second piece. The content of the output that results is the
same, though slightly rearranged, as the case when the large file was run. Splitting the files al-
lows one to interrupt a GAMS task and restart it later without loss of information. Further,
changes could be made, or errors corrected, to the later parts.

E.2 THE SAVE AND RESTART FEATURES

Using the save and restart command line parameters provides a mechanism to break up the com-
pilation of a large input file into many components and stages. Some of the reasons for using
these features and running a model in pieces are explained in Section E.3. The next two sub-
sections explain the save and restart mechanisms in GAMS. The save and restart command line
parameters, described in Appendix B, are used for this purpose.

[TRNSPORT] is used for the purposes of illustration. Consider the following file, containing
code extracted from [TRNSPORT] callfig¢l.gms

Sets
i "canning plants" / seattle, san-diego /
j "markets" / new-york, chicago, topeka/ ;
Parameters
a(i) "capacity of plantiin cases"
| seattle 350
san-diego 600 /

b(j) "demand at market j in cases"
/' new-york 325
chicago 300
topeka 275 /;

248 Appendix E: THE SAVE AND RESTART FEATURE

Table d(i,j) "distance in 1000 miles"
new-york chicago topeka
seattle 25 1.7 1.8
san-diego 25 1.8 1.4 ;

Scalar f "freight in dollars/case per 1000 miles" /90/ ;

Parameter c(i,j) "transport cost in $1000/case" ;
c(i,j) = f*d(i,j) / 1000 ;

Variables
x(i,j) "shipment quantities in cases"
z "total transportation costs in 1000$" ;
Positive Variable x ;
Equations
cost "define objective function”
supply(i) "observe supply limit at plant i"
demand(j) "satisfy demand at market " ;
cost .. z =e= sum((i,j), c(i,j)*x(i.))) ;
supply(i) .. sum(, x(i,j)) == a(i) ;
demand(j) .. sum(i, x(i,j)) =g= b(j) ;
Model transport /all/ ;

Consider the following file (saffle2.gms),

Solve transport using Ip minimizing z ;
Display x.I, x.m ;

Note that [TRNSPORT] results from appendiibe? .gms at the end ofilel .gms.

E.2.1 SAVING WORK FILES
The information irfilel.gms can be stored by using the following call to GAMS,

gams filel s=trans

Eight work files called trans.g0? are created in the working directory.

Work files preserve all information (including declarations, values, option set-
M" tings and compiler dollar directives) known to GAMS at the end of the run that
created them.

The work files are machine specific, and can be used only on the same plat-
' form on which they were generated. For example, work files generated on a
L‘ PC running Windows NT cannot be re-used on a Sun machine running Solaris
2.5.

E.2.2 RESTARTING FROM WORK FILES
Consider the following call,

gams file2 r=trans

GAMS reads the work files namé@ns.g0? and regenerates the information stored in
filel.gms . Thenfile2.gms s run and the result is as if the two files were concatenated.

Appendix E: THE SAVE AND RESTART FEATURE 249

A restarted run also requires a continuation input file. The restart does not alter work files. They
can be used repeatedly to continue a particular run many times, possibly with many different
continuation input files.

It is the responsibility of the modeler to ensure that the contents of the input
file matches that of the work files, although the compiler will issue errors if it
detects any inconsistencies, such as references to symbols not previously de-
clared.

Work files can be used only by GAMS tasks requesting a restarted run.

N N

Files can be saved following a restarted run, thus producing another set of
work files that reflects the state of the job following completion of the state-
ments in the continuation file.

N

E.3 WAYS IN WHICH WORK FILES ARE USEFUL

The basic function of work files is to preserve information that has been expensive to produce.
Several reasons for wanting to do this are described in this section.

E.3.1 SEPARATION OF MODEL AND DATA

The separation of model and data is one of the core principles of the GAMS modeling paradigm.
The use of save and restart features helps to exploit this separation.

Let us re-arrange the contentditdl.gms andfile2.gms to separate the model from the
data. The modified version &éfel.gms is shown below,

Setsi canning plants
j markets

Parameters a(i) "capacity of plantiin cases"
b() "demand at market jin cases"
c(i,j) "transport cost in 1000%/case"
d(i,j) "distance in 1000 miles" ;

Scalar f "freight in $/case per 1000 miles"

Variables x(i,j) "shipment quantities in cases"
z "total transportation costs in 1000$" ;

Positive Variable x ;

Equations cost "define objective function”
supply(i) "observe supply limit at plant i"
demand(j) "satisfy demand at market " ;

cost .. z =e= sum((i,j), c(i,j)*x(i.j) ;
supply(i) .. sum(j, x(i,j)) =I= ai) ;
demand(j) .. sum(i, x(i,j)) =g= b(j) ;
Model transport /all/ ;

Note that this representation does not contain any data, and is a purely algebraic representation of
the transportation problem. Running this model and saving the resulting work files will allow the
model to be used with the data stored in a separate file — file2.gms.

250 Appendix E: THE SAVE AND RESTART FEATURE

Sets i /seattle, san-diego/
j I new-york, chicago, topeka/ ;

Parameters a(i) / seattle 350
san-diego 600 /
b() / new-york 325
chicago 300
topeka 275 /

Table d(i,j)
new-york chicago topeka
seattle 25 1.7 1.8
san-diego 25 1.8 1.4 ;
Scalar f/90/;

c(i,j) = f* d(ij) / 1000 ;

Solve transport using Ip minimizing z ;
Display x.I, x.m ;

This file contains the data for the model anddblve statement.

E.3.2 INCREMENTAL PROGRAM DEVELOPMENT

GAMS programs are often developed in stages. A typically style is to put the sets first, followed
by tables and data manipulations, then equations, and finally the assignments used to generate
reports. As each piece of the model is built, it should be run and checked for errors by inserting
diagnostic display and abort statements. As confidence mounts in the correctness of what has
been done, it is useful to save the completed parts in work files. Then by restarting it is possible
to work only on the piece under active development, thereby minimizing computer costs and the
amount of output produced in each of the developmental runs. This approach is especially useful
when entering the statements needed for reporting. The solution is much more expensive than the
report, but the report is likely to involve many details of content and layout that have to be tried
several times before they are satisfactory. The model can be solved and the result saved in work
files. One can then restart from these work files when developing the report. It is a great relief
not to have to solve the model every time.

E.3.3 TACKING SEQUENCES OF DIFFICULT SOLVES

In many cases where solves are known o be difficult and experience, it may be too risky to ask
GAMS to process a job containing many solve statements. The risk is that if one solve does not
proceed to normal completion, then the following one will be started from a bad initial point, and
much time and effort will be wasted.

An alternative is to request one solve at a time and save the work files. Then the output is care-
fully inspected before proceeding. If everything is normal, the job is restarted with the next solve
requested. If not, the previous solve can be repeated, probably with a different initial point, or
continued if the cause of the trouble was an iteration limit, for example.

This approach is common when doing repeated solves of a model that successively represent
several consecutive time periods. It uses work files in a sequential rather than a tree-structure
way.

It also produces many files, which can be difficult to manage, if the solves are especially diffi-

cult, it is possible to lose track of exactly what was done. Great care is needed to avoid losing
control of this process.

Appendix E: THE SAVE AND RESTART FEATURE 251

E.3.4 MULTIPLE SCENARIOS

The majority of modeling exercises involves a "base case", and the point of the study is to see
how the system changes when circumstances change, either naturally or by design. This is often
done by making many different changes o the base case and separately considering the effects; it
is sometimes called "what if analysis.

The point is that the base can be saved using work files, and as many different scenarios as may
be interesting can them be run separately by restarting. Each scenario probably involves only
making a change in data or in bounds, solving the changed model (the base solution is automati-
cally used as a starting point), and reporting. This procedure how work files are used in a tree-
structured way: one set of work files is used with many different (but probably very small) input
files to produce many different output files. File handing is less likely to be a problem than in the
sequential case above.

INDEX

addition - 56
division - 56

exponentiation - 56
multiplication - 56

#n, cursor control - 140 prod - 56

=+ marking important conponets of the output - 95 smax - 56

** markings errors - 88 smin - 56

* in set definitions - 39 subtraction - 56
sum - 56

--, circular operator - 121

.., required after equation name - 68

/, cursor control - 140

@n, cursor control - 140

++, circular operator - 121

<, numerical relationship operator - 102
<=, numerical relationship operator - 102
<>, numerical relationship operator - 102
=, numerical relationship operator - 102
=e=, a relational operator - 68

=g=, relational operator - 68

=|=, relational operator - 68

=n=, relational operator - 68

>, numerical relationship operator - 102
>=, numerical relationship operator - 102

assigned, reference type - 85
assignment - 64

conditional - 105

definition - 165

indexed - 53

issues with controlling indices - 54

over subsets - 54

scalar - 53

statement - 53

to dynamic sets - 114

using labels explictitly - 54
asterisk

in set definitions - 39

mark errors - 88

marking errors - 96

use in comments - 36

A

B

abort, Dollar Control Option - 208

abs, function - 58 basic. definit 6
acronym - 30 asic, definition - 165

definition - 165 bgtinclude, Dollar Control Option - 209
binary, operator - 104, 127
binding, definition - 165
bm, Gams call parameter - 181
use in logical conditions - 103 boolean,_ operations - 109
action, Gams call parameter - 178, 180 botmargin, Gams call parameter - 179, 181
activity level (.I) or (.L) - 63, 64, 78, 88 bound_s_ .
al, Gams call parameter - 180 definition - 165

ALAN, example from the model library - 81, 83 on v_ariabl_es_- 64 .
P y branching priority value (.prior) - 63

example - 51
syntax - 51
use in assignments - 55

algorithm ot
definition - 165 ratllob e _ ot
Implemetation of non-standard - 79 global Gams option -
alias - 30 model attribute - 75

defintion - 165
statement - 40

all, defining a model - 89 C
ALUM, example from the model library - 42
and, relational operator - 102 call, Dollar Control Option - 210
ANDEAN, example from the model library from the card, operator on sets - 121
modellibrary - 57 case, Gams call parameter - 179, 181
ao, Gams call parameter - 181 ceil, function - 58, 70, 71
appendlog, Gams call parameter - 180 cerr, Gams call parameter - 178, 181
appendout, Gams call parameter - 179, 181 character set, valid - 37
arctan, intrinsic function - 58, 71 CHENERY, example from the model library - 65, 70,

arithmetic operations - 56, 59, 99 110

254 INDEX

clear, Dollar Control Option - 208, 211 statements - 30
CNS, model type - 16, 74, 242 table - 48
column default value, definition - 166
defintion - 165 defined, a reference type - 85
listing - 89 defintion
comma defintion - 166
in data lists - 35 of a model - 73
in put statements - 134 of data - 31
comment of equation - 68
asterik in the column one - 30 of scalars - 45
Dollar Control Option - 212 of symbols - 32
using $eolcom - 36 statement
using $inlinecom - 36 definition - 166
using $ontest/$offtext - 36 statements - 30
compilation df, Gams call parameter - 182
actions during ... - 180 dformat, Gams call parameter - 179, 182
definition - 165 difference, set operation - 117
errors - 97 direction
errors at ... time - 98 defintion - 166
multipass - 193 of optimzation - 76, 91
output - 82 discontinuous
complement, a set operation - 117 classification - 71
conditional expressions defintion - 166
numerical values - 103 derivate - 70
operator precedence - 103 functions - 74
using set membership - 102 discrete
with logical operators - 102 defintion - 166
with numerical relationship operators - 101 variables - 62, 74
constant set, defintion - 165 display
constraint, definition - 165 controls local - 130
continuous, definition - 165 example - 127
control, reference type - 85 generating data in list format - 131
controlling global controls - 130
index - 54 introduction - 127
set - 49, 151 label order - 128
set (definition) - 165 syntax - 127
cos, function - 58, 71 DNLP, model type - 74, 242
CRAZY, example from the model library - 59, 99 dollar condition
ctrim, Gams call parameter - 179, 182 control over the domain of definition - 110
ctrlz, Gams call parameter - 179, 182 example - 105
curdir, Gams call parameter - 178, 182 in equations - 110, 116
in indexed operations - 116
nested - 105
D on the left - 106

on the right - 106
with dynamic sets - 115
within indexed operations - 109
within the algebra - 110
dollar control option

data
entered as parameters - 46
entered as tables - 48
entry - 45

handling aspects of equations - 72 gb?rt I 2d08 200
manipulations with parameters - 53 atncluae -
type - 31 call - 210

clear - 211

types(definition) - 165
decimals, global option - 130, 242
declaration

comment - 212
defintion - 166

initi dollar - 212
definition - 166
of a model - 73 dOrl:b|62-12313
parameter - 46 echo -
scalar - 45 eject - 213

eolcom - 214

i - finiti f--31
separation between - and definition of - - 3 arror - 214

INDEX

Example - 205
exit - 214
goto - 215
hidden - 215
if [not] - 215
include - 218
inlinecom - 219
Introduction - 205
kill - 219
label - 219
libinclude - 220
lines - 220
log - 221
maxcol - 221
mincol - 222
on/offdigit - 222
on/offdollar - 223
on/offempty - 223
on/offend - 224
on/offeolcom - 225
on/offeps - 225
on/offglobal - 226
on/offinclude - 226
on/offinline - 227
on/offlisting - 227
on/offmargin - 228
on/offmulti - 228
on/offnestcom - 229
on/offsymlist - 230
on/offsymxref - 230
on/offtext - 231
on/offuellist - 232
on/offuelxref - 232
on/offupper - 232
on/offwarning - 233
phantom - 234
shift - 234
single - 235
stars - 235
stitle - 236
Syntax - 205
sysinclude - 236
title - 236
use205 - 237
use225 - 237
use999 - 237
dollar operator - 104, 166
domain
checking - 41
checking usage
definition - 166
definition - 166
restriction condition
definition - 166
domlim
global Gams option - 242
model attribute - 75
option - 91, 99
domusd, model attribute - 75
dot
in equation definitions - 68

255

in level and marginal listings - 95
in many to many mappings - 43
in parameter definition - 47
in set definition - 42
in sets - 42
in tables - 49
double, Dollar Control Option - 213
dp, Gams call parameter - 185
driving set, definition - 166
dual value (.m) - 63
dumpopt, Gams call parameter - 178, 183
dumpparms, Gams call parameter - 180, 185
dynamic set
assignin membership membership to - 113
assignments over the domain of - 114
definition - 166
dollar assignments - 115
equations defined over the domain of - 115
example - 113
in equations - 116
indexed operations - 116
introduction - 113
syntax - 113
using dollar controls with - 115
with multiple indices - 114

E

echo, Dollar Control Option - 213
ef, Gams call parameter - 187
e-format - 130
defintion - 167
eject
Dollar Control Option - 213
global Gams option - 243
end of line - 34, 48
endogenous
arguments - 70
definition - 166
eolcom, Dollar Control Option - 214
eolonly, Gams call parameter - 178, 185
eps
a reserved word - 33
definition - 59
usage in extended arithmetic - 35
used with variables - 95
eq, a relational operator - 102
equation
indexed - 69
listing - 87
scalar - 69
equation declaration - 67
example - 67, 68
syntax - 67
equation definition - 166
arithmetic operators - 70
functions - 70
preventing undefined operations - 71
syntax - 68

256

errmsg, Gams call parameter - 178, 186
error
Dollar Control Option - 214
Gams call parameter - 178, 185
handling - 58
no solution - 92
other - 93
reporting - 96
reporting compilation - 97
reporting compilation time errors - 98
reporting execution errors - 99
reporting solve errors - 99
setup failure - 93
unknown - 92
errorf, function - 58, 71
evaluation error limit - 93
exception
handling - 86
handling in equations - 110
execution
definition - 166
errors - 99
statements
definition - 166
exit, Dollar Control Option - 214
exogenous, definition - 166
exp, function - 58
expand, Gams call parameter - 178, 187
explanatory text - 62, 73
exponent - 56
definition - 167
extended
arithmetic - 167
value - 95
ey, Gams call parameter - 185

abs - 58
arctan - 58
ceil - 58
cos - 58
error - 58
exp - 58
floor - 58
log - 58
logl10 - 58
map - 58
mapval - 58
min - 58
mod - 58
normal - 58
power - 58
round - 58
sign - 58
sin - 58
sqr - 58
sqrt - 58
trunc - 58
uniform - 58
fw, Gams call parameter - 188

INDEX

F

feasible solution, definition - 167
feasible, definition - 167
ferr, Gams call parameter - 180, 187

FERTD, example from the model library - 107
FERTS, example from the model library - 110

file
defining - 135
GAMS statement - 133
summary - 96
filtering
controlling indices - 107, 109
sets - 107
the domain of a definition - 111
through dynamic sets - 116
floor, function - 58, 71
for
example - 155
statement - 155
syntax - 155

forcework, Gams call parameter - 178, 188

functions

G

9205, Gams call parameter - 179, 188

gams call
Introduction - 177
specifying options - 177

gams call parameter
action - 178
appendlog - 179
appendout - 179
botmargin - 179
case - 179
cerr - 178
ctrlm - 179
ctrlz - 179
curdir - 178
dformat - 179
dumpopt - 178
dumpparms - 179
eolonly - 178
errmsg - 178
error - 178
expand - 178
ferr - 179
forcework - 178
g205 - 179
input - 179
inputdir - 178
inputdirl - 178
leftmargin - 179
libincdir - 178
license - 178
logfile - 179
logline - 179
logoption - 179

INDEX

multipass - 179

nocheck - 178

optfile - 179

output - 179

pagecontr - 179

pagesize - 179

pagewidth - 179

profile - 179

putdir - 178

reference - 178

relpath - 178

restart - 179

save - 179

scrdir - 178

stepsum - 179

stringchk - 179

subsys - 178

suppress - 179

sysdir - 178

sysincdir - 178

tabin - 179

tformat - 179

topmargin - 179

workdir - 178
gams coordinator - 167
gams execution output

column listing - 89

equation listing - 87

Model statistics - 89

solve summary - 90
gams language items - 32

Characters - 32

Comments - 36

Delimiters - 35

identifiers - 33

Labels - 34

Numbers - 35

reserved words - 33

text - 34
gams output

echo print - 82

example - 81

introduction - 81

report summary - 95

solution listing - 94

symbol listing map - 85

symbol reference map - 83
gams, declarative statements - 30
ge, relational operator - 33, 102
goto, Dollar Control Option - 215
gt, relational operator - 33, 102
GTM, example from the model library - 109, 110

257

i, Gams call parameter - 189
identifier, definition - 167
idir, Gams call parameter - 189
idirl, Gams call parameter - 190
if, Dollar Control Option - 215
if-elseif-else
a statement - 152
example - 153
syntax - 153
impl-asn, reference type - 85
include, Dollar Control Option - 218
index position, definition - 167
indices, controlling - 57
INDUS, example from the model library - 50
inequality constraint, definition - 167
inf
an extended range value - 99
as a variable bound - 72, 127
extended range value - 35, 59
variable bound - 62
infeasible - 88, 92, 95
definition - 167
infes, solution marker - 95
initial values - 30, 64, 65
initialization - 85
definition - 167
of data - 45
of parameters - 46
inlinecom, Dollar Control Option - 219
input, Gams call parameter - 179, 189
inputdir, Gams call parameter - 178, 189
inputdirl, Gams call parameter - 178, 190

integer
infeasible - 92
solution - 92

variable - 64, 74
intermediate

infeasible - 92

noninteger - 92

nonoptimal - 92
intersection, set operation - 117

iteration
default limit - 91
interupt - 93
iterlim

model attribute - 75
option - 91, 93, 243
iterusd, model attribute - 75

H

hidden, Dollar Control Option - 215
holdfixed, model attribute - 75

K

kill, Dollar Control Option - 219
KORPET, example from the model library - 48

258 INDEX

symbol listing - 85
L symbol reference - 83
mapval, function - 58, 71

label - 32, 34, 43 MARCO, example from the model library - 78
(s) definition - 167 marginal - 65, 95
Dollar Control Option - 219 definition - 167
order - 132 value (.m) - 63
order on displays - 128 matrix element, definition - 167
gouted - 38 max, function - 70, 71
quoted - 34, 38 maxcol, Dollar Control Option - 221
row and column - 49 maximizing - 76
unquoted - 34 MCP, model type - 16, 74, 243
using in equations - 69 MEXSS, example from the model library - 150
Idir, Gams call parameter - 191 min, function - 58, 70, 71
le, relational operator - 33, 102 mincol, Dollar Control Option - 222
leftmargin, Gams call parameter - 179, 190 minimizing - 76
legal characters - 32 MINLP, model type - 16, 74, 243
level - 64 MIP, model type - 16, 74, 92, 243
If, Gams call parameter - 191 mod, function - 58, 71
libincdir, Gams call parameter - 178, 191 model
libinclude, Dollar Control Option - 220 library - 171
license, Gams call parameter - 178, 191 statistics - 89
limcol status - 92
global Gams option - 243 styles - 31
model attribute - 75 syntax of statement - 73
limrow types - 74
global Gams option - 243 model attributes
model attribute - 75 bratio - 74
lines, Dollar Control Option - 220 domlim - 74
list domusd - 74
definition - 167 iterlim - 74
format definition - 167 iterusd - 74
of labels using Asterisks - 39 limcol - 74
Il, Gams call parameter - 192 limrow - 74
Im, Gams call parameter - 190 modelstat - 74
lo, Gams call parameter - 193 numequ - 74
locally numinfes - 74
infeasible - 92 numnz - 74
optimal - 92 numopt - 74
log numunbnd - 74
Dollar Control Option - 221 numvar - 74
function - 58, 70, 71 optca - 74
log10, function - 58 optcr - 74
logfile, Gams call parameter - 180, 191 optfile - 74
logline, Gams call parameter - 180, 192 reslim - 74
logoption, Gams call parameter - 180, 193 resusd - 74
loop scaleopt - 74
example - 152 solprint - 74
statement - 151 solveopt - 74
syntax - 151 solvestat - 74
lower bound - 64 sysout - 74
(.o) - 63 workspace - 74
lower case - 32 model classification
LP, model type - 16, 74, 243 CNS - 74
It, relational operator - 33, 102 DNLP - 74
LP - 74
MCP - 74
M MINLP - 74
MIP - 74
mapping sets - 41 NLP - 74

maps RMINLP - 74

INDEX

RMIP - 74
model generation, definition - 167
model list, definition - 168
model status

error no solution - 92

error unknown - 92

infeasible - 92

integer

infeasible - 92

integer solution - 92

intermediate infeasible - 92

intermediate noninteger - 92

intermediate nonoptimal - 92

locally optimal - 92

optimal - 92

unbounded - 92
modelstat

model attribute - 75

option - 75
mp, Gams call parameter - 193
MPEC, model type - 16
multipass, Gams call parameter - 179, 193
multiple solves - 78

259

N

na, extended range value - 35, 59
ne, relational operator - 102
NLP, model type - 16, 74, 243
nocheck, Gams call parameter - 178, 194
nonbasic, definition - 168
nonlinear
equations - 88
nonzero(definition) - 168
programming - 63, 74
nonoptimal, definition - 168
nonsmooth, definition - 168
nonzero element - 168
nopt, solution marker - 95
normal
completion (a solver status) - 93
function - 71
normal, function - 58
not, relational operator - 115
number of rows and colums in display - 129
numequ, model attribute - 75
numerical relationship operator
eq (=) - 102
greater than or equal to (>=) - 102
less than (<) - 102
less than or equal (<=) - 102
not equal to (<>) - 102
strictly greater than (>) - 102
numinfes, model attribute - 75
numnz, model attribute - 75
numopt, model attribute - 75
numunbnd, model attribute - 75
numvar, model attribute - 75

@)

0, Gams call parameter - 195
objective

definition - 168

row, definition - 168

value, definition - 168

variable, definition - 168
on/offdigit, Dollar Control Option - 222
on/offdollar, Dollar Control Option - 223
on/offempty, Dollar Control Option - 223
on/offend, Dollar Control Option - 224
on/offeolcom, Dollar Control Option - 225
on/offeps, Dollar Control Option - 225
on/offglobal, Dollar Control Option - 226
on/offinclude, Dollar Control Option - 226
on/offinline, Dollar Control Option - 227
on/offlisting, Dollar Control Option - 227
on/offmargin, Dollar Control Option - 228
on/offmulti, Dollar Control Option - 228
on/offnestcom, Dollar Control Option - 229
on/offsymilist, Dollar Control Option - 230
on/offsymxref, Dollar Control Option - 230
on/offtext, Dollar Control Option - 231
on/offuellist, Dollar Control Option - 232
on/offuelxref, Dollar Control Option - 232
on/offupper, Dollar Control Option - 232
on/offwarning, Dollar Control Option - 233
optca

global Gams option - 243

model attribute - 75
optcr

global Gams option - 244

model attribute - 75
optfile

Gams call parameter - 179, 195

model attribute - 75
optimal, definition - 168
option

definition - 168

example - 240

global - 75

introduction - 239

syntax - 239
or, relational operator - 115
ORANI, example from the model library - 40
ordered set

card operator - 121

circular lag and lead operator - 123

definition - 168

introduction - 119

lags and leads in assignments - 122

lags and leads in equations - 124

linear lag and lead operator - 122

ord operator - 120
output

(file) definition - 168

definition - 168

Gams call parameter - 179, 195

260 INDEX

P put cursor control
.hdcc - 146
tlcc - 146
pagecontr, Gams call parameter - 179, 196 put local item formating
pagesize, Gams call parameter - 179, 196 <.144
pagewidth, Gams call parameter - 179, 196 <> . 144
parameter >. 144
gizmg?ens. 14%8 put paging control
: Ap - 148
higher dimensions - 47 Ws - 148
statement - 46 putdir, Gams call parameter - 178, 198
syntax - 46 pw, Gams call parameter - 196

pc, Gams call parameter - 196

pdir, Gams call parameter - 198

phantom, Dollar Control Option - 234 Q
power, function - 56, 58, 71

precision, fixed - 95

priorities for branching quoted
example - 160 labels - 34
introduction - 160 tneartnez A?f sets - 38
problem type - 74 Xt -
definition - 168 quotes - 34, 38

prod, operator - 57, 85
PRODSCH, example from the model library - 67

profile R
Gams call parameter - 179, 197
global Gams option - 244 r, Gams call parameter - 199
profiletol, global Gams option - 244 RAMSEY, example from the model library - 61, 71
program, definition - 168 range of numbers - 35
PROLOG, example from the model library - 73, 77 ref, reference type - 85
ps, Gams call parameter - 196 reference types, declared, assigned, implasn, control,
put ref - 84
additional numeric control - 144 reference, Gams call parameter - 178, 198
appending to a file - 137 relational operator, definition - 169
assigning files - 136 relpath, Gams call parameter - 179, 198
closing a file - 136 report summary - 95
cursor control - 146 reporting, format - 97, 98
database/database application - 150 reserved words - 33
defining files - 135 reslim
errors - 149 global Gams option - 244
example - 134, 145 model attribute - 75
exception handling - 148 resource interupt - 93
global item formating - 143 restart, Gams call parameter - 180, 199
introduction - 133 resusd, model attribute - 75
local item formatting - 144 rf, Gams call parameter - 198
numeric items - 142 right hand side, definition - 169
output items - 141 RMINLP, model type - 16, 74, 244
page format - 137 RMIP, model type - 16, 74, 244
page sections - 138 round, function - 58, 71
paging - 139 rules
paging control - 148 constructing tables - 48
positioning the cursor on a page - 140 formating tables - 48
set value items - 142
syntax - 133
system suffices - 140 S

text items - 141

put current cursor control s, Gams call parameter - 199

g 11:'76 save, Gams call parameter - 180, 199
ﬁ:jcr - 147 scalar
tler - 147 definition - 169

equation - 69

INDEX

example - 45
statement - 45

syntax - 45
scale
model attribute - 75
option - 161
value (.scale) - 63
scaling
models - 161

of a variable - 161
of an equation - 162
of derivates - 163
scenario analysis - 78
scrdir, Gams call parameter - 179, 199
sdir, Gams call parameter - 199, 201
seed, global Gams option - 245
semicolon - 34
semi-continuous variables
Definition - 159
Example - 159
semi-integer variables
definition - 160
example - 160
set
associated text - 38
declaration for multiple sets - 40
definition - 37
definition - 169
dynamic - 113
elements - 38
filtering - 107, 116
filtering controlling indices - 107, 109
multi-dimensional - 41
multi-dimensional many to many - 42
multi-dimensional one-to-one mapping" - 41
names - 37
sequences as set elements - 39
simple - 37
syntax - 37
set operations
complement - 117
difference - 117
intersection - 117
union - 117
SHALE, example from the model library - 38
shift, Dollar Control Option - 234
sign, function - 58, 70
signed number - 45, 46, 48
simple assignment - 53
simplex method, definition - 169
sin, function - 58, 70, 71
single, Dollar Control Option - 235
slack
(variable) definition - 169
definition - 169
slash, delimiter - 35, 134
smax, operator - 57
smin, operator - 57
smooth
definition - 169
functions - 70

261

solprint
global Gams option - 245
model attribute - 75
solslack, global Gams option - 245
solution listing - 94
solve
errors - 99
errors messages - 98
statement - 73
solve statement
actions triggered by - 77
requirements - 77
several in a program - 77
several models - 77
syntax - 76
solve summary - 90
evalution errors - 91
iteration count - 91
objective summary - 91
ressource usage - 91
solver status - 92
solveopt
a global Gams option - 245
model attribute - 75
solver - 169
solver status - 75, 92
evaluation error limit - 93
iteration interupt - 93
normal completion - 93
other errors - 93
resource interupt - 93
terminated by solver - 93
unknown error - 93
solvestat, model attribute - 75
special languages features - 157
special ordered sets
introduction - 157
type 1 - defintion - 157
type 1 - example - 158
type 2 - definition - 159
sqr, function - 58, 71
sqrt, function - 58, 71
stars, Dollar Control Option - 235
statements, definition - 169
static set - 114, 169
stepsum, Gams call parameter - 179, 200
stitle, Dollar Control Option - 236
stringchk, Gams call parameter - 179, 200
subsets - 54
subsys, Gams call parameter - 179, 201
suffix
field width - 143
file - 143
model - 74
numerical display control - 144
page control - 148
put-file - 137
system, - 140
variable - 63
variable, - 72
sum, operator - 57

262

superbasic - 95
definition - 169

variable - 95
suppress, Gams call parameter - 179, 201
symbol

definition - 169

maps - 86
symbol reference map

assigned - 84

control - 84

declared - 84

defined - 84

equ - 84

impl-asn - 84

model - 84

param - 84

ref - 84

set - 84

var - 84

sysdir, Gams call parameter - 179, 201
sysincdir, Gams call parameter - 179, 201
sysinclude, Dollar Control Option - 236
sysout - 94

a global Gams option - 245

unique element, definition - 169
unknown error - 93

use205, Dollar Control Option - 237
use225, Dollar Control Option - 237
use999, Dollar Control Option - 237
using - 76

INDEX

T

tabin, Gams call parameter - 179, 202
table
a statement - 48
condensing - 50
continued - 49
definition - 169
example - 48
long row lables - 50
more than two dimensions - 49
statement - 48
syntax - 48
terminated by solver - 93
text, definition - 169
tf, Gams call parameter - 202
tformat, Gams call parameter - 179, 202
title, Dollar Control Option - 236
tm, Gams call parameter - 202
topmargin, Gams call parameter - 179, 202
trunc, function - 58, 71
type
(s) of discrete variables - 157
definition - 169

V

variable
binary - 62
free - 62
integer - 62
negative - 62
positive - 62
statement - 61, 62
styles for declaration - 62
suffix - 63
syntax of declaration - 61
type - 169
types - 62
variable attributes
activity level (.I) - 63
branching priority value (.prior) - 63
fixed value (.fx) - 63
lower bound (.lo) - 63
marginal or dual value (.m) - 63
scale value (.scale) - 63
upper bound (.up) - 63
variable bounds
activity level - 64
fixing - 64
vector, definition - 169

w

wdir, Gams call parameter - 203
while
example - 154
statement - 154
syntax - 154
workdir, Gams call parameter - 179, 203
workspace, model attribute - 76

U

unbounded - 92, 95

undf, extended range value - 59
uniform, function - 58, 71
union, of sets - 117

X

xor, relational operator - 115

Z

zero default, definition - 169

ZLOOF, example from the model library -

113

