As the first and most simple system of vibrating mass points, we consider the free vibration

of two mass points, fixed to two walls by springs of equal spring constant, as is shown in
the Figure 7.1.

The two mass points shall have equal masses. The displacements from the rest positions
are denoted by x; and x;, respectively. We consider only vibrations along the line connecting
the mass points.

1 1 1 £ +ha
When displacing the mass 1 from the

rest position, there acts the force —kx; by the
spring fixed to the wall, and the force +k(x; — x,) by the spring connecting the two mass
points. Thus, the mass point 1 abeys the equation of motion

mx, = —kx; + k(xy — x1), (7.1a)
Analogously, for the mass point 2 we have
Wl).C'Q = —kX2 - k(XQ — xl). (7.1b)

Figure 7.1. Mass points coupled by springs.
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We first determine the possible frequencies of common vibration of the two particles. The
frequencies that are equal for all particles are called eigenfrequencies. The related vibra-
tional states are called eigen- or normal vibrations. These definitions are correspondingly

xY7

generalized for a N-particie system. We use the ansaiz
x| = A cos wt, Xy = A cos wt, (7.2)

i.e., both particles shall vibrate with the same frequency w. The specific type of the ansatz,

be it a sine or cosine function or a superposition of both, is not essential. We would always

get the same condition for the frequency, as can be seen from the following calculation.
Insertion of the ansatz into the equations of motion yields two linear homogeneous

equations for the amplitudes:

A (—ma? + 2k) — Ak =0,
— Ak + Ay(—ma? + 2k) = 0.

(7.3)

The system of equations has nontrivial solutions for the amplitudes only if the determinant
of coefficients D vanishes:

2
—ma? + 2k —k
p=|"% = (—ma? +2k)% — k2 = 0.
—k —maw?* + 2k

We thus obtain an equation for determining the frequencies:

The positive solutions of the equation are the frequencies

3k [k
= \/ — and wy = \/ - .
m
These frequencies are called eigenfrequencies of the system; the corresponding vibrations

are called eigenvibrations or normal vibrations. To get an idea about the type of the normal
vibrations, we insert the eigenfrequency into the system (7.3). For the amplitudes, we find

3k
Al=—A; for w =,/ —
m
and
k
A=A for wy =, —.
m

The two mass points vibrate in-phase with the lower frequency w,, and with the higher
frequency w; against each other. The two vibration modes are illustrated by Figure 7.2.

The number of normal vibrations equals the number of coordinates (degrees of freedom)
which are necessary for a complete description of the system. This is a consequence of
the fact that for N degrees of freedom there appear N equations of the kind (7.2) and N
equations of motion of the kind (7.1a),(7.1b). This leads to a determinant of rank N for w?,
and therefore in general to N normal frequencies. Since we have restricted oursclves in the
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w4: opposite-phase vibration wp: in-phase vibration w1 > wo.

Figure 7.2.

example to the vibrations along the x-axis, the two coordinates x; and x, are sufficient to
describe the system, and we obtain the two eigenvibrations with the frequencies w;, w,.
In our example, the normal vibrations mean in-phase or opposite-phase (= in-phase with
different sign of the amplitudes) oscillations of the mass points. The amplitudes of equal
size are related to the equality of masses (m, = m,). The general motion of the mass points
corresponds to a superposition of the normal modes with different phase and amplitude.
The differential equations (7.1a),(7.1b) are linear. The general form of the vibration is

therefore the superposition of the normal modes. It reads

x1(t) = Cycos(wit + @) + Cy cos(wat + @),

7.4
x2(¢) = —Cj cos(wt + ¢1) + C cos(wy + ¢3). (7-4)

Here, we already utilized the result that x; and x, have opposite-equal amplitudes for

a pure w,-vibration, and equal amplitudes for pure w,-vibrations. This ensures that the

special cases of the pure normal vibrations with C; =0, C; # 0and C; =0, C, # 0 are

included in the ansaiz (7.4). Equation (7.4) is the most general ansatz since it invoives 4

free constants. Thus one can incorporate any initial values for x,(0), x2(0), %;(0), %2(0).
For example, the initial conditions are

x1(0) =0, x2(0) = a, %1(0) = %2(0) = 0.

To determine the 4 free constants Cy, Cs, ¢, ¢,, we insert the initial conditions into the
equations (7.4) and their derivatives:

x1(0)= Cycosg; + Cycosp; =0, (7.5)
x2(0) = —=C cos ¢, + Crcos 9 = a, (7.6)
x1(0) = —Cw; sing; — Cowy sing, =0, (7.7)
x20) = Ciw;sing; — Cowy sing, = 0. (7.8)

Addition of (7.7) and (7.8) yields
Cysing, = 0.
Subtraction of (7.7) and (7.8) yields

Cising; =0.
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~

From addition and subtraction of (7.5) and (7.6), it follows that
2Cycos¢g; =a and 2Cicos¢ = —a.

Thus, one obtains

a . [ w1 — w2 . [w1+ o
x1(t) = ;(—005w1t+c0sa)2t) = asin (—)tsm —) t,
~ \

o) 9
Z \ 2
a w — w2 wy + Wy
x2(t) = —(coswit + coswyt) =acos | ———— Jtcos| —— }¢.
2 2 2
art — 0 v+ (M =0 v~-(D) — a2 ac reanired The cecond macae nhiacke at the firet one and
Hor ! vixip(Y) U, X2 a, as required. 1nh€ second mass piucks at the nrst one and

<
\\V7 S
causes it to vibrate. These are beat vibrations (see Example 7.2).

Example 7.1: Exercise: Two equal masses coupled by two equal springs

Solution

Two equal masses move without friction on a plate. They are connected to each other and to the wall
by two springs, as is indicated by Figure 7.3. The two spring constants are equal, and the motion shall
be restricted to a straight line (one-dimensional inotion).

Find

(a) the equations of motion,

(b) the normal frequencies, and
-\ T nimnsalitns T vt in af i 2o vcennnl crilaawntinms damd tha catnatin]l onloel on
{c) the ampiiitiae raiios Oi i€ normal viorations dana ine genetai soiution

(a) Let x; and x; be the displacements from the rest positions. The equations of motion then read

mi, = —kx; + k(x; — x1), (7.9)
m¥, = —k(x, — x). (7.10)

(b) For determining the normal frequencies, we use the ansatz

x| = Ajcoswt, Xy = A, coswt

3

x~
A
A
x~
~
S
-
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and thereby get from (7.9) and (7.10) the equations

2k —mw* A, — kA, =0,
7 44\
.11

From the requirement for nontrivial solutions of the system of equations, it follows that the determinant
of coefficients vanishes:

12k — mo* -k |
D = =0.
—k k —mw?

From this follows the determining equation for the eigenfrequencies,

with the positive solutions

V5+1 [k V3i-1 [k
2 Vm 4 2=y

1 =

w] > w3.

(c) By inserting the eigenfrequencies in (7.11) one sees that the higher frequency w; corresponds
to the opposite-phase mode, and the lower frequency w; to the equal-phase normal vibration:

1 k 5-1
with a):l)‘ = 5(3 + «/5)—, it follows from (7.11) that A, = — V5 1
m
1 k 5+1
with w3 = 5(3 —+/5)=, it follows from (7.11) that A; = v 2+ Aj.
m

s are fixed in different ways, we find ampiitudes of different magnitudes.
The general solution is obtained as a superposition of the normal vibrations, using the calculated
amplitude ratios:

x1(t) = Cicos(wit + @) + Cy cos(wyt + @2),
V5-1 V541

5 Cicos(wit + ¢1) + >

The 4 free constants are determined from the initial conditions of the specific case.

x(t) = —

C; cos(wat + ¢7).

Example 7.2: Exercise: Coupled pendulums
Two pendulums of equal mass and length are connected by a spiral spring. They vibrate in a plane.
The coupling is weak (i.e., the two eigenmodes are not very different). Find the motion with small
amplitudes.
Solution The initial conditions are
x1(0) =0, x0) = A, %(0) = %(0) = 0.
We start from the vibrational equation of the simple pendulum:

mid = —mgsina.
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Figure 7.4.

I
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Figure 7.5.

For small amplitudes, we set sina = « = x /[ and obtain

the equations

o l’
¥ =—2x — —(x —x),
l m
k
¥, = —E-’Cz + —(x) — x2). (7.12)
l m : ’

This coupled set of differential equations can be decoupled by introducing the coordinates
U=x—x and Uy = X1 + xa.

Subtraction and addition of the equations (7.12) yield

. k k
U = —%u‘l —2;141 = — (% +2m>u1,
122 = —Euz.

l

These two equations can be solved immediately:

—
N
—h
W

-
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where w; = /g/l+2(k/m), w, = /g/I are the eigenfrequencies of the two vibrations. The

coordlnatesul, u, are called normal coordinates. Normal coordinates are often introduced to decouple

a coupled system of differential equations. The coordinate u; = x; — x, describes the opposite-phase
Norm

mal mode proceeds as if the

and s — x: - x- the eanal.nhace normal vikration Tha aniial

ana ¥ = x; T+ x; e equai-pnase normai vioration. 1nc equai- p 1aS€ 110
coupling were absent.

For sake of simplicity, we incorporate the initial conditions in the system (7.13). For the normal
coordinates we then have

u(0) = -4, uz(0) = A, u1(0) =u2(0) =0
Insertion into (7.13) yields
A =—A, A=A, B, =B,=0,
and thus,
Uy = —Acoswit, u; = A coswst.

Returning to the coordinates x; and x;:

1 A
X = E(ul +uy) = 5(—cosw1t+coswzt),

i A
X = 5(142 —u) = E(COS“’II + cos wyt).

After transforming the angular functions, one has

. W) — wy . W) + wy
X1 :Asm(l—t) sin (1——1‘),
2 2
N\ / \ /

W) — Wy W) + w
= A —_—t —1].
cos ( 5 ) cos ( 5 )

We have presupposed the coupling of the two pendulums to be weak, i.e.,

[e gk
CENT IS

hence, the frequency w; —w; is small. The vibrations x; (¢) and x, (¢) can then be interpreted as follows:
The amplitude factor of the pendulum vibrating with the frequency w; + w, is slowly modulated
by the frequency @, — w,. This process is called beat vibration. Figure 7.6 illustrates the process.
The two pendulums exchange their energy with the amplitude modulation frequency w; — w,. If one
pendulum reaches its maximum amplitude (energy), the other penduium comes to rest. This complete
energy transfer occurs only for identical pendulums. If the pendulums differ in mass or length, the

energy transfer becomes incomplete; the pendulums vary in amplitudes but without coming to rest.
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Figure 7.6.

The vibrating chain’

We consider another vibrating mass system: the vibrating chain. The “chain” is a massiess
thread set with N mass points. All mass points have the mass m and are fixed to the thread
at equal distances a. The points 0 and N + 1 at the ends of the thread are tightly fixed and
do not participate in the vibration. The displacement from the rest position in y-direction is
assumed to be relatively small, so that the minor displacement in x-direction is negligible.
The total string tension T is only due to the clamping of the end points and is constant over
the entire thread.

If one picks out the vth particle, the forces acting on this particle are due to the displace-
ments of the particles (v — 1) and (v + 1). According to Figure 7.7 the backdriving forces

are given by
Fv—l = —(T . sina)ez,
Fyp1 = —(T -sin )e;.

Since the displacement in y-direction is small by definition, « and f are small angles, and

11t is recommended that the reader go through Chapter 8 (“The Vibrating String”) before studying this section.
The concepts presented here will be more easily understood, and the mathematical approaches will be more

tonmormanant
transpareit in their ph]a cal motivation.



THE VIBRATING CHAIN

B

(0
AN
T T
V

A »
v-1 /.:\ v+l
_‘/ \.__

1 |

91

| 2 IS
| | | \N+1

0 e a (v-1)a va (v+la
Figure 7.7.
hence, one has to a good approximation

sineg =tana and sinB = tanp.

From Figure 7.7, one sees that

Y = Yv-1 Yv = Yv+1
tang = —— and tanf="—"-——.
a a
Hence, the forces are given by

F,  —_T (y_&) e,
a

/ \

B = o (2221

The total backdriving force is the sum F,_; + F, 1, i.e., the equation of motion for the

particle reads

Lo or (22 (22)

or
d*y,
dt?

T
= — -1 — 2y, + Yo+1)-
ma

(7.14)

Since the index v runs from v = 1 to v = N, one obtains a system of N coupled differential
equations. Considering that the endpoints are fixed, by setting for the indices v = 0 and

v=~N+1

Yo=0 and yyi; =0 (boundary condition),
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one obtains from the differential equation (7.14) with the indices v = 1 and v = N the
differential equation for the first and last particle that can participate in the vibration:

d2y1 _ T - .
m—g = ;(_2)’1 + y2), o
dzyN 7 (7.15)
mw = Z(yN—l - 2yn).

We now look for the eigenfrequencies of the particle system, i.e., the frequencies of
vibration common to all particles. To get a determining equation for the eigenfrequency

vlauUil VUGV W Qs paiuibaes. 2y a QO cyualioll 1 LG

w,, we introduce in equation (7.14) the ansatz
y, = A, cos wt. (7.16)

We obtain
5 T
—mw” - A, -coswt = —(A,_1 — 2A, + A,+1) cos wt,
a

and after rewriting,

2

—AV_1+(2—’"“"’>AU—AV+1=0, v=2,...,N—1. (7.17a)
By insertion of (7.16) into (7.15), we get the equations for the first and the last vibrating
particle:

(2—'"‘;‘” )A1 — Ay =0,
e aw?\ ~ (7.17b)
N-1 k T ) =

With the abbreviation

2T — maw?

—_— = C, (7.18)

T

the equations (7.17a) and (7.17b) can be rewritten as follows:

—A1+cAy— Az =0,
— Ay +cA3— A4 =0,

—Any_1+cAy =0
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This is a system of homogeneous linear equations for the coefficients A,. For any
nontrivial solution of the equation system (not all A, = 0) the determinant of coefficients
must vanish. This determinant has the form

c —1 0 00 0o 0 O
-1 c —1 00 0 0 O
0 -1 c -1 0 0 0 0
DN s
0 0 O 0 -1 c —1
0o o0 0 00 0 -1 c
It has N rows and N columns. The eigenfrequencies are obtained as solution of the
equation
Dy =0.

Expanding Dy with respect to the first row, we get

c -1 0 0 0 O
-1 c -1 0o 0 O
0 -1 c 0 0 O
0 0 -1 0 0 O
Dy =c¢

0 0 O -1 0 0
6 06 O c -1 O
0 0 O -1 c -1
0 0 0 0 -1 c

-1 -1 0 0 O

0 c -1 0 0

0 -1 —c - 0 O

0 0 -1 c 0 O

+

o 0 0 0 -1 0

o 0 0 o0 c -1

¢ ¢ ¢ 0 -1 c
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The left-hand determinant has exactly the same form as Dy, but is lower by one order
(N — 1 rows, N — 1 columns). It would be the determinant of coefficients for a similar
system with one mass point less, i.e., Dy_;. The right-hand determinant is now expanded

g £t ~ - o
Wlul ICbPCbL to LllC nrst LUlUllul WIlth lc db to

c —1 0 - 0
—1 c —1 0
0 -1 c
Dy =cDy_y +(—1) -
0 0 O -1 0
0 0 O c -1
0 0 0 -1 ¢

The last determinant is just Dy_,. Hence we get the determinant recursion equation

Dy =cDy_1 — Dy_», if N >2. (7.19)
Moreover,
1] 5
Dy=|c]=c¢c and D, = ) =c“—1. (7.20)
— c

By setting N = 21in (7.19), we recognize that (7.19) combined with (7.20) is satisfied only
if we formally set

Do =1. (7.21)

Our problem is now to solve the determinant equation (7.19). We use the ansatz
Dy = p",

where the constant p must be determined. Insertion into (7.19) yields

Y = cpN—l — pN2,

and after division by pV =2
ct/c2—4
5 :

The mathematical possibility p¥ 2 = 0 that leads to p = 0 does not obey the boundary
condition Dy = 1 and is therefore inapplicable. Substituting ¢ = 2 cos ®, we obtain for p

p=c0s® £ +/cos2@® — 1 =cos® % isin® = ¢®

The solutions of equation (7.19) are then

pPP—cp+1=0 or p=

N _ ( IO\N __ _iN® __ ___ ar
p =) =e = COS iV

n
N
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and

Dy = (e = ¢7N® = cos N® — i sin N®.

Since the equation system (7.19) is homogeneous and linear, the general solution is a linear
combination of cos N® and sin N®

Dy =GcosNO® + HsinN® (7.22)
Since Dy = 1 and D; = ¢ = 2cos ® (see above), G and H are determined as

G =1, H =cot®,
so that

Dy = cos NO + sin N.® cos ® _ sin(N + 1)9;
sin ® sin®
because sin ©@ cos NO + sin NO cos ® = sin(N + 1)O.

For any nontrivial solution of the equation system we must have Dy = 0, i.e., Dy must
vanish for all N; it follows that

sin((N + 1)©) =0,

or
_ nmw
”_N—+—1’

b

P %4

n=1,...,N. (7.23)

1)

n = 0 drops out since it leads to the solution ®y = 0, and hence to Dy = N + 1 # 0, and
thus does not lead to a solution of the equation Dy = 0. For ¢ we then get according to

(7.18):
w’ma nmw
c=2— =2cos ,
N+1
and w is calculated from
2T nmw
2 2
= =—11-—cos 7.24a
i Rayn ( N+ 1) ( )
2T
O =+ |1 — cos —— (7.24b)
Y may N+1

These are the eigenfrequencies of the system; the fundamental frequency is obtained for

n = 1 as the lowest eigenfrequency. There are exactly N eigenfrequencies, as is seen from
(723):Forn> N+ 1,wesetn = (N + 1) + 7 and find

) ~ SO T Qlis 128

@

=7‘[—+—

n
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If one inserts the above expression into equation (7.17a) and (7.17b) for w and c, respec-
tively, one obtains for the amplitudes of the normal vibration

A A nx _ A __n
A, T 2A LUDN+1 vl =Y
nmw
24" cos N1 A, (7.25)

nmw
24 cos Tl Ay,

where the A, depend on n (A, = Af)”)). The system of equations (7.25) for the A, is
the same as that for the determinants Dy (equation (7.19)), with the same coefficient
¢ =2cosna /(N + 1) = 2cos ®,. Only the boundary conditions (7.25) do not correspond
to those for the Dy (see equations (7.20) and (7.21)). The general solution for the coefficients
A, is therefore obtained from equation (7.22) with at first arbitrary coefficients E™:

VRN () . () . .
AV = E|" cosv®, + E,” sinv®,,

or, in detail,

nmv nv
A" = EM™ cos ——— + E gin —

0 N+4+1 -~ N+1
Since the points v = 0 and v = N + 1 are tightly clamped, for all eigenmodes n we have
Yo =yn+1 =0, 0r

(7.26)

AY = A\, =0 (boundary condition).
Then one obtains for v = 0 in (7.26):

. . nmvy
EE") =0, ie, Al()”) = Eé") sin Nl
After insertion into equation (7.16), one gets
}’1()”) = Eé") sin A;mvl COS Wy !t. (7.27)
+

If one inserts y, = B, sin wt instead of equation (7.16) into equation (7.14), one determines
B, by the same method as A, and obtains

(ESY =0);

B = E,"” sin

y = Eé") sin —2_ cos Wyt (7.28a)
Y N+1
and
™ = £ gin Y inwmt (7.28b)
yl) 4 J +1 (l’l) * "
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The sum of these individual solutions yields the general solution, which therefore reads

. hmy .
= E s ——— (Ei") SIN Wyt + Eé") cos w(,,)t)
n=1 '

N . nmwty .
= E sin (an sinwyt + b, cos wpyt), (7.29)
— N +1
where the constants Eé") and E i") were renamed b, and a,, respectively. They are deter-
mined from the initial conditions.
PR T bl m o o LoV e O al 13 ta O NP | . N
lllU cquauuu Ul ulU vwlauug L Ord miust 10110w 11oi1m tne Imit 10r /v —» oo andad —» v
(continuous mass distribution):

. nmy . hmav .

sin =sin —————— (x, = av takes only discrete values)

N+1 (N + Da
—sin M9 _ Na s the length of the chord)
[+a
. . mwnx’ TRX .

lim (sm ) = sin — (x continuous).
N—>co l+a )

a—0

“’%n) becomes (expansion of the cosine in (7.24a) in a Taylor series):

2T 1 ( Y \ T (nm)?
2 ~
C()(n)—'—(l—l AT - ~ T AT 1 2.2

\N +1/ / (m/fa)(N + 1)

and with 0 = m/a = mass density of the chord,
|1m

( T (nm)? \ _ T (nm)?
v \o(N+172a2) o2’

ie.,

T nm
Wy =+ ——.
(n) o 1
Hence, one has as a limit

yu(x) = sin (2) [a,, sin (\/z = t\) + by cos (\/zgz)] . (7.30)
LS s

(o] 1 L

This is the equation for the nth elgenmode of the vibrating chord (I is the chord length). It

th "t A £F. nAd g1l than ha A ad
will be derived once agaln in the next chapter in a different v way ana wiu uien o€ Qiscusseda

in more detail.

Exampie 7.3: Exercise: Eigenfrequencies of the vibrating chain

olving the determinant equation (7.19), we have made a mathematical restriction for ¢ by
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Solution

Show that for the cases
@ [c] =2,
) c< -2

the eigenvalue equation Dy = 0 cannot be satisfied. Clarify that thereby the special choice of the
constant ¢ is justified.

(@)

D, =cD,_y — D,_,, Dy =c=42, Dy =1 (7.31)
We assert and prove by induction

ID,| > | Dyl (7.32)

Induction start: n = 2, |Dy| =1, |Dy| =2, |D,| = 3.
Induction conclusion fromn — 1, n — 2 to n:

|Dy* = 4|Dpo1|* £ 4|Dpei || Dyal + |Dya
> 4|Dy_1|* + |Dpea|* — 4|Dyi || Dps

= Dyl = |Duet? 2 3|Ducit P + | Dual® — 41 Dyy|| Dyl
According to the induction condition,

|Dp—y| = |Dn_2| +¢€¢ with €>0.

From this, it follows that

= |Dp| = |Dyyl. (7.33)

D, | monotonically increases in n, and | D; |
be satisfied. = 0 and @ = /2T /ma are n

— /&4 jieh QiT

=2 > 0, we have |Dy| > 0. Therefore Dy = 0
i e vibrating chain.

(b) By inserting the ansatz D, = Ap", p # 0, we also find the solution of the recursion formula
D_,! = CDn—l — D,l_z, D1 =, D() = ].Z

=l(c+(r-4") <0
P 2( ) 0> p > ps. (7.34)
p=1(c-C-9H")<0

The general solution for incorporating the boundary conditions Dy = 1, D; = ¢ reads

n
Ly

A n A n
1Py T Ap;-

~
w

o~



With Dy = 1, D; = c, it follows that

AL+ A =1,
A s o A ,
> (c+ (=) + > (c=(* =) =c,
. cr@—4' —c+ (2 — 412
2c? — 412 2Ac* =412

One then has

_IC+(62—4)1/2 ., L=V —c
Ty @mmr BTy T @y B

1 n+1 n+l1
- <c2—4>1/2(”‘ IR

To determine the physically possible vibration modes, we had required that Dy = 0:

/pz\N+1

DNfG = _— f}.
\Pl)

)

o
w

(7.36)

(7.37)

But now 0 > p; > p», hence (p,/p1)¥*' > 1. Thus, for the case ¢ < —2 eigenfrequencies do not

exist too.

These supplementary investigations can be summarized as follows: The possible eigenfrequencies

of the vibrating chain lie between 0 and /27 /ma:

A7
21

0<lwl < \/—
ma

Example 7.4: Exercise: Vibration of two coupled mass points, two dimensional

Two mass points (equal mass m) lie on a frictionless horizontal plane and are fixed to each other and

to two fixed points A and B by means of springs (spring tension 7', length /).

(a) Establish the equation of motion.

(b) Find the normal vibrations and frequencies and describe the motions.

AY) k m
M
k f | Dk
Y1 Y2
| | .
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Solution

t $ $
v
w? =3k wg =k
Figure 7.9.

(a) For the vibrating chain with n mass points, which are equally spaced by the distance /, the
equations of motion
d2yN
dr?

were established. For the first and second mass point, we have

T
=ﬁ(nyl"2yN+yN+l) WN=1,...,n

V1 = k(o — 2y1 +y2) = k(y2 — 2y1),
o =k —2y2 +y3) = k(y1 —2y2) (7.40)

with k = T/ml; the chain is clamped at the points A and B, i.e., yo = y3 = 0.

(b) Solution ansatz: y, = A; coswt, y» = A;coswt (w = eigenfrequency). Insertion into (7.40)
yields

2k — ) A; — kA, =0,
(2k — w*)A; — kA, =0. (7.41)

To get the nontrivial solution, the determinant of coefficients must vanish, i.e.,

|7k — w? —k l
D= =0;
—k 2k — &

ie., w* + 3k* — 4kw? = 0, from which it follows that w? = 3k, w3 = k.

Insertion in (7.41) yields A; = A, for w, and A; = —A; for w,. This is an opposite-phase and an
equal-phase vibration, respectively. We note that the vibration with the higher frequency has opposite
phases and a “node,” while the vibration with lower frequency has equal phases and a “vibration
antinode.”

Example 7.5: Exercise: Three masses on a string

Solution

Three mass points are fixed equidistantly on a string that is fixed at its endpoints.

(a) Determine the eigenfrequencies of this system if the string tension T can be considered constant

(this holds for small amplitudes).

(b) Discuss the eigenvibrations of the system. Hint: Note Problems 8.1 and 8.2 in Chapter 8.

(a) For the equations of motion of the system, one finds straightaway

. 2T T
mx; + (—E) Xy — (Z‘) x =0,
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(]
—h

’ ’

—L———L——L

Figure 7.10.

" 2T T T
mx; + (T) X2 — (Z)X3 - <z) X = 0, (7.42)
N 27 T ~0
mx3+(L)x3—(L X2 = 0.

Assuming periodic oscillations, i.e., solutions of the form

v

xi = Asin(wt +v¥) ¥ = —w?Asin(wt + V),
X, = Bsin(wt + ¥) Xy =

Csin{wt +¢) ¥ = —’Csin(wt + ),

—w?Bsin(wt + V),

X3 =

we get after insertion into equation (7.42)
2T T
(3 -em)a-(7)5=0
\ L / \&/

T 2T T
—-[=-]A — —o'm|B-(=|C=
(z)2+ (% “’”’) (L) >

T 2T
—=)B+|——-*'m)C=0.
L L

As in Problem 8.2, one gets the equation for the frequencies of the system from the expansion of the
determinant of coefficients:

Lm\?> Lm\? 10L
2V o) e Oy
\ £ / \ 1 / 1

(7.43)

/Lm\> 10Lm
kT) 6( ) Q+ Q-4=0 (7.44)
with = w?. This cubic equation with the coefficients
(Lm\’ b— 6 Em) 2 10Lm Je 4
a = N = — N = ’ —_ -
( T ) T ) ‘=77
can be solved by Cardano’s method.
With the substitutions
b 19 ¢ T? 260 1bc d
YESty WEREt = MG MEynaT3a ta=0

27a®> 3a®> a
we get g° + p” < 0, i.e., there are three real solutions which by using the auxiliary quantities

b4 T
20, y=-2/"peos (¥ -Z)=—v2—,
v-=p? \3 3/ Lm

cosQY = —
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1.44,
Al

A

Z 4 v AN

Figure 7.11.

~

Figure 7.12.

— 0= LTI
v = —24/ pcos( + 3)—
v3 =24— pcos— «/_—-—

can be calculated as

T 2T T
w; = +/0.6— wz=\/—— w3=\/34——
Lm’ m’ Lm
(b) From the first and third equation of (7.43), one finds f
B B mLaw?
- =92_
A C T

Discussion of the modes:

\

1 *:bw
[\

O,

(7.45)

(1) w = w; = (0.6T/Lm)"/? inserted into (7.45) = B;/A; = B;/C; = l.4or B; = 144, =

1.4C;.

ATl +h
All three masses are deflected in the same direction, wl

amplitudes, and the second mass has a larger amplitude.

(2) w = wy = (2T/Lm)"?* inserted into (7.45) = B /A

second equation of (7 .43). The central mass is at rest, whiie
opposite directions but with equal amplitude.

re the first and third mass have equal

= B,/C, =0and A, = —C; from the
c.., - : S ~

Bw=w = (3.4T/Lm)"/? inserted into (7.45) = B3/A; = B3/C3 = —14,ie., A3 =C3 =
—1.4B;. The first and the last mass are deflected in the same direction, while the central mass vibrates

[UC IR LY., SRR, LU DRSPS RSP S LIS Py
with difrerent ampiituge i tn€ Opposite aireCtivil.

JANIER AN

N/
N

Figure 7.13.
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Figure 7.14.

The system discussed here has three vibration modes with 0, 1, and 2 nodes, respectively. For a
system with n mass points, both the number of modes as well as the number of possible nodes (n — 1)
increases. A system with n — oo is called a “vibrating string.”

A comparison of the figures clearly shows the approximation of the vibrating string by the system
of three mass points.

Example 7.6: Exercise: Eigenvibrations of a three-atom molecule

Discuss the eigenvibrations of a three-atom molecule. In the equilibrium state of the molecule, the
two atomns of mass m are in the same distance from the atom of mass A4. For simplicity one shouid
consider only vibrations along the molecule axis connecting the three atoms, where the complicated
interatomic potential is approximated by two strings (with spring constant k).

(a) Establish the equation of motion.
(b) Calculate the eigenfrequencies and discuss the eigenvibrations of the system.

Solution (a) Let x1, x2, x3 be the displacements of the atoms from the equilibrium positions at time ¢. From
Newton’s equations and Hooke’s law then it follows that

m)'c'l = —k(x, —.X'z),

m M m

iy

— 00000 —(O—T0000—@

Figure 7.15.
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m wi m
I k ' k ! 2
X =
X1 Xy X3

1""1’)162 = —k(X2 - x3) - k(J‘L‘Z - xl) = n()t‘; +xl -

m)'c'; = —k(x3 - xz).

(b) By inserting the ansatz x; = a,coswt, X, = a;coswt, and x3 = a3 coswt into equation
(7.46), one obtains

(mw* —k)a, + ka, = 0,
kay, + Me?—2Ka, + kas = O, (7.47)
kay, + (mw®—k)yaz = 0.

The eigenfrequencies of this system are obtained by setting the determinant of coefficients equal

tn Farn:
W Luiv.

me? — k k 0 ’
k Mo? — 2k k =0 (7.48)
0 k me? — k‘
From this, it follows that
(mw? — k)[w*mM — &* (kM + 2km)] = 0 (7.49)

or
w?*(mw? — k)[w*mM — k(M +2m)] = 0.

By factorization of equation (7.49) with respect to w, one obtains for the eigenvibrations of the
system:

k k 2m
w; =0, w; = ;v w3 = Z 1+ﬁ

Discussion of the vibration modes:

(1) Insertion of @ = w, = 0 into (7.47) yields a; = a, = a3. The eigenfrequency w; = 0 does not
correspond to a vibrational motion, but represents only a uniform translation of the entire molecule:
—> 0> o>,

(2) Inserting @ = w, = (k/m)"/? into (7.47) yields a; = —as, a; = 0; i.e., the central atom is at
rest, while the outer atoms vibrate against each other: <-e o e—.
(3) Inserting = w3 = {k/m(1 + 2m/M)}'/* into (7.47) yields a) = a3, a = —(2m/M)ay, i.e.,

the two outer atoms vibrate in phase, while the central atom vibrates with opposite phase and with
another amplitude: e— <o e—.




A string of length / is fixed at both ends. Thereby appear forces T that are constant in time
and independent of the position. The string tension acts as a backdriving force when the

string is displaced out of the rest position. A string element As at the position x experiences
the force

Fy(x) = =T sin®(x)
in y-direction. At the position x + Ax there acts in y-direction the force

Fy(x + Ax) = Tsin®(x + Ax).
In y-direction, the string element As experiences the total force

Fy =Tsin®(x + Ax) — Tsin®(x). (8.1)
Accordingly, along the x-direction the string element As is pulled by the force

F, =Tcos®(x + Ax) — T cos ©(x).

In a first approximation we assume that the displacement in x-direction shall be zero. A
displacement of the string in y-direction causes only a very small motion in the x-direction.
This displacement is negligible compared to the displacement in y-direction, i.e.,

F, =0.

y A
T
O(x) A\
_‘\_ ! @(“TAX)
T |
X X+ Ax ;c;

Figure 8.i. The siring tension 7.
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106 THE VIBRATING STRING 8

Since we neglect the displacement in x-direction, the only acceleration component of
the string element is given by 32y/dt>. The mass of the element is m = o As, where ¢

represents the line density. From that and by means of equation (8.1) we obtain the equation
of motion:

82
F, = aAsa—tf — Tsin®(x 4+ Ax) — T'sin O (x). (8.2)

Both sides are divided by Ax:
oAsd?y T sin®(x + Ax) — T sin®(x)

= (8.3)
Axdt? Ax
Inserting for As in the left-hand side of equation (8.3)
As =/ Ax? + Ay?,
one has
.
o/ Ax? + Ay? 3%y Ay\“ 9%y
Ax ar? Ax ) 0t?
_ T sin®(x + Ax) — T sin G)(x). (8.4)

Ax
By forming the limit for Ax, Ay — 0 on both sides of equation (8.4), we obtain

/ ay\> 9%y I
U‘v 1+ \5; a7 = Téz(sm@). (8.5)

/

For sin ® we have sin © = tan ©/+/1 + tan* ®. Since tan® = dy/dx (inclination of the
curve), we write
dy/ox
§in® = Yo% (8.6)

J1+ @y/ox)?

By means of relation (8.6) the equation (8.5) can be transformed as follows:

ay 282y ad ( ay/ox \)
o,/1+ (—) —=T—|——. 8.7
, ax ) 9t? 9x \ /14 (3dy/9x)?, ®

N /

In order to simplify the equation, we again consider only small displacements of the string
in y-direction. Then dy/dx <« 1, and (dy/dx)? can be neglected too.
Thus, we obtain

3%y 0 (8y>
—=T— = 8.8
P9 = ax \ox, 88)
or
82y ﬁazy 10 oV
o—=T—= (8.9)

(o]

at? ox



4N7
JTION OF THE WAVE EQUATION 107

We set ¢ = T/o (c has the dimension of a velocity). The desired differential equation
(also called the wave equation) then reads

%y , 9%y [ 9* 1 92

—=c"—=< o |—-——=—)y@&x,1)=0. (8.10)

a7~ < ox2 \ox2 ~ 292 )7V ©10
Solution of the wave eguation

The wave equation (8.10) is solved with given definite boundary conditions and initial
conditions. The boundary conditions state that the string is tightly clamped at both ends
x=0andx =1, 1ie.,

y(0,1) =0, y{,t)=0 (boundary conditions).

The initial conditions specify the state of the string at the time ¢ = O (initial excitation).
The excitation is performed by a displacement of the form f (x),

y(x,0) = f(x) (first initial condition),

and the velocity of the string is zero,

a i

(o}

3 y(x,t) =0 (second initial condition).

=0

For solving the partial differential equation (PDE), we use the product ansatz y(x,t) =
X (x) - T(z). Such an approach is obvious, since we are looking for eigenvibrations. These
are defined so that all mass points (i.e., any string element at any position x) vibrate with
the same frequency. By the ansarz y(x, t) = X (x) - T(t), the time behavior is decoupled
from the spatial one. Thus we try to split the partial differential equation into a function of
the position X (x) and a function of the time 7'(¢). Inserting y(x, ) = X (x) - T(¢) into the

differential eauation (8.10) i

NALRAAN/ANV/EILIQUL V\.luu,l-lull
XTI () =32X" ()T @),

where 32T /31> = T and 32X /3x2 = X”. The above equation can be rewritten as
Tt LX'(x)
— =t L,
O X

Since one side depends only on x and the other side depends on ¢, while x and ¢ are
independent of each ather, there is only one possible solution: Both sides are constant. The
constant will be denoted by —w?,

7= —w? or T+ ’T =0, (8.11)
or
X’ w? ., w?
X - = or X"+ C—ZX =0. (8.12)



The solutions of the differential equations (continuous harmonic vibrations) have the form

T(t) = Asinwt + B coswt,
LW -~ )

X(x) =Csin —x + Dcos —x.
c c

The general solution then reads

y(x,1) = (Asinwt + Bcoswr) - (C sin

S’

w n b aY a) \ I 4n
—X + D COSs —x} . {0-19
C c

The constants A, B, C, and D are determined from the boundary and initial conditions.
From the boundary conditions, it follows for (8.11) that

y(0,t) = 0= D(Asinwt + B coswt).

QI #b — ',\« 3 Lam
O1INCE Uic C)&p S1011 11 U1
simplifies to

o
y(x,t) = Csin —)x(A sinwt + B coswt).
c
With the second boundary condition, we get
y(I,1) = 0 = C sin ~I(A sinwt + B cosor)
c
. w
= 0= Csin—I.
c

This equation will be satisfied if either of the following holds:

(a) C =0, which means that the entire string is not
displaced,
or
(b) sin(wl/c) = 0. The sine equals zero if (w/c)l = nm,ie.,

ifw=w, =nnc/l,wheren=1,2,3,...
(n = 0 would lead to case (a)).

From the boundary conditions, we thus obtain the eigenfrequencies w, = nmc/l of the
string. Since the string is a continuous system, there are infinitely many eigenfrequencies.
The solution for an eigenfrequency, the normal vibration, was marked by the index n. The

equa ation (8 ll\ becomes

. nm . Rnmc nwc
Yu(x,t) = C -sin —I—x (A,, sin Tt + B, cos -l—t) ,
o onmw . nmc ) nmc
Yp(x,1) = sin —l—x (a,, sin —l—t + b, cos Tt) ,
where we set C - A, = a, and C - B, = b,,.
From the initial conditions, we have

‘ nwc . nm nwc
—yn(x, 1) = (0= —sin—x (a,cos —1t — b, s1n—t\| .



NORMAL VIBRATIONS 109

Then
. nm 0
ay - —— -sin—x =
l l
is satisfied for all x only if a, = 0. Thus, the solution of the differential equation is
Yn(x,t) = by, - sin Tnx cos %t (8.14)

The parameter n describes the excitation states of a system, in this case those of the vibrating
string. In quantum physics such a discrete parameter n is called a quantum number.

lnterJectlon If we had selected a negative separation constant in equation (8.11), i.e.,
+o? instead of —w?, we would have arrived at the solution

w w
Y@, 1) = (A + Be™) (Cee* + De™c* ).

The boundary conditions y(O, 1) = y(l, t) = 0 would have led to the conditions

0 |l>

C+ D=0 Ce +De Lo

with the solutions C = D = 0. The string would have remained at rest. But this is not the
desired solution.

Since the one-dimensional wave equation is a linear differential equation, one can obtain
the most general solution, according to the superposition principle, by the superposition
(addition) of the particular solutions:

nmwe s

yx,t) = Tb sm—cos —t = y\b,, sink,x cos wyt.
t 4

nl n=1

The coefficients b, can be calculated from the given initial curve by using the considerations
on the Fourier series (see the next chapter):

y(x,0) = f(x) = gb,, sin g

The calculation of the Fourier coefficients b, will be shown in the next chapter. One then
gets the following general solution of the differential equation:

o [+ 1L \
© [ o , ;
y(x, 1) = Z (7/ f(x')sin e dx’) sinz?cos are . (8.15)
0

n=1 !

Normal vibrations

Normal vibrations are described by the following equation:

Yn(x, 1) = C, sin(k,x) cos(w,t). (8.16)



110

THE VIBRATING STRING 8

For a fixed time #, the spatial variation (positional dependence) of the normal vibration
depends on the expression sin(nwx /1) (for n > 1, sin(nwx /1) has exactly n — 1 nodes).
All mass points (position x) vibrate with the same frequency w,.

At a definite position x, the time dependence of the normal vibration is represented by

the expression cos(nmc/ [)t. The wave numnber k, is define

[

w, NI 21

kh=—=—=—, (8.17)
c [ An
where A, = 21/n is the wavelength.
The angular frequency is defined as follows:
nmc
w, = e =2mv,. (8.18)
Solving the equation (8.18) for v,, we obtain for the frequency
nc
Vn = 57, (8.19)
Ll
i.e., the frequencies increase with increasing index n. By definition,
/_77 (8.20)
c=4/—: .
Vo
c can be interpreted as “sound” velocity in the string, as we shall see below. T is the tension
in the string, o is the mass density. From the equations (8.19) and (8.20) we find
n |T
/_ (8.21)

=g

i.e., the longer and thicker a string is, the smaller the frequency. The frequency increases
with the string tension 7. This agrees with our experience that long, thick strings soun
deeper than short, thin ones. With increasing string tension the frequency increases. This
property is utilized when tuning up a violin.
Multiplication of the wavelength by the frequency yields a constant ¢ which has the
dimension of a velocity:
2l nc . .
ApVp = —— =¢ (dispersion law). (8.22)
n 21
¢ is the velocity (phase velocity) by which the wave propagates in a medium. This can be
seen as follows: If an initial perturbation y(x, 0) = f(x) is given as in Figure 8.2, f(x —ct)
is also a solution of the wave equation (8.10), because with z = x — ¢t we have
af 9f 0z caf 3% f 3% f 9z c282f
—_————— = =, —_— = - — = _—,
dt 9z ot 9z or? 872 9t dz?
and

o o R

ax 0z’ 9x2 92
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1
0 Ny ,
xo Zl i

Figure 8.2. Propagation of a perturbation f(x) along a long string: After the time ¢, the perturbation
has moved away by ct; it is then described by f(x — ct).

Hence,
ia_zf(x ey = Pf _Pf _Pfa—cn
c? 912 c? 972 072 9x2 )

f(x — ct) thus satisfies the wave equation (8.10).
Let the maximum of the perturbation f(x) be at x,. After the time ¢, it lies at

X —ct = xp.

It thus propagates with the velocity

dx

—_— =

dt
along the string, namely to the right (positive x-direction). One can say that the pert
S (x) moves along the string with the velocity

dx )

o C. (8.
The propagation velocity of small perturbations is called the sound velocity. One easily
realizes as above that f(x + cr) is also a solution of the wave equation and represents a
perturbation that moves to the left (negative x-direction). We are dealing here with running
waves, while for the tightly clamped string we have standing waves.

If a string is excited with an arbitrary normal frequency, there are points on the string
that remain at rest at any time (nodes).

The wavelength, the number of nodes, and the shape of normal vibrations can be repre-
sented as a function of the index n (see Figure 8.3).

n Wavelength ~ Number of nodes Figure

[a—y

21 n /a)
2

v \a)
2 l 1 (b)
3 21 2 (©)
— C
3
n gl n—1
n
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fundamental vibration: sin —n’—x cos E;— P

(¢c)

THE VIBRATING STRING 8

7N\

1st harmonic: sin —— cos

/1

=

P
node i V \\/nod<7

2 \/

2nx 2Tct

l

Figure 8.3. The lowest normal vibrations of a string.

) . 3
2nd harmonic: sin
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Example 8.1:

Solution

Exercise: Kinetic and potential energy of a vibrating string

Consider a string of density o that s stretched between two points and is excited with small amplitudes.

eneral the kinetic and potential energy of the string.
(b) Calculate the kinetic and potential energy for waves of the form

"w(x — ct)’
=Ccos| —
y cos . )

A

with 7o = 500 N, C = 0.0im, and x = 0.1 m.

The work which is needed to elongate the string from Ax to Al is

Al
dP = Ty(Al — Ax), — ~ 1.
Ax

(8.24)

(8.25)

_—
o
v
o

-’
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7 a
Al S
;|
v
Il: Yy ,’ ! y+Ay
I S
II : // :
A p a B
«— X > Ax >

Figure 8.4. Displacement and deformation (elongation compression) of the string element Ax.

For small displacements, we have

av\*1” 1 /8y
Al= A2+ A2 = ax |14 (2 ~ax|1+=(2) . (8.27)
ax 2 \ ox
The potential energy for the region x = a to x = b is then
. b2
1 NEAVAN
P=-T — ) dx. 8.2
~To / (ax) x (8.28)

For a wave y = F(x — ct) propagating in a direction, we have

b

T=P= %TO J[ [F’(x - ct)]de, 2 == (8.29)

Hence, the kinetic and potential energy are equal. If a, b are fixed points, then T and P vary with
time. But if we admit that a and b can propagate with the sound velocity ¢, so that

a=A+ct and b=B+ct, (8.30)

then P and 7T are constant:

el o a0 1 aic consiant.

—~
©
w
b

S

B
1
T=P=-T, f(F'(x))Zd,a.c=
2 7J
A

(b)

= C'sin (Zx —a)t)a)
c

U
-
2|
N—.
I
A
Zl
~
o |
>
I
S
-
~
g
—
[«
w
N
N’
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T C2~92 . T, (8.33)

— ——L,Lv W Siny

With the substitution z = (w/c)x — wt for the integral 1, we find

(w/c)r—wt (w/c)r 2n
=< / sin? zdz = < f sin® zdz = < ] sin? zdz (8.34)
a) w 1)
—wt 0 0
cl1 1 oo
=—|-z— -sin(2 = -7

w [22 i ( Z)]O 1)

1T 2C?T;
o T=100p2 8 220 ol (8.35)

22 w A w

One gets the same expression for the potential energy. Insertion of the numerical values yields

(VAV A ]

g
T =P = (0.01)* 7’
001 nOlm

m? ~ 5Nm.

Example 8.2: Exercise: Three different masses equidistantly fixed on a string

Calculate the eigenfrequencies of the system of three different masses that are fixed equidistantly on
a stretched string, as is shown in Figure 8.5. (Hint: For small amplitudes, the string tension T does
not change!)

Solution  From Figure 8.6, we extract for the equations of motion

. (x2 — x1) Xy

L LL 1’
miy = —T Il:(xz le)] _r [(X2;XB)]’

Figure 8.6.
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5
vz

sy =T | 22| -1 [ 7], (8.36)

We look for the eigenvibrations. All mass points must then vibrate with the ¢
therefore start with

r(r

xy = Asin(wt +¢), ¥ = —w’Asin(wt + ¥),
X, = Bsin(wt + ), ¥ = —o’Bsin(wt + ¥),
=Csin(wt +¥), i3 = —w’Csin(wt + ¥).

Hence, after insertion into equation (8.36) one gets

2 T
(—T —2ma)2)A— (—) B =0,
L L

—{Z\\‘ ——mrlz\n_{T\C=0
\L)
—( )B (——3ma))C 0.

For evaluating the eigenfrequencies of the system, i.e., for solving equation (8.37), the determinant
of coefficients must vanish:

_—
©
[&]
~J

~

5 T
(Z,— - Zma)") —z 0
T T T
F \ L T T L
0 —— (2— —3mw )
L L

Expansion of the determinant leads to

22Tm? 19T%m
3 6 4 2
0=6mw ( 7 )a) +( 2 )w

(%)

or
—22Tm? 1977 —473
0=6m393+(—ﬂ\92+(9L2’"\9+{ 3 ), (8.38)
\ L ) \ ) L)
where we substituted © = w?. This leads to the cubic equation
aQ+ b2 +cQ+d =0,
where
P . —22Tm? 19T%m 4 —4713
1= 6m”, b= ———, = ) =70
a om I C L2 L3
It can be transformed to the representation (reduction of the cubic equation)
¥’ +3py+2¢ =0, (8.39)
where
b o 117
=Q+ —=0- ——
YRR TR 9L
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and
10 ¢ 28 _lbc d
3p=—§"?+; and 2q 7703—§Q2 ;
Insertion leads to
71 T2 653 T3
=i A= '
54 L2m? 1458 L3m?

From this, it follows that
g*+p’ <0,

i.e., there exist 3 real solutions of the cubic equation (8.39).

For the case g2 + p* < 0, the solutions y;, y2, y3 can be calculated using tabulated auxiliary
quantities (see mathematical supplement 8.4). Direct application of Cardano’s formula would lead to
complex expressions for the real roots, hence the above method is convenient.

After insertion one obtains for the auxiliary quantities

—4q P 4
cosp = , y1 =24/—pcos =,
—p? 3

b4

vy = —24/— pcos( 5)

(P TN

y3 = —=24/-p peos(3=3)

and finally, for the eigenfrequencies of the system

| T / T | T
w; = 0.563,/ —, w, = 0.916,/ —, w3 = 1.585,/ —.
Lm Lm Lm

Example 8.3: Exercise: Compiicated coupied vibrational system

Solution

Determine the eigenfrequencies of the system of three equal masses suspended between springs with
the spring constant k, as is shown in Figure 8.7. Hinr: Consider the solution method of the preceding
problem 8.2 and the mathematical supplement 8.4.

From Figure 8.7, we extract for the equations of motion

mi; = —kx; —k(x; — x2) — k(x; - X3),
mx; = —kx; — k(xz —x;) — k(x2 — x3), (8.40)
mxy = —kx3 — k(x; — x1) — k(x3 — x2),

or

mi, 4 3kx; — kxy —kx; =0,
mis + 3kx, — kx3 —kx; =0, (8.41)
mi; + 3kx; — kx; —kx, =0.

We look for the eigenvibrations. All mass points must vibrate with the same frequency. Thus, we
adopt the ansatz

x; = Acos(wt + ¥), ¥ = —w?Acos(wt + V),
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Figure 8.7. Vibrating coupled masses.

Xy = Bcos(wt + ), ¥y = —w’Bcos(wt + V),
x3 = C cos(wt + yr), ¥3 = —’C cos(wt + ¥),

and after insertion into equation (8.41), we get

Bk — mw*)A — kB — kC = 0,
—kA + (3k — mw*)B —kC =0, (8.42)
—kA — kB + 3k — mw*)C = 0.

To get a nontrivial solution of equation (8.42), the determinant of coefficients must vanish:

Gk —mo?)  —k |
&k Gk—ma?) =0.
| —k —k 3k — mw‘)l

Expansion of the determinant leads to

o of K 4, 24 16K

or

2 k3
0=Q3_2’fg22 M_kg_i
m m2 m3

where we substituted Q = w? (see Example 8.2). The general cubic equation a2’ +5Q? +¢cQ+d =0

(inourcasea = 1,b = —%%/m, c = 24k’/m?,d = —16k*/m*) can according to mathematical

supplement 8.4 be reduced to

viaing
3

0N
J

py+23 =0,



-
b
(-]
o |
I
m
<
a1
sl
>
=i
>
[0)]
w
=1
oy}
Z
o
03]

where

b 1P ¢ 26 1bc d
y=Qtg. =Tapty MEmaosaty
Insertion leads to

k2 3
3p=-3—, 2q=2— = q¢*+p'=0,

i.e., there exist 3 solutions (the real roots); 2 of them coincide. Hence, the vibrating system being
treated here is degenerate. As in problem 8.2, the solutions can be calculated using tabulated auxiliary
quantities. For these, we obtain

cosp = _qa, y1=2./—pcos§,
4

yz=-2«/—pCOS(g+7:[),

\3 3/

¢

=-2/mpen(3-).

and, after insertion, for the eigenfrequencies of the system

[k [k
w3 = -, a)1=a)2=2 —-.
m m

Example 8.4: Mathematical supplement: The Cardano formula’

In theoretical physics, one often meets the probiem of solving a cubic equation, just as in the
Examples 8.2 and 8.3. We now will clarify this problem.
Reduction of the general cubic equation: If the general cubic equation

x3 +ax2+bx+c =0 ‘8.43)
with nonvanishing coefficients a, b, and c is to be solved, one must first eliminate the quadratic term

of the equation, i.e., reduce the equation. If the unknown x is replaced by y + 4, where y and A are
new, unknown quantities, equation (8.43) turns into

(O +3y%A 4+ 3yA2 + A%) + (ay® + 2ayr + ar?) + (by + bA) + ¢ =0,
Y+ OBr+a)y?+ GA2+2ar+b)y+ (AP +ar’ +br+c) =0. (8.44)
Since we have replaced one unknown quantity x by two unknown ones, y and A, we can freely dispose
of one of the two unknown quantities. This freedom is exploited so as to let the quadratic term of the

equation disappear. This is achieved by setting the coefficient of y?, that is, 31 + a, equali to zero, i.e.,
A = —a/3. By inserting this value the equation (8.44) changes to

y3+(—£+b Y+ ———a”+c)=o. (8.45)

I'We follow the exposition of E. v. Hanxleben and R. Hentze, Lehrbuch der Mathematik, Friedrich Vieweg &
Sohn 1952, Braunschweig-Beriin-Stuttgart.
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If we set the expressions determined by the known coefficients a, b, and c of the cubic equation,

a? 2a>  ab
4 p= d = =2 = 8.46
3 to=p ad oy -y te=g (8.46)
the cubic equation takes the form
Y 4+py+qg=0 (reduced cubic equation). (8.47)
Dacalés g ot o ~ Ay 1n tha rvevern I

o
1

N ey o I I L al =1 e ke e s 1A
NS, To reduce the cubic Cqu‘atl 11 Z1VCII 111 UIC NOTNal 101111, ONe s€is x = y —da/J.

(8.47) follows from equation (8.43).
Example: x* —9x% +33x —65=0.
(1) Solution: Setx =y — (—=3) = y + 3.

(y+3)° -9y +3)>+33(y+3) —65=0,
(P +9y* 4+ 27y +27) — 9 + 6y +9) +33(y +3) —65 = 0,
¥+ 6y —20=0.

(2) Solution: Insert the values calculated from equation (8.46) into equation (8.47).

Special case: If in the general cubic equation, the linear term is missing (b = 0), i.e., the cubic
equation is given in the form

X} +ax?+c¢=0, (8.48)
the reduction can also be performed by inserting
x =<, (8.49)
y

From equations (8.48) and (8.49), we obtain the reduced equation

a3 L

S ta5+c=0 or y4+acy+c*=0. (8.50)
y y
Solution of the reduced cubic equation: If one sets in the reduced cubic equation

Y +py+g=0,
y=u+v, (8.51)

one obtains

W43 +3u’ + VP 4 pu+v) +9 =0,
(u3+v3+q)+3uv(u+v)+p(u+v)=0,
w4+ v +q)+ Guv + p)u+v) =0. (8.52)

Since one can freely dispose of one of the unknown quantities u or v (justification?), these are
suitably chosen so that the coefficient of (« + v) vanishes. We therefore set

Mv+p=0,i©,uv:—§. (8.53)

Then equation (8.52) simplifies to

1‘3 £ 1»3 £
w [ I

3, .3
0 or u+v=-—g.

an
=

n —
q=

®
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u and v are determined by equations (8.53) and (8.54). The quantities u and v can no longer be
arbitrarily chosen. By raising equation (8.54) to the second power and equation (8.53) to the third
power, one obtains

u6+2u3v3+v°=q2,
3
43 3=—4(3) :
uv 3

w—v==%,/q>+4 (—)3. (8.55)

R T R OO ®50

If one sets
| a4, [ray, 2y d / 9 _ (1Y 4 (2)
T A N T - = Qalis AT AT A ~ + ~ =n,
y 2TVl T T o YT Ty TR T
one gets
u, =m, U, = mey, U3 = mes,
vy =1n, Uy = hé€yp, V3 = NeEs.

Here, the ¢; are the unit roots of the cubic equation x3 = 1 which, as is evident, read

Since now y = u + v, one can actually form 9 values for y (why?). But since the quantities u and
v must satisfy the determining equation (8.53), the number of possible connections between u and v
is restricted to 3, namely,

Y1 = U+ v, Y2 = Uz +vs, Y3 =usz+ vy
hence,
cmin= {4 (@S ()
yl—m+n_\/2+(2+3+ - -JG) +(3)-
Yy = meéy + ne3 = = ;—n + 7 ;niﬁ, (8.57)
m+n m-—n,
Y3 = €3 + ne; = — — l'\v/g.

2 2
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The real root of the cubic equation, i.e., the root

R en e e
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3 ¢ »” FETIN e an S
1¢ knaown ac the “Cardana formla Tt wwag name A the Italian Hier 110 \,aLuauu

IS XBOWI as uil  Lgraano jormiad.” 1t wWas naimca in honor o

—h

to whom the discovery of the formula was falsely ascribed. Actually, the formula is due to the
Bolognesian professor of mathematics Scipione del Ferro,® who found this ingenious algorithm.

Example: y’ — 15y — 126 = 0. Here,

= —15, qg = —126,
4

= -5,
2

= —63.

Wi

By inserting into the Cardano formula, one obtains

=V63+/632-5 +63—/632—5
= V63 + /3844 + V63 — /3844c
= Y6362 + /63 =62

= V125 +J1  (=m+n)
=0,
541 5-1
n=—m iv3=-3+42i/3,
£ a1 £ _ 1
y3=_Jd2rl _Jz -iv/3=-3-2iV3.

Check the validity of the roots by insertion!

Discussion of Cardano’s formula: The square root appearing in the Cardano formula only yields
a real value if the radicand (g/2)? + (p/3)* > 0. If the radicand is negative, the three values for y
yield complex numbers. We consider the possible cases:

Hieronimo Cardano, ltalian physicist, mathematician, and astrologer, b. Sept. 24, 1501, Pavia—d. Sept. 20,
1576, Rome. Cardano was the illegitimate son of Fazio (Bonifacius) Cardano, a friend of Leonardo da Vinci. He
studied at the universities of Pavia and Padua, and in 1526 he graduated in medicine. In 1532, he went to Milan,
where he lived in deep poverty, until he got a position teaching in mathematics. In 1539, he worked at a high
school of physics, where he soon became the director. In 1543, he accepted a professorship for medicine in Pavia.

As a mathematician, Cardano was the most prominent personality of his age. In 1539, he published two books
on arithmetic methods. At this time, the discovery of a solution method for the cubic equation became known.
Nicolo Tartagiia, a Venetian mathematician, was the owner. Cardano tried in vain to get permission to publish
it. Tartaglia left the method to him under the condition that he keeps it secret. In 1545, Cardano’s book Artis
magnae sive de regulis algebraicis, one of the cornerstones of the history of algebra, was published. The book
contained, besides many other new facts, the method of solving cubic equations. The publication caused a serious
controversy with Tartaglia.

3Scipione del Ferro, b. 1465(7)—d. 1526 (?). About his life we know only that he lectured from 1496 to 1526 at
the university of Bologna. By 1500, he discovered the method of solving the cubic equation but did not publish

it. Tartaglia rediscovered the method in 1535

iartag cdiscovaered n 1220,
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2 3
(2) + (E) Form of the roots
2 3
1) p>0 Real A real value, two complex
conjugate values
2 p < 0, namely,
/p 3 /g 2 )
(a) (3) < (5) Real Asin 1.
p 3 q 2
(b) (—) = <—) =0 Three real values, among them
3 2 a double root
Py} 'A%
(c) (5) > (5) Imaginary All three roots by the form
imaginary

The case (2¢) was of particular interest to the mathematicians of the Middle Ages. Since any cubic
equation has at least one real root, but they could not find it by means of Cardano’s formula, the
case was called the casus irreducibilis.* The first to soive this case was the French poiitician and
mathematician Vieta.’ He proved by using trigonometry that this case was solvable too, and that in
this case the equation has three real roots.

Trigonometric solution of the irreducible case: Since p is negative in this case, one starts from
the reduced cubic equation

5yt g =0, (8.58)

where p must now be kept fixed as absolute numerical value. According to the trigonometric formulae
we have

cos 3o = cos(2a + a) = cos 2 cos o — sin 2a sina
= (cos’ @ — sin® &) cosa — 2 sin® & cos a
= cos’ o — sin®  cosa — 2 sin” & cos &

= cos’a — (1 — cos® ) cosa — 2(1 — cos® @) cos

= cos3a —cosa + COSBCI —2cosa + 2COS3(X

. k] A
=4C08 0 —i3C0s«,

4Casus irreducibilis (Lat.) = “the nonreducible case.”

5 Francois Vieta, French mathematician, b. 1540, Fontenay-le-Comte—d. Dec. 13, 1603, Paris. Advocate and
advisor of Parliament in the Bretagne. His greatest achievements were in the theory of equations and algebra,

where he introduced and systematically used letter notations. He established the rules for the rectangular spherical

triangle which are often ascribed to Neper. In his Canon mathematicus, a table of angular functions (1571), he
nnnnnn 17zad the advantaces of decimal notation. [RR]

CIIi lluoxnuu wi€ agvaniages O QeClinial Iotatllv bk
1
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thus,
3 3 1
cos’a — = cosa — - cos 3a = 0. (8.59)
4 4
If one considers cosa to be unknown, equation (8.59) coincides with the form of equation (8.58).
But since the value of the cosine varies only between the limits —1 and + 1, while y, according to the
values of p and g, can take any values, one cannot simply set cosa = y. By multiplying equation
(8.59) by a still uncertain positive factor o, one obtains

3 1
o’cos’a — ZQQ -ocosa — ZQZ' cos 3a = 0. (8.60)

By setting ¢ - cosa = y, p = (3/4)0? and ¢ = —(1/4)0> cos 3a, equation (8.60) turns into (8.58).
From this, we find

o=2- ‘/g (8.61)
V3
and
cos3a = —— = —4 a/2 (8.62)

& 8- (p/AVPB . e

Equation (8.62) is ambiguous, since the cosine is a periodic function. One has

30 = ¢ + k- 360°, where k=0,1,2,3,.... (8.63)
From this, we find for «
a1=§, a2=§+120°, a3=§+240°.

Compare ihis consideration with the probiem of cyciotomy! Which values are obtained for « if
k=3,4,...2
For y, one obtains

V= 2\//§cos g, YV = 2\/

Now

cos (% + 120°) = —cos <60° — %)
and

cos (% +240°) = — cos (60° + %) ,

so that the roots of the cubic equations are

/P 0
= _2‘/ 3 cos (60 - %) , {8.64)
V3 = —21/£ cos (60° + ?\ .

V3 \ 3/
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Comment: The formulas of the casus irreducibilis can also be derived by means of the Moivre’s
theorem.

Example: Calculate the roots of the equation
y* — 981y — 11340 = 0.

Solution: Since p < 0 and

(PV| =378, 1go|(£\3’ =3.10g327 =7.5436,
3/ g(3) | =3 ¢
(£ =s672,  1og(2) =2 10g5670 = 75072,
\Z/ \NZ/

by comparing the logarithms it follows that 1(p/3)*] > (g/2)*. Thus, the condition of the casus

irreducibilis is fulfilled. According to equation (8.62)
3 + 5670
cos3a = +——,
/3273
logcos3a = 3.7536 — 3.7718 = 9.9818 — 10,

¢ =3a~16°30,  hence, % =a =5°30.

From equation (8.64), we obtain y; = 36, y, = —21, y; = —15. Check the root values by insertion!
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When setting the initial conditions for the problem of the vibrating string, a trigonometric
series was set equal to a given function f(x). The expansion coefficients of the series had
to be determined. To solve the problem, the function f(x) should also be represented by a
trigonometric series. These trigonometric series are called Fourier series.! The conditions
that allow an expansion of a function into a Fourier series are summarized as follows:

(1) f(x)isdefined in the intervala < x < a + 21,

2 <a+2l

—~
~
)

’

(3) f(x) has a finite number of discontinuities which are finite jump discontinuities,

enh Fourier b, March 21
2t

io Ao
1518 JOSEPN FORNET O, Viailil

1768, Auxerre, son of a tailor—d. May 16, 1830, Paris. Fourier

S, AUXCITC, SO 06 a aliorb vaay 1o oLV o ouri

attended the home Ecole Militaire. Because of his origin he was excluded from an officer’s career. Fourier decided
to join the clergy, but did not take a vow because of the outbreak of the revolution of 1789. Fourier first took a

teachine nosition in Auxerre. Soon he turned to nolitics and was arrested several times. In 1795, he was sent to

wLalning posiuch 1 AUXCIIC. SOOI C WUINCC 10 POIICS aQllG Was Qiltsitl stvelial ks, ne 48 8

’

Paris to study at the Ecole Normale. He soon became member of the teaching staff of the newly founded Ecole
Polytechnique. In 1798, he became director of the Institut d’Egypte in Cairo. Only in 1801 did he return to Paris,
where he was appointed by Napoleon as a prefect of the departement Isére. During his term of office from 1802
to 1815, he arranged the drainage of the malaria-infested marshes of Bourgoin. After the downfall of Napoleon,
Fourier was dismissed from all posts by the Bourbons. However, in 1817 the king had to agree to Fourier’s
election to the Academy of Sciences, where he became permanent secretary in 1822. Fourier’s most important
mathematical achievement was his treatment of the notion of the function. The problem of the vibrating string
that had been treated already by D’ Alembert, Euler, and Lagrange, and had been solved in 1755 by D. Bernouili
by a trigonometric series. The subsequent question of whether an “arbitrary” function can be represented by
such a series was answered 1807/12 by Fourier in the affirmative. The question about the conditions for such
a representation could be answered only by his friend Dirichlet. Fourier became known mainly by his Théorie
analytique de la chaleur (1822) which deals mainly with the discussion of the equation of heat propagation in
terms of Fourier-series. This work represents the starting point for treating partial differential equations with
boundary conditions by means of trigonometric series. Fourier also made import contributions to the theory of
solving equations and to the probability calculus.

=]
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These conditions (Dirichlet conditions) are sufficient to represent f (x) by a Fourier series:

o0
ap nwx . nmTx
xX)=—+ (a cos— +b sm——). 9.1
fo) =5 Z=j 08— by sin — (9.1)
The Fourier coefficients a,, b,, and ag are determined as follows:
a+21
T r . . nmwx d
a, = — Xx)cos — dx,
"= j J(x) ]
a
a+2!
1 . hmTX
b, = 7 / f(x)sin 7 dx, (9.2)
a
a+21
1 7
ap = 7 / f(x)dx.
a
To prove these formulas, one needs the so-called orthogonality relations of the trigonometric
functions:
2
[ nmwx mMAx
/ cos ; cos ; dx =168,,,
0
2
. MTX | mux
/sm——l—— sin ; dx =16,p, (9.3)

0

2

. nmx mmax

sin — cos —— dx = 0.
l l

n

The first relation can be proven by means of the theorem

1
cos Acos B = 3 (cos(A + B) + cos(A — B)),

2 2
[ nmx mux V(. (n+mmx (n—mmx\ | o
oS COos ax = — CcOs + COs ax =y,
J ] ! 2/ \ ! !
0 0
if n # m. The integral of the cosine function over a full period vanishes. For n = m we
# g P
have
2 2
nwx mmx 1 / ( 2nﬂx\
[cos cos dx = = 1+ cos dx =1
J T I 2\ 1)
0 0



FOURIER SERIES

The formula (9.2) for calculating the Fourier coefficients can be proved by means of the

orthogonality relations.
To determine the a,, one multiplies the equation

a X E S — . nmwx
f) =+ acos ——+ Y bysin——
< n=1 . n=1
by cos(mmx/l) and then integrates over the interval 0 to 2I:

21

mmx ap mmx
/f(x) cos dx = — cos dx + E an [cos cos dx
1 o] )
J 12 < ) L 2
0

0

+Zb /sm—cos mJlrx dx

= Zanlanm - lam»
=1

and therefore,

as is given by the equations (9.2).

The analogous relation for the b,, can be confirmed by multiplication of equation (9.1)
by sin(mmx/[) and integration from O to 2/; the same holds for the calculation of ay.

Functions that satisfy
fx) = f(=x)

are called even functions; functions with the property

f&x)=—f(=x)

are called odd functions. For instance, f(x) = cosx evidently is an even function and

f(x) = sinx an odd function. The part of (9.1)
+ Z a, cos nn_x

is obviously even, while

represents the odd part of the series expansion (9.1). Therefore, for even functions all

b, = 0, for odd functions ag and all a,, are equal to zero.
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Any function f(x) can be decomposed into an even and an odd part. Thus, (f(x) +
f(—x))/2 is the even part and (f(x) — f(—x))/2 the odd part of f(x) = [(f(x) +
F(=x))/2+ (f(x) = f(=x))/2].

Example 9.1: Inclusion of the initial conditions for the vibrating string
by means of the Fourier expansion

A string is fixed at both ends. The center is displaced from the equilibrium position by the distance
H and then released. From Figure 9.1 we see that the initial displacement is given by

2?, 05)65%,
0 g=rstb

If we assume f(x) is an odd function (dashed line), we then obtain

b, = lﬁ/ f(x)sin——dx
0
12 ;
_2{[’2Hxh“rme [ 2H \A“nnxJ\
_l\j 1 Sl I LMT] l\t X ) Sin 7 u,t),
0 12
[ 2 12
/2HxS nx 2H[ l cos X l smmrx'l
— SN —— = — | —x—
l l [ nw l n2m? I,
0
20H | nmw Hl nr
I’LZJ'L'ZS1 T_nn cos 2°
[ 2 21 [ | ;
Pyt 8 e[ I
172 /2 I ,
y A
H
’ 1/2 I x



_2H[ I* nmx  xl _ nmx > nmx]
T T T T T T e,
2|H nt [H nmw
= — — 4+ — C0Ss —
‘e 2 ni 2

b, = z (ZI—Hsinﬂ+21—Hsinﬂ)
"1 \n?n? 2 nim? 2
8H | nm
= sin -

By inserting the solution for the Fourier coefficient b, into the general solution of the differential
equation (8.15), we get the equation that describes the vibrations of a string:

o0
8H | nm\ . nnx nmct
y(x,t) = Z( sin —- ) sin cos

022 ] ]
n=1 \7t77t ~ J 12 13

8H (1 . nx et 1 . 37ax 3mct
:F(ESIHTCOST_ﬁmnTCOS ]
1 . S5nx Smcet
+ ? sin T C ] — )

Thus, by plucking the string in the center one essentially excites the fundamental mode (lowest
eigenvibration) sin(;rx/[) cos(mwct/1). Several overtones are admixed with small amplitude. The
initial displacement obviously corresponds to the fundamental vibration. If one wants to excite pure
overtones, the initial displacement must be selected according to the desired higher harmonic vibration
(compare the figures after equation (8.23)).

Exampie 9.2: Exercise: Fourier series of the sawtooth function

Find the Fourier series of the function

fx) =4x, 0<x <10, with period 2/ = 10, 1=5.

Solution The Fourier coefficients are
1 r 2
ap = —/4xdx = - x2|(1)0 = 40,

5 5
0
10 U
1/ nwTXx 4x nmx |10 4 . hmWX
a, = — | 4xcos —dx = — cos—| — — [ sin——dx
5 5 nw 5 lp niw 5
0 0
0 20 nmx |10
=0+ == COST o =0
10 10
4 . nmx 4x nmx (10 4 nTx
b,=—- [ xsin—dx=——cos—| + — | cos—dx
SJ 5 nw S 1o nw J S
0 0

40 20 . nmx 0 40

=—— 4+ —=—sin—| =-——

10 nim
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Hence, the Fourier series reads

, 40

|

o Lgin 22X

“—n 5

The first partial sums S, of this series are drawn in Figure 9.2. A comparison of this series with the
starting curve f(x) illustrates the convergence of this Fourier series.

Solution

3:

e mt . . H

Vibrating string

PP TS Lo..&t

with a given velocity distribution

Find the transverse displacement of a vibrating string of length / with fixed endpoints if the string is
distribution g(x)_

initiallv in its rest pncition and has a ve]nr‘ity

dally 1S ISt pOshh veioe

We look for the solution of the boundary value problem

9%y ) 8%y /0 £\
W = ﬁ’ \9.9)
where y = y(x, t), with
y(©0,1) =0, y(l, =0,
) (9.6)
y(x,0) =0, a—ty(x, 1) T g(x).
We use the separation ansarz y = X (x) - T(¢). By inserting it into equation (9.5), one obtains
X.-T=c*X"T or X—”(x) = —:f—(z). (9.7)
X 2T

Since the left-hand side of equation (9.7) depends only on x, the right side only on ¢, and x and ¢ are
independent of each other, the equation is satisfied only then if both sides are constant. The constant
is denoted by —A2.

X//

X

—A2 and —A2,

T
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or, transformed,
X"+x2X=0 and T +A2PT =0. (9.8)
he iwo equations have the solutions
X = A cosAx + B;sinAx, T = Ajycos Act + B sinAct.
Sincey = X - T, we have
y(x,t) = (A;cos Ax + B; sinAx)(A; cos Act + B, sinAct). (9.9)

an st A Al o £ — N L ) P A £ A PRy Py ) = JP
From the condition t) = 0, it follows that A;(AcosAct + B;si

y{0,
satisfied by A; = 0. Then
y(x,t) = By sin Ax(A; cos Act + B, sin Act).
We now set
BiAy=a, BB, = b,
and it follows that
y(x,t) = sin Ax(a cos Act + bsin Act). (9.10)

From the condition y(/, ) = 0, it follows that sin Al = 0. This happens if

M=nt or A=_Z (9.11)
Here,n = 1,2, 3, .... The value n = 0 which seems possible at first sight leads to y(x, ) = 0 and
must be excluded. The relation (9.11) is inserted into (9.10). The normal vibration will be labeled by
the index n:

t t
Yu(x, 1) = sin Elri (a,, cos n;r;c + b, sin m;c ) . (9.12)

Because y(x, 0) =0, all a, = 0, we have

nmwx nmct
x.1) = b_sin sin

R A |
By differentiation of (9.13), we get

v
Jn

(
\s

o~
[{<]
-
(%)
~

Yn nwc . nmwx nrct
= b,—— sin o cos

ar "1

(9.14)

For linear differential equations, the superposition principle holds, so that the entire solution looks as

follows:

9y nmch, . nmx nmct

5;:; ;7 sin ——cos ——. (9.15)
Because

d

;y(x,t)| = g(x),

ot

lt=0



=
0
X1
n
Q
<
]

it follows that
2. nmch nwx
= 2 sin ——. 9.16
g(x) ; [ sin — (9.16)
The Fourier coefficients then follow by
b 2 l
nhn _ 2 [ ooysin ™ dx (9.17)
l A l
0
or
2 !
by = —— | g(x)sin 22X ax. (9.18)
nic l
0
By inserting (9.18) into (9.13), we obtain the final solution for y(x, t):
< f 2 ; nwx’ \ ATX nwct
y(x,t) = ; (E/ g(x’) sin 7 dx’) sin 7 sin T (9.19)
0
Example 9.4: Exercise: Fourier series for a step function
Given the function
[0, for —5<x<0, ,
f&x) = period 2/ = 10
3, for 0<x<S5§
(a) Sketch the function.
(b) Determine its Fourier series.
Solution (a)
[O, for —-5<x<0,
f&x) = T period 2/ = 10.
3, for 0<x<5
A
f(x)
J N\
— — 3 1 —
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 [} 1 1 1 1 1 -
T 1 T T 1 T T T >
-15 -10 -5 5 10 15 X
Fiaura Q2
Figure 9.3
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(b) For period 21 = 10 and I = 5, we choose the interval a to a + 2/ tobe —5t0 5, i.e.,a = —5:
a+2l 5
nwx 1 [ nwx
a, = — [ f(x)cos dx = - I f(x)cos dx
Al BEA ] AR ]
a -5
3 nmx
=z | cos —dx
J 5) 5
=5 J 0

5 ,nnx

” =0 for n#0.

niw 5 }lo

5 5
Forn =0, one has a, = ay = (3/5) / cos(Omrx/5)dx = (3/5)/ dx = 3. Furthermore,
0 0

a ‘Y'Ll

/f(x)sm——dx_ /f(x)sm—dx

5

-5 0

]

n=1

Example 9.5: Exercise: On the unambiguousness of the tautochrone problem

Which trajectory of the mass of a mathematical pendulum yields a pendulum period that is independent

of the amplitude?

m,,

73 () + gmy = mgh
or

5(y) =+/2g(h —y).

From this, one can calculate the period by separation of the variables:

T N ds/d

d
L P S WU
4" ) J VIgh—y) J 28—y

0 0 0

(9.20)

(9.21)

(9.22)
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Figure 9.4,

Using the variable u = y/h, (9.22) changes to

1

T / (ds/dy)v/h du
-_A_r- - Pall —u) (9.23)
VEENL TRy

We now require that 7' be independent of the maximum height A:

‘% —0 forall h. (9.24)
Thus, we get from (9.23) (s’ = ds/dy)

1 1

d s'/hdu du 1 ds’

— = —h'2s 4 \/I;—) =0 forall h. 9.25

dh ) J2g(01 —u) / J2g1 —u) (2 dh (9.25)

0 0

With the condition that we keep the dimensionless variable u = y/h constant, we can rewrite the
derivative with respect to & as a derivative with respect to y,

ds’ uds’' ds’

T = =us", (9.26

o duhy Yay " “ (9:26)
and thus, we can transform (9.25) into
1
f AU (¢ 42y =0 forall k (9.27)
—(s y§')— = . .
J BT —u) vh

1
Any periodic function f(u) satisfying f f(u)du = 0 can generally be expanded into a Fourier
0

series:

f@) =" [ansinQumu) + by cos2umu)] . (9.28)

m=1

Therefore, from (9.27) it follows that

S” L LS’ — ____—8gh(l - u) % (n,
T 2)7 214
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v/ 8g1b(h i\ /
= Z a, sin 27rm + b,, cos 2nm (9.29)
2y =
This holds for all values of 4. The left-hand side of (9.29) does in £; there 10r", the right-hand
side must be independent of 4 too. This holds only fora, = b,,, = 0 (for all m), as we shall prove
now.
To have the right-hand side of (9.29) independent of 4, we must have
a3 tant - (y/h)h'/?
Zl_ (ZJTm ) + b, cos (2,,,"2)] _ convan (y/k) (9.30)
owat h h V8g(1 —y/h)
or
> u k2
[am sinRQrmu) + b, cosRrmu)] = —— —C (9.31)
mZ:l " V1 —u+/8g
By integrating (5.31) from § to 1, we obtain
1
he [ : dh h1/2 (3.32)
«/_Sg { —u 3. /—

thus, C = 0. (This reflects the fact that u/+/1 — u cannot be expanded into a Fourier series a la
(9.31))
Inserting this result C = 0 again into (9.30), we have a,, = b,, = 0Ym, and thus, from (9.29)

!

A
S”+_—=0. (

.33)
2y
From this, one finds by integrating once
" A~
= = —,.i = s = ﬁ _ Getomy = & (9.34)
s 2y dy JY

C= 5, 9.35
\fz (9.35)

so that we have to solve
ds [ 1
= . (9.36)
dy 2.y

This is the differential equation of a cycloid (see Classical Mechanics: Point Particles and Relativity,
Exercise 24.4).
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We consider a two-dimensional system: the vibrating membrane. We shall see that the
methods applied for the treatment of a vibrating string can be simply transferred in many
respects.

The membrane is a skin without an elasticity of its own. The stretching of the membrane
along the edge leads to a tension force that acts as a backdriving force on a deformed
membrane.

Let the tangential tension in the membrane be spatially constant and time independent. We
consider only vibrations with amplitudes so smail that dispiacements within the membrane

il ~Ane ~tad

bo nasla
plane can be neglected.

Derivation of the differential equation

136

We introduce the following notations: o is the surface density of the membrane, and the
membrane tension is T (force per unit length). Let the coordinate system be oriented so
that the membrane lies in the x,y-plane. The displacements perpendicular to this plane are
denoted by u = u(x, y, t).

To set up the equation of motion, we imagine a cut of length Ax through the membrane
parallel to the x-axis, and a cut Ay parallel to the y-axis. The force acting on the membrane
element AxAy in the x-direction is the product of the tension and the length of the cut:
F, = T Ay. Analogously for the y-component we have F), = T Ax.

The surface element Ax Ay is pulled by the sum of the two forces. If the membrane is
displaced, the u-component of this sum acts on it.

From Figure 10.1, we see

F, = TAx(sing(y + Ay) — sinp(y)) + TAy(sin® (x + Ax) — sin 9 (x)). (10.1)

Fic
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