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Abstract

In this paper, an efficient representation method insensitive to varying illumination is proposed for human face recognition. Theoret-
ical analysis based on the human face model and the illumination model shows that the effects of varying lighting on a human face image
can be modeled by a sequence of multiplicative and additive noises. Instead of computing these noises, which is very difficult for real
applications, we aim to reduce or even remove their effect. In our method, a local normalization technique is applied to an image, which
can effectively and efficiently eliminate the effect of uneven illuminations while keeping the local statistical properties of the processed
image the same as in the corresponding image under normal lighting condition. After processing, the image under varying illumination
will have similar pixel values to the corresponding image that is under normal lighting condition. Then, the processed images are used for
face recognition. The proposed algorithm has been evaluated based on the Yale database, the AR database, the PIE database, the YaleB
database and the combined database by using different face recognition methods such as PCA, ICA and Gabor wavelets. Consistent and
promising results were obtained, which show that our method can effectively eliminate the effect of uneven illumination and greatly
improve the recognition results.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Human face recognition, as one of the most successful
applications of image analysis and understanding, has
received significant attention in the last decade (Zhao
et al., 2003). However, given that, as mentioned in (Adini
et al., 1997), ‘‘the variations between the images of the
same face due to illumination and viewing direction are
almost always larger than the image variations due to a
change in face identity’’, most existing methods for face
recognition, such as principal component analysis (PCA)
(Sirovich and Kirby, 1987; Kirby and Sirovich, 1990; Turk
and Pentland, 1991; Pentland, 2000) and independent com-
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ponent analysis (ICA) (Bartlett et al., 2002; Liu and
Wechsler, 2003; Déniz et al., 2003; Draper et al., 2003),
encounter difficulties under varying lighting conditions.
Hence, if only one upright frontal image per person, which
is under even illumination, is available for training, the per-
formance of PCA and ICA will be seriously degraded if the
testing faces are under severe lighting variations. In this
paper, we will address the impact of varying illuminations
on face recognition.

Many methods have been proposed to handle the illumi-
nation problem. The linear subspace method (Hallinan,
1994; Bichsel, 1995; Belhumeur et al., 1997) considered a
human face image as a Lambertian surface, which can
use three or more images of an object under different light-
ing conditions to compute a basis for the 3D illumination
subspace. Without ignoring the shadows, the 3D illumination
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Fig. 1. A human face image and its corresponding CANDIDE-3 model.
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subspace model was extended to a more elaborate one,
namely the illumination convex cone (Belhumeur and
Kriegman, 1996; Georghiades et al., 1998, 2000). Ishiyama
and Sakamoto (2002) proposed a geodesic illumination
basis model, which calculates pose-independent illumina-
tion bases for a 3D model. Batur and Hayes (2001) pre-
sented a segmented linear subspace model by segmenting
the images into regions that have surface normals with
directions close to each other. Zhao and Yang (1999)
attempted to account for the arbitrary effects of illumina-
tion on PCA-based vision systems by first generating an
analytically closed-form formula of the covariance matrix
of faces under a particular lighting condition, and then
converting it to an arbitrary illumination via an illumina-
tion equation. All the above-mentioned methods usually
require a set of known face images under different lighting
conditions for training.

Zhao and Chellappa (2000) developed a shape-based
face recognition system by means of an illumination-inde-
pendent ratio image derived by applying a symmetrical
shape-from-shading technique to face images. Chen et al.
(2000) adopted a probabilistic approach in which a proba-
bility distribution for the image gradient is analytically
determined. Shashua and Riklin-Raviv (2001) used quo-
tient images to solve the problem of class-based recognition
and image synthesis under varying illumination. Zhao et al.
(2003) proposed illumination ratio images, which can be
used to generate new training images for face recognition
with a single frontal view image. Xie and Lam (2005a) pro-
posed a model-based illumination compensation scheme
for face recognition, which adopts a 2D face shape model
to eliminate the effect of difference in the face shape of dif-
ferent persons. Liu et al. (2005) also proposed a method
that can restore a face image captured under an arbitrary
lighting condition to the one with frontal illumination by
using a ratio image.

In this paper, a novel illumination normalization
method for human face recognition is proposed. In our
method, a human face is treated as a combination of a
sequence of small and flat facets. The effect of the illumina-
tion on each facet is modeled by a multiplicative noise and
an additive noise. Therefore, a local normalization (LN)
technique (Xie and Lam, 2005b) is applied to the image,
which can effectively and efficiently eliminate the effect of
uneven illumination. Then the generated images, which
are insensitive to illumination variations, are used for face
recognition using different methods, such as PCA, ICA and
Gabor wavelets (Chui, 1992; Liu et al., 2004).

This paper is organized as follows. In Section 2, the
human face and illumination models adopted in this paper
are introduced. The LN method, which is used to eliminate
the effect of uneven illuminations, is presented in Section 3.
In Section 4, experimental results are detailed and the use
of different illumination compensation/normalization algo-
rithms with different face recognition algorithms based on
different databases are evaluated. Finally, in Section 5, con-
clusions are drawn.
2. Human face model and illumination model

A face image is supposed to be a Lambertian surface,
which can be described as the product of the albedo and
the cosine angle between the point light source and the sur-
face normal as follows:

Iðx; yÞ ¼ qðx; yÞnðx; yÞ � s; ð1Þ

where I(x,y) is the intensity value of the pixel at (x,y) in the
image, 0 6 q(x,y) 6 1 is the corresponding albedo, n(x,y) is
the surface normal direction, s is the light source direction,
and its magnitude is the light source intensity.

In computer graphics applications, a human face is trea-
ted as a combination of a sequence of small and flat facets
(Feng and Yuen, 2000; Hwang and Lee, 2003), which can
be determined by important facial feature points. Fig. 1
shows a face image overlaid with an updated version of
the CANDIDE model (Ahlberg, 2001), which is composed
of a sequence of triangular facets.

The area of each facet W is small enough to be consid-
ered a planar patch. Therefore, for each point (x,y) 2W,
the surface normal direction n(x,y) is a constant. Further-
more, we assume that the light source used is directional,
and therefore a good approximation of real situations
(Zhao and Yang, 1999). Thus, the light source direction s
is almost constant within W. Then, from (1), it is clear that
the intensity value of the pixel at (x,y) is equal to the mul-
tiplication of the albedo at (x,y) and a scalar, which is con-
stant within W. Suppose f(x,y) and f 0(x,y) represent the
pixel intensity values at (x,y) of the image under normal
lighting conditions and the image under a certain kind of
illumination, and s and s 0 are the corresponding light
source directions. Then the corresponding illumination
ratio image (Zhao et al., 2003) is given as follows:

Ri ¼ f 0ðx; yÞ=f ðx; yÞ
¼ ðqðx; yÞnðx; yÞ � s0Þ=ðqðx; yÞnðx; yÞ � sÞ
¼ ðnðx; yÞ � s0Þ=ðnðx; yÞ � sÞ ¼ A; ðx; yÞ 2 W ; ð2Þ
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where A is determined by the surface normal direction n of
W and the kind of illumination concerned. For a special
kind of illumination, the value of A is fixed within the facet
W. From (2), we can obtain:

f 0ðx; yÞ ¼ A � f ðx; yÞ; ðx; yÞ 2 W . ð3Þ
If we consider the effect of noise at each point (x,y) 2W,
the illumination model in (3) can be extended to the
following:

f 0ðx; yÞ ¼ A � f ðx; yÞ þ B; ðx; yÞ 2 W ; ð4Þ
where A and B denote the multiplicative noise and the
additive noise for the pixel (x,y), respectively, and they
are constant within W. In (4), f 0(x,y) is the intensity value
at (x,y). A and B are unknown, and the problem is how,
given f 0(x,y), to estimate the intensity value f(x,y) of the
face image under normal illumination. This is an ill-posed
problem. Although we assume that the values of A and B

are constant in a facet W, the real range of W is unknown
as it depends on the shape of a face image and is difficult to
obtain under varying illumination. In (Xie and Lam,
2005a), a 2D face shape model was adopted to map an im-
age into a shape-free texture, and the YaleB (Yale Univer-
sity, 2001) database was then used to form the training set
to obtain the A and B values pixel by pixel for each lighting
category. In this paper, instead of estimating the values of
A and B, we eliminate the effect of A and B by using the
local normalization technique.

3. Local normalization technique

The main idea behind the LN technique is that, after
processing an image f 0(x,y), its intensity value f 0

P ðx; y) is
of local zero mean and with unit variance within a facet
W, i.e.

Eðf 0
P ðx; yÞÞ ¼ 0 and Varðf 0

P ðx; yÞÞ ¼ 1;

where ðx; yÞ 2 W . ð5Þ

We define

f 0
P ðx; yÞ ¼

f 0ðx; yÞ � Eðf 0ðx; yÞÞ
Varðf 0ðx; yÞÞ ; ðx; yÞ 2 W ; ð6Þ

where E(f 0(x,y)) is the mean of f 0(x,y) within W and
Var(f 0(x,y)) is the corresponding variance. Then, from
(4), we have

Eðf 0ðx; yÞÞ ¼ EðA � f ðx; yÞ þ BÞ
¼ A � Eðf ðx; yÞÞ þ B; ðx; yÞ 2 W ð7Þ

and

Varðf 0ðx; yÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðf 0ðx; yÞ � Eðf 0ðx; yÞÞÞ2

N

s

¼ A �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðf ðx; yÞ � Eðf ðx; yÞÞÞ2

N

s

¼ A � Varðf ðx; yÞÞ; ðx; yÞ 2 W ; ð8Þ
where N is the number of pixels within W, E(f(x,y)) and
Var(f(x,y)) are the corresponding local mean and local var-
iance of f(x,y). From 4 and (6)–(8), we have

f 0
P ðx; yÞ ¼

f ðx; yÞ � Eðf ðx; yÞÞ
Varðf ðx; yÞÞ ; ðx; yÞ 2 W . ð9Þ

In order to avoid overflow, a small constant (equal to
0.01) is added to all the variance values, which does not
affect the derivation of (9). The image f 0

P ðx; y) satisfies the
conditions in (5), as proved in Appendix A. Furthermore,
it is obvious that after the LN processing, the intensity
value of the pixel at (x,y) is determined only by the corre-
sponding intensity value f(x,y) of the image, which is under
normal illumination, and the local statistical properties of
f(x,y). In other words, the effects of the uneven illumina-
tion, namely the multiplicative noise A and the additive
noise B, can be eliminated completely.

As with an image f(x,y) under normal illumination,
after the local normalization, we have

fP ðx; yÞ ¼
f ðx; yÞ � Eðf ðx; yÞÞ

Varðf ðx; yÞÞ ; ðx; yÞ 2 W . ð10Þ

From (9) and (10), we can obtain that

f 0
P ðx; yÞ ¼ fP ðx; yÞ; ðx; yÞ 2 W . ð11Þ
This means that, after the LN processing, the image under
varying illumination will have the same intensity values as
the image under normal lighting conditions. This property
is very useful, and we can use the images, after LN process-
ing, for face recognition.

Our discussion in this paper is based on the assumption
that a human face can be considered a combination of a
sequence of small and flat facets. Within each facet, apply-
ing the LN technique can obtain the illumination insensi-
tive property for each pixel. However, it is difficult to
determine the range or size of a facet, especially for images
under varying illuminations. In our method, we simply
apply a filter of size N · N to each pixel. In other words,
the filter is centered on the pixel under consideration and
the corresponding mean and variance of the pixel intensi-
ties within the window are computed, then (6) is applied
to normalize the intensity of the pixel. This process is
repeated pixel by pixel to obtain a representation that is
insensitive to lighting.

In (6), the local mean and variance of an image are com-
puted point by point. The images formed by the local
means and variances, denoted as E(f(x,y)) and Var(f(x,y)),
are called the local mean and variance maps, respectively.
Fig. 2 illustrates some original images in the YaleB data-
base in the first row, those images processed by histogram
equalization (HE) in the second row, the corresponding
local mean maps and local variance maps in the third
and fourth rows, respectively, and those processed by our
LN algorithm in the last row. For Fig. 2(c)–(e), the block
size used is 7 · 7 for local normalization.

Fig. 2 shows that the local mean map of an image rep-
resents its low-frequency contents, while the local variance



Fig. 2. Samples of cropped faces used in our experiments. The azimuth angles of the lighting of images from left to right column are: 0�, 0�, 20�, 35�, 70�,
�50� and �70�, respectively. The corresponding elevation angles are: 20�, 90�, �40�, 65�, �35�, �40� and 45�, respectively. (a) Original images, (b) images
processed using histogram equalization, (c) local mean maps, (d) local variance maps, (e) images processed using LN.

Table 1
The subjects and test set images in the experiments

Yale AR YaleB PIE Combined

Subject 15 121 10 68 214
Testing set 30 363 640 1564 2597
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map carries the high-frequency components, or more accu-
rately, the edge information about the image. This is
because those pixels that lie in edge areas should have
higher local variance values, and vice versa. In the case
of uneven lighting conditions, the local mean maps are
dominated by the varying illuminations, and the edge
information is disturbed by the varying local contrast
and shadows. Therefore, from (6), we can see that in the
local normalization process, the subtraction of an image
by its local mean map can reduce the global uneven light-
ing effect, and then dividing it by its local variance
map can further reduce the effect of unreliable edge infor-
mation. In other words, after these two procedures, the
effects of uneven illumination on both the low-frequency
and high-frequency components of an image will be
reduced or even eliminated. The processed image becomes
robust to illumination variation and can therefore be used
to achieve a more reliable performance for face recog-
nition.
4. Experimental results

In this section, we will evaluate the performance of the
LN algorithm for face recognition based on different face
databases. The databases used include the Yale database
(Yale University, 1997), the AR database (Martinez and
Benavente, 1998), the YaleB database and the PIE data-
base (Sim et al., 2002). We have also combined the four
databases in the experiments. The number of distinct sub-
jects and the total number of testing images in the respec-
tive databases are tabulated in Table 1.
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For each database, the lighting conditions are different.
In the Yale database, the lighting is either from the left or
the right of the face images. In the AR database, besides
the lighting from the left and the right, there is also lighting
from both sides of a face. The YaleB database, which con-
sists of 10 people with 65 images of each person under dif-
ferent lighting conditions, is often used to investigate the
effect of lighting on face recognition. In the PIE database,
24 different illumination models are adopted.

All images are cropped and normalized to a size of
64 · 64, and are aligned based on the two eyes. In our sys-
tem, the position of the two eyes can be located either man-
ually or automatically (Wong et al., 2001; Lam and Yan,
1996), and the input color images are converted to gray-
scale ones. In the experiments, the eyes are located manu-
ally. If the eyes are detected automatically, the recognition
rates of the respective methods considered will degrade due
to the error in detecting the eyes. Our method is based on
the local statistical properties of images. Therefore, in
order to reduce the effect of pepper noise, a 3 · 3 filter is
adopted to detect any isolated noise point, whose intensity
value will then be replaced by the mean value of the pixels
within its 3 · 3 neighborhood.

4.1. The block size for local normalization

The block size used in the LN process will affect the per-
formance in compensating for the illumination effect and,
thus, the rate for face recognition. Fig. 3 shows some
images processed using the LN method with different block
sizes. When the block size is very small, the statistical
parameters E(f(x,y)) and Var(f(x,y)) at (x,y) are not reli-
able, and the output images will be noisy. However, if
the block size is too large, the assumption that all the pixels
within a block are located within a facet is no longer tena-
ble, and the illumination insensitive property of the pro-
cessed images also becomes invalid. Therefore, an
appropriate block size is important for LN processing.

In order to select a proper block size, PCA is used for
face recognition with images processed using the LN
Fig. 3. Face images processed using the LN technique with different block si
images range from 3 to 13 in increments of 2, from the left to the right colum
(b) The azimuth angle is �50� and the elevation angle is �40�.
method with different block sizes. In order to enhance the
global contrast on the input images, histogram equaliza-
tion is also adopted for image preprocessing (Section 4.2
will provide a more detailed discussion of the effect of his-
togram equalization). In other words, all images are first
processed by histogram equalization and local normaliza-
tion sequentially, and are then followed by feature extrac-
tion and face recognition using the PCA method. Fig. 4
shows the recognition rates based on different databases.
For each database, with an increase of the block size, the
recognition rate will rapidly increase until the block size
reaches a critical value. Then, the recognition rate will
decrease slowly. The critical or optimal filter size varies
for different databases; each database has distinct charac-
teristics in terms of the lighting conditions. We can see that
the Yale and AR databases are more sensitive to the block
size compared to the other databases, and the PIE database
is almost independent of the window size. In our algorithm,
we set the block size at 7 · 7, at which the combined data-
base can obtain the best recognition rate.

4.2. Face recognition based on different databases

In this section, we will evaluate the performances of dif-
ferent lighting compensation/normalization methods for
different face recognition techniques such as PCA, ICA
and Gabor wavelets. The lighting compensation/normaliza-
tion schemes evaluated in the experiments include the histo-
gram equalization (HE) method, our proposed local
normalization (LN) method, and the use of both HE and
LN, i.e. HE + LN. We use the databases shown in Table 1
for testing. In each database, one frontal image of each sub-
ject with normal illumination and neutral expression was
selected as a training sample, and others form the testing set.

4.2.1. Face recognition using PCA

PCA is a classical method of human face representation
and recognition. The major idea of PCA is to represent
faces with a weighted sum of a small collection of the
principal components of the training images, namely
zes. The first column shows the original images. The block sizes of other
n, respectively. (a) The azimuth angle is 0� and the elevation angle is 20�.



Fig. 4. Face recognition with different block sizes.
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eigenfaces, and the mean image of the training set. In order
to compare the recognition performances using the differ-
ent databases, we used the combined database as the train-
ing set to generate a common set of eigenfaces, which are
then used for image transformation and feature extraction.
The number of eigenfaces used is 213. The Mahalanobis
distance metric, which is a more suitable distance measure
than the Euclidean distance metric for a standard PCA
classifier (Yambor et al., 2002; Draper et al., 2003), is
employed, and the nearest neighbor rule is then used to
classify the face images. The experimental results are
shown in Table 2. In the second row of Table 2, ‘‘None’’
means without using any preprocessing method to normal-
ize/compensate the varying illuminations, and directly
applying PCA for face recognition.

Table 2 shows that, with the different databases, our
algorithm can achieve a better performance level than if
no compensation/normalization scheme is used or if only
the histogram equalization is used. The performance will
slightly improve when the histogram equalization is used
with the local normalization method; this shows that the
global contrast enhancement can improve illumination
compensation to a certain extent.

As the YaleB database is commonly used to evaluate the
performance of illumination invariant face recognition, so
we first compare our performance with other face recogni-
tion methods based on this database. Georghiades et al.
(2000) proposed the individual illumination cone model
and achieved 100% recognition rates, but the method
requires seven images of each person to obtain the shape
and albedo of a face. Lee et al. (2001) used a nine-point
Table 2
Face recognition results based on different databases using PCA

(%) Yale AR YaleB PIE Combined

None 43.3 78.0 60.3 88.6 60.8
HE 50.0 81.0 63.3 96.8 68.4
LN 93.3 86.0 99.5 100.0 96.4
HE + LN 93.3 86.2 99.7 100.0 96.5
light source method to achieve a 99.1% recognition rate.
However, the approach requires nine simulated images
with different illumination variations for each person. Zhao
et al. (2003) synthesized 45 images per person, which are
adopted for training, and a 93.3% recognition rate was
achieved. Liu et al. (2005) reported a 98.4% recognition
rate. However, the iterative algorithm, which is used to
restore the input image, is more computational than our
method. All the above methods only consider the situation
where the light source directions are within 75�, and so only
45 illumination models were used for testing. However, in
our experiment, a total of 65 lighting conditions were
tested. In our previous method (Xie and Lam, 2005a),
the recognition rates are 99.5% and 96.4% when the respec-
tive eigenfaces and common eigenfaces are adopted for
PCA method, respectively. The results are similar to those
proposed in this paper. However, our previous method
requires twenty feature points per image to determine the
2D shape of the input and to construct a shape-free texture,
which is very difficult when the image is under varying or
poor illumination. In (Liu et al., 2005), the recognition rate
with the Yale database is reported to be 81.7%. Xie and
Lam (2005a) have also tested their method based on the
Yale database and AR database, and the results are
90.0% and 81.8%, respectively, when the respective eigen-
faces are used, and 86.7% and 73.6%, respectively, when
the common eigenfaces are adopted.

Compared to other methods, our proposed algorithm is
much simpler. We neither require multiple images with dif-
ferent illumination variations as training, nor require the
detection of important facial feature points to perform
shape normalization. Our method is robust to illumination
conditions and is computationally simple, which is impor-
tant as a preprocessing method. Therefore, our method can
also be used for other face recognition methods.

4.2.2. Face recognition using ICA

PCA can remove the pair-wise linear dependencies
between pixels in an image, but high-order dependencies
still exist in the joint distribution of the PCA coefficients.
ICA (Bartlett et al., 2002; Liu and Wechsler, 2003; Déniz
et al., 2003; Draper et al., 2003) can be considered a gener-
alization of PCA, which can find some independent bases,
namely independent components (ICs), by methods sensi-
tive to high-order statistics. Then after image transforma-
tion and feature extraction, the ICA coefficients of an
input computed based on the FastICA (Hurri et al.,
2004) for ICA architecture II (Bartlett et al., 2002) are sta-
tistically independent. Compared to the eigenfaces, ICs
retain more local information (Déniz et al., 2003). In this
paper, we employed the FastICA to compute the ICs of
a set of training images. FastICA provides rapid conver-
gence and estimates the ICs by maximizing a measure of
independence among the estimated original components
(Déniz et al., 2003; Draper et al., 2003). The results in
(Bartlett et al., 2002; Draper et al., 2003) show that ICA
will have a better performance when the cosine similarity



Table 3
Face recognition results based on different databases using ICA

(%) Yale AR YaleB PIE Combined

None 40.0 77.4 65.6 95.1 64.8
HE 53.3 78.5 72.0 97.5 75.4
LN 83.3 82.4 98.1 100.0 90.6
HE + LN 86.7 82.6 99.8 100.0 94.5
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measure is used. Therefore, we also adopt this similarity
measure, which is defined as follows:

dðu; vÞ ¼ cos

Xk

i¼1
uiviffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1
u2i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1
v2i

q
0
B@

1
CA; ð12Þ

where ui and vi represent the ith element of two k-dimen-
sional feature vectors u and v, respectively. We also use
the combined database as shown in Table 1 to produce
the ICs, the number of ICs used being 214. The experimen-
tal results are shown in Table 3.

Comparing Tables 2 and 3, we can see that when the
first two methods (�None� and HE) are used, ICA outper-
forms PCA in most of the cases. However, when our pro-
posed LN method is employed with or without using the
HE method, PCA outperforms ICA in most of the cases.
As described in (Adini et al., 1997), uneven illuminations
mainly affect the global components of a face image. There-
fore, when the input image is under varying lighting condi-
tions without any preprocessing method or when the HE
method only is used for illumination normalization, ICA,
which maintains more local, detailed information, per-
forms better than PCA, which mainly considers the global
structure of an input. This result coincides with the analysis
in (Draper et al., 2003). When our LN method, which can
effectively enhance the local structure of an image and
reduce the global effect of the varying illumination, is used,
more local and detailed texture will appear in the processed
image. In this case, PCA can more effectively represent the
more important structure of an image and reduce the effect
of the noise enhanced by local normalization. Therefore,
after the LN process, PCA outperforms ICA. In fact, the
difference between these two methods is not large, espe-
cially for the YaleB database and the PIE database, where
both methods can achieve a recognition rate near 100%
(the Yale database is an exception, but its size is very
small). We have also conducted some experiments in which
the Euclidean distance metric is employed. For the com-
bined database, the recognition rate without using any illu-
mination normalization method is 62.4%, and the results
using HE, LN and HE plus LN are 68.0%, 89.1% and
93.7%, respectively. These results are lower than those
shown in Table 3, but the relative performances of these
methods remain the same.

4.2.3. Face recognition using Gabor wavelets

The Gabor wavelets, whose kernels are similar to the
response of the two-dimensional receptive field profiles of
the mammalian simple cortical cell (Chui, 1992), exhibit
the desirable characteristics of capturing salient visual
properties such as spatial localization, orientation selectiv-
ity, and spatial frequency (Liu and Wechsler, 2003). In the
spatial domain, a Gabor wavelet is a complex exponential
modulated by a Gaussian function, which is defined as fol-
lows (Chui, 1992; Lee, 1996):

wx;hðx; yÞ ¼
1

2pr2
e
� ðx cos hþy sin hÞ2þð�x sin hþy cos hÞ2

2r2

� �

� eiðxx cos hþxy sin hÞ � e�
x2r2
2

h i
; ð13Þ

where x, y denote the pixel position in the spatial domain,
x is the radial center frequency, h is the orientation of the
Gabor wavelet, and r is the standard deviation of the
Gaussian function along the x- and y-axes, where
rx = ry = r is assumed. The value of r can be derived as
follows (Lee, 1996):

r ¼ j=x; ð14Þ
where j ¼

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
ðð2/ þ 1Þ=ð2/ � 1ÞÞ, and / is the band-

width in octaves. By selecting different center frequencies
and orientations, we can obtain a family of Gabor kernels
from (13), which can be used for representing an image. Gi-
ven a gray-level image f(x,y), the convolution of f(x,y) and
wx,h(x,y) is given as follows:

Y x;hðx; yÞ ¼ f ðx; yÞ � wx;hðx; yÞ; ð15Þ

where * denotes the convolution operator. The convolution
can be computed efficiently by performing the fast Fourier
transform (FFT), then point-by-point multiplications, and
finally the inverse fast Fourier transform (IFFT). Concate-
nating the convolution outputs, we can obtain a one-
dimensional Gabor representation of the input image,

Yx;h ¼ ½Y x;hð0; 0Þ; Y x;hð0; 1Þ; . . . ; Y x;hð0;NH � 1Þ;
Y x;hð1; 0Þ; . . . ; Y x;hðNw � 1;NH � 1Þ�T; ð16Þ

where Nw and NH are the width and height of the image. In
this paper, we only consider the magnitude of the Gabor
representations, which can provide a measure of the local
properties of an image (Lades et al., 1993) and is less sen-
sitive to the lighting conditions (Shams and Malsburg,
2002) (for convenience, we also denote it as Yx,h). Yx,h is
normalized to have zero mean and unit variance distribu-
tion; and then the Gabor representations with different x
and h are concatenated to form a high-dimensional vector
as (17) and used for face recognition,

Y ¼ ½YT
x1;h1

;YT
x1;h2

; . . . ;YT
xl;hn

�T; ð17Þ

where T represents the transpose operation, and l and n are
the numbers of center frequencies and orientations used. In
our experiment, we select one center frequency, which is
equal to p/2, and eight orientations from 0 to 7p/8 in incre-
ments of p/8. The Euclidean distance metric is adopted and
the nearest neighbor rule is used for classification. The
experimental results are shown in Table 4.



Table 4
Face recognition results based on different databases using Gabor
wavelets

(%) Yale AR YaleB PIE Combined

None 63.3 90.9 86.7 99.9 86.1
HE 73.3 94.5 98.4 100.0 90.8
LN 100.0 98.3 99.4 100.0 98.4
HE + LN 100.0 98.6 99.5 100.0 98.7
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Tables 2–4 demonstrate that, of the three feature extrac-
tion methods, Gabor wavelets can achieve the best perfor-
mance. Especially for the PIE database, a 99.9%
recognition rate can be obtained based on the original
images. This is because Gabor wavelets can effectively
abstract local and discriminating features, which are less
sensitive to illumination variations. It is clear that applying
our LN method can further increase the performance when
using Gabor wavelets for face recognition based on differ-
ent databases. Liu et al. (2005) also uses Gabor wavelets to
extract features based on the restored images, and the rec-
ognition rate is 95.3% for the combined Yale database and
YaleB database.

4.3. Computational complexity

We have proposed an efficient method of reducing the
effect of varying illumination on face recognition. Suppose
that the size of a normalized face is M · M, and the block
size used in the LN method is N · N. The computational
complexity for preprocessing an image using LN is
O(M2N2). All our experiments were conducted on a com-
puter system with Pentium IV 2.4 GHz CPU and 512MB
RAM. The average runtime of our algorithm to normalize
the illumination of a face image in the AR database (363
face images) is about 6.2 ms, where M and N are equal to
64 and 7, respectively. As our method has a low complexity,
it can also be applied to some real-time applications such as
illumination normalization in video sequences.
5. Conclusions

In this paper, a novel and simple illumination normaliza-
tion method for human face recognition under varying
lighting conditions is proposed. A human face is treated
as a combination of a sequence of small and flat facets.
For each facet, the effect of the illumination can be modeled
by a multiplicative term and an additive term. Therefore, a
local normalization technique is applied to the image point
by point. Local normalization can effectively and efficiently
eliminate the effect of uneven illumination, and keep the
local statistical properties of the processed image the same
as for the corresponding image under normal lighting con-
ditions. Then, the generated images, which are insensitive to
illumination variations, are used for face recognition, and
the performances are evaluated using different face recogni-
tion methods. Experimental results show that, with the use
of PCA, ICA and Gabor wavelets for face recognition, the
error rates can be reduced by 91.1%, 84.4% and 90.6%,
respectively, based on the combined database when our illu-
mination normalization algorithm is used.

A major advantage of our proposed method is that, for
training, only one image per person under normal illumina-
tion is required; this is very important for real applications.
In addition, there is no need to perform any facial feature
detection and shape normalization, which can be very com-
plicated when the lighting is uneven or complex. Further-
more, our method is computationally simple, can serve as
a preprocessing technique and also combine with other
methods for face recognition. In this paper, we only con-
sider the situation where the human faces are frontal and
have a neutral expression. For a practical face recognition
application, various poses and expressions may combine
with varying illuminations. If these effects are also consid-
ered, the overall recognition rates will be further improved.
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Appendix A

The expectation and variance of f 0
P ðx; y) within a facetW

are equal to 0 and 1, respectively.

Eðf 0
P ðx; yÞÞ ¼ E

f 0ðx; yÞ � Eðf 0ðx; yÞÞ
Varðf 0ðx; yÞÞ

� �

¼ Eðf 0ðx; yÞÞ � Eðf 0ðx; yÞÞ
Varðf 0ðx; yÞÞ ¼ 0; ðx; yÞ 2 W .

Varðf 0
P ðx; yÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðf 0

P ðxi; yiÞ � Eðf 0
P ðx; yÞÞÞ

2

N

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðf 0

P ðxi; yiÞÞ
2

N

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

f 0ðxi; yiÞ � Eðf 0ðx; yÞÞ
Varðf 0ðx; yÞÞ

� �2

N

vuuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðf 0ðxi; yiÞ � Eðf 0ðx; yÞÞÞ2

N

r
Varðf 0ðx; yÞÞ

¼ Varðf 0ðx; yÞÞ
Varðf 0ðx; yÞÞ ¼ 1; ðx; yÞ 2 W .
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