
Don’t mix up atoms with lattice points 
Lattice points are infinitesimal points in space 
Atoms are physical objects 
Lattice Points do not necessarily lie at the centre of atoms 

UNIT CELL = The smallest component of the crystal, which when stacked together
with pure translational repetition reproduces the whole crystal

Primitive (P)unit cells contain only a single lattice point 

2D LATTICES

e.g. the fused hexagonal pattern of a single layer of GRAPHITE 



Counting Lattice Points/Atoms in 2D Lattices

Unit cell is Primitive (1 lattice point) but contains TWO atoms in the Motif 

Atoms at the corner of the 2D unit cell contribute only 1/4 to unit cell count 

Atoms at the edge of the 2D unit cell contribute only 1/2 to unit cell count 

Atoms within the 2D unit cell contribute 1 (i.e. uniquely) to that unit cell 

 

2-Dimensional Lattice Symmetries were famously exploited by the
artist Escher in many patterns

A tutorial on the 2D tessellations of Escher 
A really fun way to create your own 2D patterns with different lattice symmetries is
the "Escher Web Sketch" Java program of Wes Hardaker and Gervais Chapuis 



Analysing a 3D solid

e.g. Graphite = a staggered arrangement of stacked hexagonal layers

Perspective: Clinographic views of solids

Projection onto a Plane: Plan views of solids

GRAPHITE

 

Unit Cell Dimensions

* a, b and c are the unit cell edge lengths



*  a, b and g are the angles (a between b and c, etc....)

 

Counting Atoms in 3D Cells

Atoms in different positions in a cell are shared by differing
numbers of unit cells

Vertex atom shared by 8 cells Þ 1/8 atom per cell 

Edge atom shared by 4 cells Þ 1/4 atom per cell 

Face atom shared by 2 cells Þ 1/2 atom per cell 

Body unique to 1 cell Þ 1 atom per cell 

On combining 7 Crystal Classes with 4 possible unit cell types
Symmetry indicates that only 14 3-D lattice types occur

 

The 14 possible BRAVAIS LATTICES 

{note that spheres in this picture represent lattice points, not atoms!}



Examine the 14 Bravais Lattices in Detail

Cubic-P, Cubic-I, Cubic-F, Tetragonal-P, Tetragonal-I, Orthorhombic-P, Orthorhombic-I,
Orthorhombic-F, Orthorhombic-C, Hexagonal-P, Trigonal-P, Monoclinic-P,

Monoclinic-C, Triclinic-P

If you have the Chemscape Chime Plug-in you can manipulate the 14 Bravais lattices at
the University of Texas, Austin

Combining these 14 Bravais lattices with all possible symmetry
elements 



230 different Space Groups

For applications of different geometry lattice theories to simple structures see:-

Russell Chu’s views of solids as interpenetrating ccp and hcp lattices, including
stereoview pictures. 
Scott Childs’s application of Synergetic Geometry to crystal structure description 

1926 Goldschmidt proposed atoms could be
considered as packing in solids as hard spheres

This reduces the problem of examining the packing of like atoms to that of examining the
most efficient packing of any spherical object - e.g. have you noticed how oranges are
most effectively packed in displays at your local shop?

 



CLOSE-PACKING OF SPHERES

A single layer of spheres is closest-packed with a HEXAGONAL
coordination of each sphere

A second layer of spheres is placed in the indentations left by the
first layer

space is trapped between the layers that is not filled by the
spheres 

TWO  different types of HOLES (so-called INTERSTITIAL
sites) are left 

OCTAHEDRAL  (O) holes with 6 nearest sphere neighbours 

TETRAHEDRAL  (T±) holes with 4 nearest sphere
neighbours 



 

{P = sphere, O = octahedral hole, T+ / T- = tetrahedral holes)

When a third layer of spheres is placed in the indentations of the
second layer there are TWO choices

The third layer lies in indentations directly in line (eclipsed) with



the 1st layer 

Layer ordering may be described as ABA 

The third layer lies in the alternative indentations leaving it
staggered with respect to both previous layers 

Layer ordering may be described as ABC 

Close-Packed Structures

The most efficient way to fill space with spheres

Is there another way of packing spheres that is more space-efficient?



In 1611 Johannes Kepler asserted that there was no way of packing equivalent spheres at
a greater density than that of a face-centred cubic arrangement. This is now known as the

Kepler Conjecture.

This assertion has long remained without rigorous proof, but in August 1998 Prof.
Thomas Hales of the University of Michigan announced a computer-based
solution. This proof is contained in over 250 manuscript pages and relies on over 3
gigabytes of computer files and so it will be some time before it has been checked
rigorously by the scientific community to ensure that the Kepler Conjecture is indeed
proven!

An article by Dr. Simon Singh © Daily Telegraph, 13th August 1998 

 

Features of Close-Packing

Coordination Number = 12 

74% of space is occupied 

Largest interstitial sites are:- 
octahedral (O) ( r = 0.414) ~ 1 per sphere 
tetrahedral (T±) (r = 0.225) ~ 2 per sphere 

Simplest Close-Packing Structures

ABABAB .... repeat gives Hexagonal Close-Packing (HCP) 

Unit cell showing the full symmetry of the arrangement is
Hexagonal 

Hexagonal: a = b, c = 1.63a, a = b = 90°, g = 120° 
2 atoms in the unit cell: (0, 0, 0) (2/3, 

1/3, 
1/2) 

ABCABC.... repeat gives Cubic Close-Packing (CCP) 

Unit cell showing the full symmetry of the arrangement is
Face-Centred Cubic 

Cubic: a = b =c, a = b = g = 90° 
4 atoms in the unit cell: (0, 0, 0) (0, 1/2, 

1/2) (
1/2, 0, 1/2)



(1/2, 1/2, 0) 

 

2 atoms in the unit cell (0, 0, 0) (2/3, 1 /3, 1 /2)

View a Quicktime HCP Movie or  Quicktime HCP VR scene



4 atoms in the unit cell (0, 0, 0) (0, 1 /2, 1 /2) (1 /2, 0, 1 /2) (1 /2, 1 /2,

0)

View a Quicktime CCP Movie or  Quicktime CCP VR scene

The most common close-packed structures are



METALS

A NON-CLOSE-PACKED structure adopted by some metals is:-

 

View a Quicktime BCC Movie or  Quicktime BCC VR scene

68% of space is occupied

Coordination Number ?

8 Nearest Neighbours at 0.87a 

6 Next-Nearest Neighbours at 1a



Polymorphism: 
Some metals exist in different structure types at ambient temperature &
pressure 
Many metals adopt different structures at different temperature/pressure  

Not all metals are close-packed 

Why different structures? 
residual effects from some directional effects of atomic orbitals 

Complex to predict structures 

BCC clearly adopted for low number of valence electrons 
Best explanations are based on Band Theory of Metals 

Initially applied by Coulson & Hume-Rothery in Oxford 
Still actively researched in Oxford by Prof. D.G. Pettifor using Density
Functional Theory (DFT). See his book "Bonding & Structure of
Molecules & Solids", OUP, 1995 

In cases of polymorphism BCC is the structure adopted at higher temperatures
More Complex close-packing sequences than simple HCP & CCP are
possible 

HCP & CCP are merely the simplest close-packed stacking sequences, others
are possible! 

All spheres in an HCP or CCP structure have identical environments 

Repeats of the form ABCB.... are the next simplest 



There are two types of sphere environment 
surrounding layers are both of the same type (i.e. anti-cuboctahedral
coordination) like HCP, so labelled h 

surrounding layers are different (i.e. cuboctahedral coordination)

like CCP, so labelled c 

Layer environment repeat is thus hchc...., so labelled hc 

Unit cell is alternatively labelled 4 H 

Has 4 layers in the c-direction 
Hexagonal 

The hc (4 H) structure is adopted by early lanthanides 
Samarium (Sm) has a 9-layer chh repeat sequence 

Non-Ideality of Structures 
Cobalt metal that has been cooled from T > 500°C has a close-packed structure
with a Random stacking sequence 
"Normal" HCP cobalt is actually 90% AB... & 10% ABC... - i.e. non-ideal
HCP 

Many metals deviate from perfect HCP by "Axial Compression" 

e.g. For Beryllium (Be) c/a = 1.57 (c.f. ideal c/a = 1.63) 

Coordination is now [6 + 6] with slightly shorter distances to neighbours
in adjacent layers 

 

Other Systems may be Classified as having Similar Structures 



CrystalMaker file for C60

Further information about Fullerenes

Location of Interstitial Holes in Close-Packed
Structures
The HOLES in close-packed arrangements may be filled with atoms of a different sort.

It is therefore important to know:-

How holes are displaced in space relative to the positions of the spheres 
How holes are displaced relative to each other 

The hole positions are shown relative to the unit cells below

The structures possible from filling them are considered in Lecture 2

 

CCP Octahedral holes------------------------------------------------HCP Octahedral holes



CCP Tetrahedral holes------------------------------------------------HCP Tetrahedral holes

Solids Page Lecture 1 Lecture 2 Lecture 3 Lecture 4 Problems Set Help
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