
 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-1

MODELLING DIGITAL MUSICAL EFFECTS FOR SIGNAL
PROCESSORS, BASED ON REAL EFFECT MANIFESTATION ANALYSIS

David Oboril, Miroslav Balik, Jiri Schimmel, Zdenek Smekal, Petr Krkavec

Department of Telecommunications
FEECS, Brno University of Technology

utko@fee.vutbr.cz

ABSTRACT

For quite some time in the area of commercial utilization of
digital audio effects, efforts have emerged to create simulate by
software analog effects and effect processors This paper deals
with the analysis of musical effects, the design of algorithms for
simulating these effects, and their realization on both digital
signal processors and the PC platform in the form of plug-in
modules for the DirectX environment. It also deals with the
problem of controlling the effect parameters and with subjective
testing of algorithms, and it examines the fidelity of simulated
effects as compared with the original.

1. INTRODUCTION

In our work we have concentrated on the analysis and
simulation of the most common types of analog effect such as
parametric equalizer, modulation effects, delay effects, dynamic
effects, and effects based on spectral properties of a system with
nonlinear transfer characteristic (distortion effects, limiters).

The algorithms of these musical effects are mostly known at a
certain accuracy level of models; our main effort was to optimize
these algorithms from the viewpoint of implementation on digital
signal processors and on the PC platform by the method of plug-
in modules or also to find new algorithms by way of analyzing
actual analog effects that would better suit the rapid digital
processing of signals.

An analysis of analog musical effects depends on the required
degree of fidelity of imitation of the musical effect under analysis.
The analysis can be performed by monitoring the analyzed
musical effect behavior in the time and the frequency domain, or
by direct electrical circuit simulation using some simulation
software, e.g. PSpice or Matlab. In many cases, following the
static features of the effect is enough, however, in some cases,
e.g. when we simulate tube amplifiers, we have to start from the
system’s circuit equations.

When we implement algorithms, we have to solve many
problems. Often we have to choose between a precise but time-
consuming algorithm or a simpler and fast but less precise
algorithm. However, the subjective perception tests, which are the
most important aspect in quality evaluation of the simulation, are
decisive.

2. DESIGN OF DIGITAL EFFECT ALGORITHMS

Many publications deal with the design of digital musical
effect algorithms and forms of their realization. So we will not
deal with them. In first part of this paper we will focus on
algorithm simulation and adaptation that are necessary for the
implementation of effect on DSP or by the Plug-In method. In the
second part we will focus on the implementation of chosen digital
musical effects.

2.1. Parametric equaliser

Parametric filter structures allow direct access to the
parameters of the transfer function, such as gain, bandwidth and
centre or cut-off frequency, via the control of associated
coefficients. To modify one of these parameters, it is therefore no
longer necessary to compute a complete set of coefficients for
second order transfer function, bud instead only one coefficient in
the filter structure is calculated. An independent control of gain,
cot-off/centre frequency and bandwidth is achieved by a feed
forward structure for boost and a feed backward structure for cut
[1].

Figure 1.: Simulink model of Parametric equaliser

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-2

Fig. 1 shows the model prepared for the Simulink program,
which was used to simulate the changes in peak filter parameters
in real time. White noise is admitted into the time-varying IIR
filter. The coefficients of this filter are computed on the basis of
slider settings that represent individual filter parameters. Filter
behaviour was checked by means of short-term spectral analysis
of input signal. Some details can be find in [3].

2.2. Musical Effects with Delay Line

Simple delay effects, such as delay, echo, and multitap echo
uses the delay line with constant delay time, while modulation
effects, such as phase-shifter, flanger and chorus, use the delay
line with variable delay time controlled by low-frequency
oscillator (LFO). The block diagram of a general modulation
effect for the Simulink program is in Fig. 2.

Figure 2: Simulink model of modulation effects

The sum of the original (Dry) and the effect (Wet) signal
gives the output signal. The delay time of the delay line is
changed by the LFO. The block diagram in Fig. 2 corresponds to
the flanger effect. When we disconnect the feedback
(Feedback=0), the chorus or the phase-shifter effect is produced.
The difference between these two effects is only in the delay time
of the delay line – the phase-shifter has a much shorter delay time
than the chorus. Some details about these effects can be found in
[4].

2.3. Effects Based on Transfer Characteristic Non-linearity

Figure 3: Simulink model of effects based on transfer
characteristic non-linearity

When we simulated effects based on spectrum modification
caused by signal passage through a system with non-linear
transfer characteristic, we do not result from system circuit
equations but from simulation of individual block of the system –
linear amplifier, non-linear component with transfer characteristic
that can be approximated using power polynomial and pointed
line, filter that simulates linear distortion of system, positive
feedback with specific delay, and block that simulates frequency
characteristic of guitar combo. General block diagram of the
effect based on transfer characteristic non-linearity is in Fig. 3.
The effect can simulate tube amplifiers, distortions, etc.

3. REDUCTION AND LINKING OF ALGORITHM
PARAMETER

After we created the first package of digital musical effects
for the DirectX environment – the Simple Audio Plug-In Pack
(parametric equaliser, universal modulation effect and double
delay) - we found that operating these universal effects was too
complicated for some users. That is why we focused on the
reduction and linking of algorithm parameters. As an example we
will show the Distortion designed for electric guitars. It is a
simplified algorithm of the universal effect based on spectrum
modification caused by signal passage through a system with
non-linear transfer characteristic, whose block diagram is in Fig.
3. If we leave aside parameters of amp simulator, which is formed
by several filters connected in the series and in parallel, this
algorithm has a total of 10 parameters: drive, warmth, type and
order of LPF, cut-off, resonance, gain and delay in feedback,
level and coefficients of the approximation polynomial.

Figure 4: Simulink model of guitar distortion effect

As can be seen from Fig. 4, some blocks (and thus also
parameters) were left-out, some parameters were experimentally
set-up to constant values, and some parameters were linked with
others. The resulting algorithm has 3 parameters (they are
highlighted in Fig. 4):

• Overdrive – represents the distortion amount

• Tone – changes the sound colour in a certain range

• Level – sets the output level of effect (to prevent
overloading the last DirectShow transform filter)

Parameter linking is denoted by means of dashed line in Fig. 4.

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-3

4. IMPLEMENTATION ON DIGITAL SIGNAL
PROCESSORS

The fundamental element of most dynamic effects (e.g.
tremolo, auto-wah, auto panner, etc.) is the low-frequency
oscillator – LFO. The delay line is the basic element of delay
effects (delay, echo, multi-tap echo, etc.). Modulation effects
(vibrato, flanger, and chorus) use a combination of these two
blocks – the delay line controlled by LFO. In this section we will
deal with the implementation of these blocks on digital signal
processors (DSP). The implementation of whole effects is already
simple. We will not deal with the implementation of the
parametric or the graphic equaliser because the linear filter DSP
implementation problems have been described sufficiently,
among others in [4] or [1]. General DSP features can be found,
for example, in [1].

4.1. Low-frequency oscillator LFO

LFO parameters are frequency and the shape of generated
signal. The frequency range is from tenths of Hertz to tens of
Hertz. The sine, triangular, saw and rectangular waveforms are
used most often. The triangular waveform is generated according
to the equations

kngng +−=)1()(for the leading edge (1a)

)()1()(kngng −+−= for the trailing edge (1b)

where g(n) is the triangular signal sample in nth step and k is
the increment

LFO

s

f
f

k ⋅=
4 , (2)

where fs [Hz] is the sampling frequency and fLFO [Hz] is the
LFO frequency. The saw waveform is generated in the same way
as the leading edge of the triangular waveform (1a). Since the
duration of the leading edge of the saw waveform is twice than of
the triangular waveform, the increment for the saw waveform
must be half the increment in (2). The rectangular waveform is
generated according to the triangular waveform – the value
changes with the processor arithmetic overflow, i.e. with
changing increment sign.

The sine waveform can be generated by various methods, e.g.
by means of the Taylor series or we can use the triangular
waveform. However, the optimal solution is applying the
recursive generator in Fig. 5.

Fig. 5: Recursive generator of sine and cosine waveforms

The realisation equations of the recursive generator from Fig.
5 are

)sin().()cos().()1(αα nsncnc −=+ (3a)

)cos().()sin().()1(αα nsncns +=+ (3b)

where c(n) is the cosine signal and s(n) the sine signal, and

S

LFO

f

f
⋅⋅= πα 2 , (4)

where fs [Hz] is the sampling frequency and fLFO [Hz] is the LFO
frequency. Initial conditions are c(0) = 1 and s(0) = 0. The
realisation equation of the tremolo effect can be

[])()()()(ngnxDepthnxGainny ⋅⋅+⋅= , (5)

where x(n) is the input and y(n) is the output sample, g(n) is the
LFO sample, Depth is the modulation depth, and Gain is the
signal gain.

4.2. Delay Line with Variable Delay

The delay line with variable delay can be realised using the
shift register with FIFO structure. Input samples of the signal
enter the register and they are shifted towards the output at the
sampling frequency. The sampling frequency is controlled by the
LFO and the latency time τ is given by the relation

)()(ngDepthn ⋅=τ (6)

where Depth is the depth of modulation, or magnitude of
wobbling, and g(n) is the LFO sample. Multiplying the delay time
by the sampling frequency yields a real number K, which gives
the delay in the number of samples.

SfnK ⋅=)(τ . (7)

Since K is a real number, we have to carry out the interpolation of
two neighbouring samples to obtain output sample xD

())()(1 10 KfractxKfractxx D ⋅+−⋅= (8)

where fract(K) is the decimal part of K and x0 and x1 are
neighbouring samples:

())('0 KceilDelaynxx ±−= (9a)

()1)('1 ±±−= KceilDelaynxx (9b)

where Delay is the adjusted mean magnitude of delay and ceil(K)
is the integer part of K.

The realisation equations for one channel of the modulation
effect with delay line with variable delay can be, for example,

DxFeedbacknxnx ')()(' ⋅+= (10a)

DxWetnxDryny ')()(⋅+⋅= (10b)

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-4

where x(n) is the input and y(n) is the output sample, x’(n) is a
sample on the input and x’D(n) on the output of the delay line,
Dry is the input signal gain, Wet is the output signal gain, and
Feedback is the feedback gain.

5. EFFECT IMPLEMENTATION ON PC/MAC BY THE
PLUG-IN METHOD

In the case of implementation of digital musical effects by
the Plug-In method, the algorithm realization is simple thanks to
libraries with mathematical functions and the STL (Standard
Template Library) with abstract data types. A greater problem is
the implementation of these algorithms in the DirectX
environment. That is why in this section we will deal with this
implementation, and not with algorithms.

An example of the implementation of universal modulation
effect by the Plug-In method including program printout in the
C++ language can be found in [2].

5.1. DirectX technology

Microsoft DirectX gives applications a rapid access to the
hardware of both present-day and future computers. It provides a
consistent interface between the hardware and the applications,
reduces the complexity of installation and configuration, and
allows maximum utilization of the hardware. Programmers can
make use of the potentialities of hardware without knowing it in
detail.

DirectX contains a broad spectrum of technologies that
standardizes the application of multimedia potentialities of
computers. DirectX is divided into three basic levels:

• Components – applications

• DirectX Media – application services

• Direct X Foundation– system services

5.1.1. Components

This level forms the apex of DirectX hierarchy. It is a group
of applications that make use of the potentialities of lower levels.
Those belonging here are NetMeeting, VRML, ActiveMovie and
NetShow.

5.1.2. DirectX Media

This level contains the so-called “high-level API” access to
the hardware. DirectX Media contains five APIs:

• Direct3D Retained Mode – services enabling the creation
and animation of 3D objects

• DirectPlay – services creating standard multi-user
interconnection of applications via Internet, a modem or
network.

• DirectShow – universal architecture enabling the creation,
processing and playback a multimedia flow of data. It is a
initial technology used to create digital musical effects by
the Plug-In method.

• DirectAnimation – enables adding media-, animation-, and
interactive effects to Web sites and to multimedia
applications.

• DirectModel – is a 3D graphic tool designed to solve the
problem of large model of interaction.

5.1.3. DirectX Foundation

This is a heart of DirectX. It contains the so-called “low-level
API” access to hardware that provides huge possibilities of
hardware acceleration and also enables eliminating problems with
the compatibility of hardware and system control elements.

It contains these basic elements:

• DirectDraw – provides direct access to graphic memory and
is able to utilize the hardware properties of graphic cards

• Direct3D Immediate Mode – enables applying the properties
of 3D hardware graphic cards and MMX technology

• DirectInput – provides direct connection with control
elements (keyboard, mouse, joystick, ...)

• DirectSound – enables playback, recording, mixing, setting
the volume level

• DirectSound 3D – enables 3D placing of sound, either by
software or by hardware.

5.2. COM – Component Object Model

Most APIs in DirectX SDK consist of objects and interfaces
based on the Component Object Model (COM). It Will be good
to say a few words about this model.

The basic ideas of COM can be made clear on the basis of
discussing the following problem:

1. Let there be an application (client) that needs to make use of
discussing the function library, or

2. One application wants to make use of the service of another
application that runs in a separate process, or

3. An application needs to make use of a service that runs on
another computer.

A basic need of all these examples is making use of the
services of another program. The mechanism of obtaining these
services is different for each example. The solution lies in the
definition of communication protocol, which is different for each
example.

This problem is solved by the software architecture of COM,
which defines the so-called objects and mechanisms, how they
are constructed, destructed and mainly how they communicate
with each other.

The COM architecture has these basic properties:

• It defines the binary standard
• It is programmer- and language-neutral
• It operates on many system platforms
• It provides a robust evolution in component-based

applications and systems
• It uses a uniform model of communication between

components in an application, between applications in a
computer, and between computers

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-5

• It enables the components to share memory management
• It provides a rich error and state warning
• It enables a dynamic utilisation of component.

Since COM is a binary standard, it is language neutral. Any
programming language can be used that enables creating tables of
pointers to functions (C, C++, Smalltalk, Ada, and Basic) for the
creation of a COM component.

5.3. DirectShow SDK

DirectShow SDK enables software developers to have access
to DirectShow services that provide playback of the flow of
multimedia data from local files or Internet servers, and importing
multimedia from devices (graphic and sound cards).

5.3.1. Architecture

The hearth of DirectShow services is a modular system of
components called “filter”. It should be noted that here the
concept “filter” is not taken in the sense as we know it when
processing signals (filtration) but as a key component of
DirectShow architecture. An idea of this architecture can be
obtained from the Figure of basic model [1].

Figure 6: DirectShow architecture

The filters are arranged and configured in a component called
“filter graph manager”. The filter graph manager provides filter
interconnection, controls and checks the flow of data.

The application controls the activity of filters via
communication with the filter graph manager, either directly by
calling the methods of COM interface, or indirectly using the
ActiveMovie ActiveX element or the so-called Media Control
Interface (MCI).

5.3.2. Filters

The filter graph is made up of different filters. Most filters
can be classed as belonging to one of three types:

• Source filter – a filter that provides flow od data from
different souces

• Transform filter – a filter that performs data processing

• Rendering filter – a filter that transmits data to an output
device

The filter graph can be created either by the programmer or
automatically via teh filter graph manager and filter mapper.

The filter mapper tries to interconnect filters, from the source
filter of a given type to the rendering filter.

5.3.3. Filters and pins

Two basic components are used when creating the filter
graph: COM object filter and COM object pin.

Two types of pin are distinguished:

• Input pin – which admits data into the filter
• Output pin – which transmits data from the filter

Fig. 7: Filters and pins

Pins ate responsible for creating a COM interface that enables
connection with other pins and transport of data (IPin). Likewise,
filters also have their interfaces (IBaseFilter).

5.3.4. Data transport in filter Graph

Data transport in the filter graph takes place in keeping with
the following instructions:
• Media sample protocol – it defines the manner of data

storage sharing and data exchange between filters
• End-of-stream protocol – it defines how filters generate and

process information on data end
• Flushing protocol – it defines the flow of data via the filter

graph
• Error detection and reporting protocol – defines how error

and state reports are generated and processed
• Quality management protocol – enables dynamic adaptation

to hardware and network conditions in order to improve
quality

5.3.5. C++ Classes

DirectShow SDK contains C++ classes that help to create the
required interface. The majority of base classes are directly
related to the interfaces while some classes enable integration
with the Win32 structure.

The most basic class creating an object is the CBaseObject
class. All other classes are inherited from the CUnknown class,
which creates the INonDelegatingUnknown interface, which, the
same as the IUnknown interface in classical COM objects, takes
care of a correct object aggregation.

The base classes create the following interface:

• Filter Base Classes – classes for creating filters
• Pin Base Classes – classes for pin operation

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-6

• Enumerator Base Classes – are used for the interfaces that
enable an enumeration of filters and their properties.

• Transport Base Classes – realise the methods for memory
management and data transfer

• Media Control and Positioning Classes – realise starting,
stopping and changing the position

• Clock Base Classes – help to create the master clock in the
filter graph

In addition to the base classes there are several useful classes
here:
• Win32 Classes – these classes process the system events
• List and Queue Classes
• Multimedia Classes
• COM Classes – create a COM base interface
• Debugging Classes – facilitate filter development

5.4. Creating a Transform Filter

Creating digital musical effects by the Plug-In method is in
fact creating a transform filter by means of DirectShow SDK. The
same as a musical effect, a transform filter too, processes data on
the input in a certain way and then sends these modified data to
the output.

The following simplified steps show the basic procedure of
creating the filter:

1. For the realisation to be as simple as possible, it is necessary
to choose, depending on the required effect function, a
suitable class, from which our effect will inherit its
properties. This choice mostly depends on whether or not
the filter has to copy input data. Accordingly, we choose
either the CTransform or the CTransformInPlace class.

2. We must realise the IUnknown interface of our object.
3. We must define the class constructor and if we inherit from

the CTransformInPlace filter we must realise the following
methods:
• Transform – which realises the effect proper
• CheckInputType – which checks the type of input data

4. It is necessary to implement the CreateInstance method,
which creates the filter object

5. It is necessary to define the self-registrerable ClassFactory
template object

6. It is necessary to create GUIDs for our object.

6. CONTROL OF ALGORITHM PARAMETERS

For the control of parameters by means of hardware
equipment we can use an arbitrary bus that is integrated on DSP
or supported by personal computer (PC). In both cases the
simplest thing is to use a serial bus. The communication rate of
the serial bus is sufficient for the requirements of real-time
control of effect parameters. An advantage is the hardware
support by processor (interrupt) and simple operation.

In order to control musical effect parameters we can design
our own communication protocol (see [4]) or we can implement
on PC and DSP the MIDI interface, which is designed for these
purposes.

The structure of the MIDI communication protocol allows
controlling many parameters independently and setting the values
of variables. It also enables both handshake and non-handshake
transfers of large data blocks. In comparison with similar
protocols an advantage of the MIDI is not only its suitable
structure but also easy availability of low-cost hardware for
recording, editing, and playing MIDI data, and of control units
(so-called controllers) of various designs, including breath and
the pressure controllers.

In [6] you can find a description of the MIDI interface as well
as a MIDI programming model. We will deal with the MIDI
implementation on PC and DSP in detail in our partial research
report on the solution of project No OC G6 10 for the year 2000.

7. CONCLUSIONS

Two packages of digital audio effects – Simple Audio Plug-In
Pack and Stomp’n FX vol. 1 – for PC/Mac platform are the
results of our work. All effects are implemented for the DirectX
and VST (ASIO, ASIO2) environments. At present we are
finalizing another package of effects –Stomp’n FX vol.2 and we
are preparing the implementation of these effects on DSP
Motorola, MIDI interface support, algorithms for the detection of
BPM of music signal, etc. Information about our products can be
found at http://www.dsound1.com. The results of our work will
be available in our partial research reports on the solution of
project No OC G6 10.

8. REFERENCES

[1] Smekal, Z. et al., Partial research report on the solution of
international project No OC G6 10 for the year 1999, 1999.

[2] Smekal, Z. et al., Partial research report on the solution of
international project No OC G6 10 for the year 1998, 1998.

[3] Balik, M., Oboril, D., “Digital Musical Effects by the Plug-In
Method”, Competitive review of Student Member Scholarly
Works at the 108th International Convention of The Audio
Engineering Society, Student Delegate Assembly, 2000.

[4] Dobes, F., “Digital Audio Effects on the Motorola
DSP56002 Digital Signal Processor”, Diploma Thesis,
Department of Telecommunications FEECS, Brno University
of Technology, 2000.

[5] Schimmel, J., “Digital simulation of effects based on transfer
characteristic non-linearity”, Proceedings of International
Scientific Conference TSP, p. 449-451, 2000.

[6] Schimmel, J., “Musical Instruments Digital Interface for the
Motorola Digital Signal Processor”, Proceedings of
International Conference Research in Telecommunication
Technology, p. 85-88, 2000.

[7] Benson, K.B., Audio Engineering Handbook, Mc Graw-Hill,
New York, 1988.

