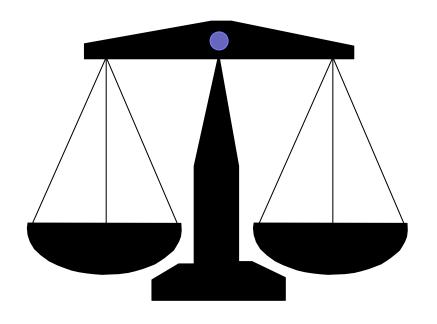

Relaciones de masa en las reacciones químicas

Capítulo 3



Micro-mundo Átomos y moléculas

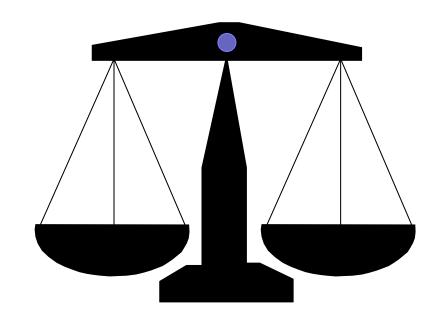
Macro-mundo gramos

La *masa atómica* es la masa de un átomo en unidades de masa atómica (uma)

Por definición:

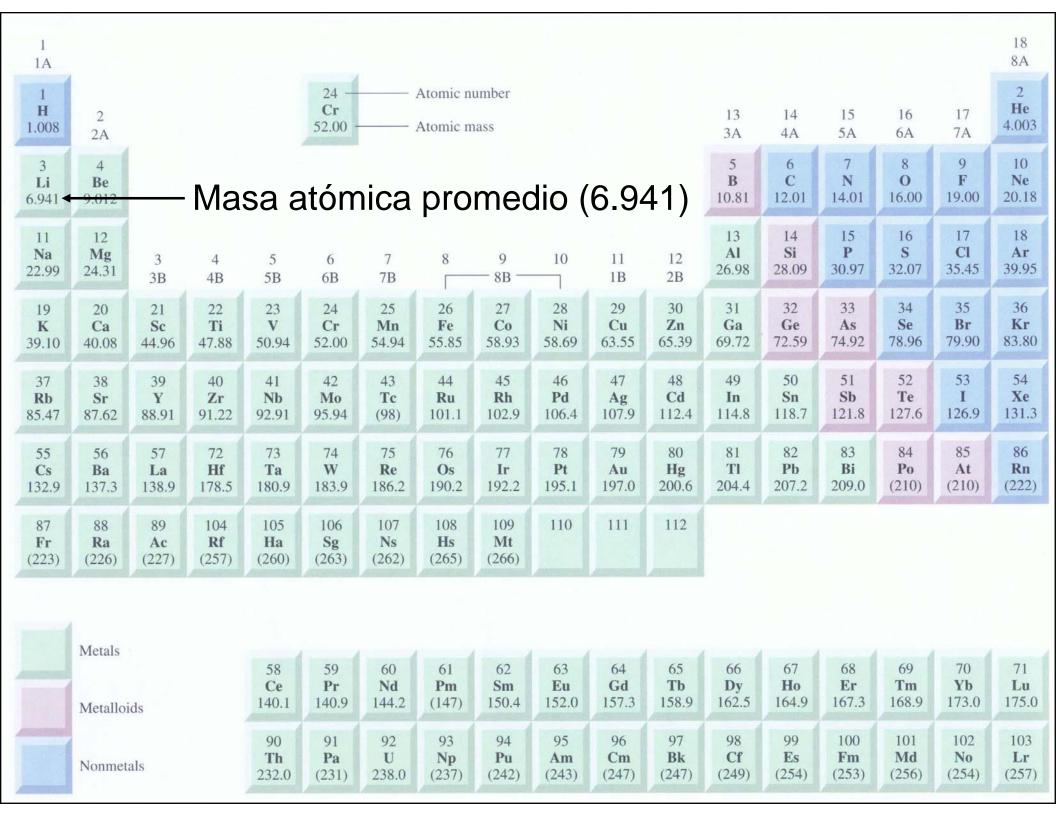
1 átomo ¹²C "pesa" 12 uma

En esta escala:


 $^{1}H = 1.008 \text{ uma}$

 $^{16}O = 16.00 \text{ uma}$

El litio en la naturaleza se encuentra como (isótopos):


7.42% ⁶Li (6.015 uma)

92.58% ⁷Li (7.016 uma)

Masa atómica promedio del litio:

$$\frac{7.42 \times 6.015 + 92.58 \times 7.016}{100} = 6.941 \text{ uma}$$

DOCENA = 12

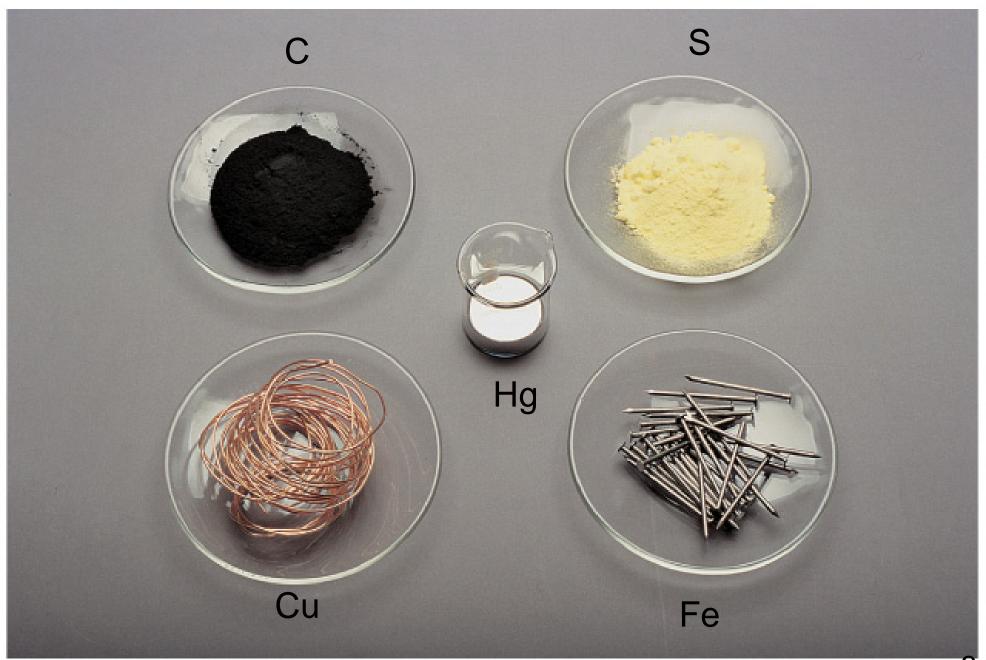
Un *mol* es la cantidad de sustancia que contiene tantos átomos como hay en exactamente 12.00 gramos de ¹²C.

1 mol = N_A = 6.0221367 x 10²³

El número de Avogadro (N_A)

La *masa molar* es la masa molecular expresada en gramos

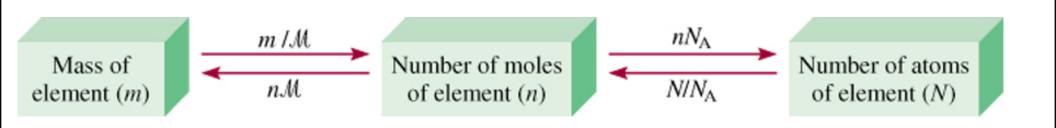
1 mol de átomos 12 C es = 6.022 x 10^{23} átomos = 12.00 g


1 átomo 12 C = 12.00 uma

1 mol de átomos ${}^{12}C = 12.00 \text{ g}$ ${}^{12}C$

1 mol de átomos de litio = 6.941 g de Li

Para cualquier elemento masa atómica (uma) = masa molar (gramos)


Un mol de:

3.2

$$\frac{1^{12}\text{C átomo}}{12.00 \text{ uma}} \times \frac{12.00 \text{ g}}{6.022 \times 10^{23}} = \frac{1.66 \times 10^{-24} \text{ g}}{1 \text{ uma}}$$

1 uma = $1.66 \times 10^{-24} g$ o 1 g = $6.022 \times 10^{23} uma$

M = masa molar en g/mol

 N_A = Número de Avogadro (partículas/mol)

¿Entiendes qué es la masa molar?

¿Cuántos átomos hay en 0.551 g de potasio (K) ?

1 mol K = 39.10 g K
1 mol K =
$$6.022 \times 10^{23}$$
 átomos K

$$0.551 \, \text{gK} \times \frac{1 \, \text{mol K}}{39.10 \, \text{gK}} \times \frac{6.022 \times 10^{23} \, \text{átomos K}}{1 \, \text{mol K}}$$

8.49 x 10²¹ átomos K

Masa molecular (o peso molecular) es la suma de masas atómicas (en uma) de los elementos de una molécula.

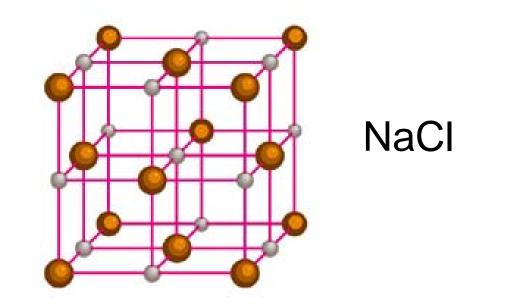
Para cualquier molécula masa molecular (uma) = masa molar (gramos)

1 molécula
$$SO_2 = 64.07$$
 uma
1 mol $SO_2 = 64.07$ g SO_2

¿Entiendes que es la masa o peso molecular?

¿Cuántos átomos de H hay en 72.5 g of C₃H₈O ?

1 mol
$$C_3H_8O = (3 \times 12) + (8 \times 1) + 16 = 60 \text{ g } C_3H_8O$$


1 mol C₃H₈O moléculas = 8 mol átomos de H

1 mol H = 6.022×10^{23} átomos H

72.5 g
$$C_3H_8O$$
 x $\frac{1 \text{ mol } C_3H_8O}{60 \text{ g } C_3H_8O}$ x $\frac{8 \text{ mol } \text{ átomos } H}{1 \text{ mol } C_3H_8O}$ x $\frac{8 \text{ mol } \text{ átomos } H}{1 \text{ mol } C_3H_8O}$ x $\frac{1 \text{ mol } C_3H_8O}{1 \text{ mol } \text{ átomos } H}$ =

5.82 x 10²⁴ átomos de H

La *masa formular* es la suma de las masas atómicas (en uma) en una fórmula unitaria de un compuesto iónico.

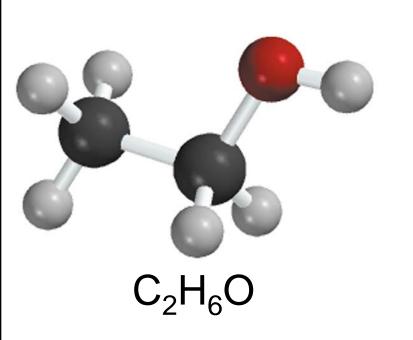
Para cualquier compuesto iónico masa de la fórmula (uma) = masa molar (gramos)

> 1 fórmula unitaria NaCl = 58.44 uma 1 mol NaCl = 58.44 g NaCl

¿Entiendes qué es la masa formular?

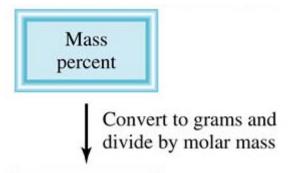
¿Cuál es la masa formular de Ca₃(PO₄)₂ ?

1 fórmula unitaria de Ca₃(PO₄)₂

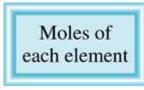

```
3 Ca 3 x 40.08
```

Mass Spectrometer Ligero Detecting screen **Accelerating plates** Electron beam Sample gas Magnet Ion beam Filament 20 Ne(90.92%) $E_k = 1/2 \times m \times v^2$ $V = (2 \times E_k/m)^{1/2}$ F = q x v x B22 10 Ne(8.82%) 21 Ne(0.26%) 21 3.4 Atomic mass (amu)

Composición porcentual de un elemento en un compuesto =


n x masa molar del elemento x 100% masa molar del compuesto

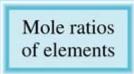
n es el número de moles del elemento en 1 mol del compuesto



%C =
$$\frac{2 \times (12.01 \text{ g})}{46.07 \text{ g}} \times 100\% = 52.14\%$$

%H = $\frac{6 \times (1.008 \text{ g})}{46.07 \text{ g}} \times 100\% = 13.13\%$
%O = $\frac{1 \times (16.00 \text{ g})}{46.07 \text{ g}} \times 100\% = 34.73\%$

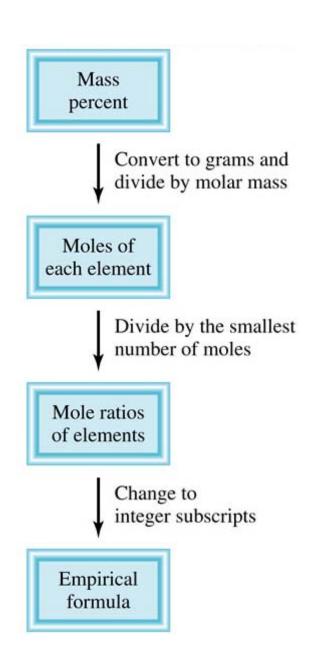
Composición porcentual y fórmulas empíricas



Determine la fórmula de un compuesto que tiene la siguiente composición porcentual en peso: 24.75 % K, 34.77 % Mn, 40.51 % O

Divide by the smallest number of moles

$$n_{\rm K} = 24.75 \text{ g K x } \frac{1 \text{ mol K}}{39.10 \text{ g K}} = 0.6330 \text{ mol K}$$

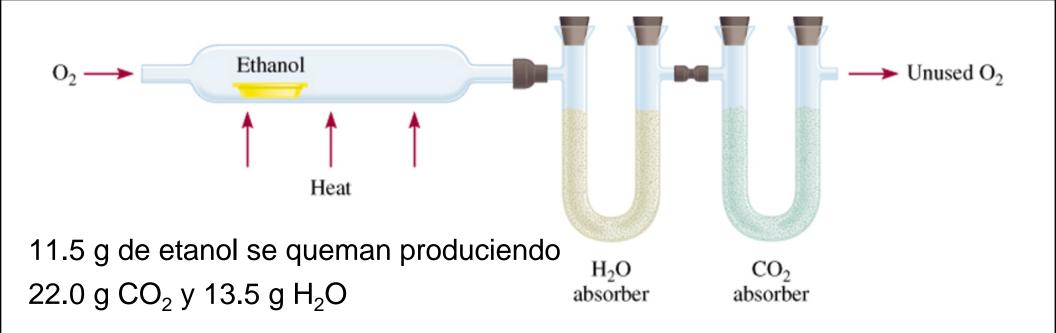


Empirical formula

$$n_{\text{Mn}} = 34.77 \text{ g Mn x } \frac{1 \text{ mol Mn}}{54.94 \text{ g Mn}} = 0.6329 \text{ mol Mn}$$

$$n_{\rm O} = 40.51 \text{ g O x } \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 2.532 \text{ mol O}$$

Composición porcentual y fórmulas empíricas


$$n_{\rm K} = 0.6330, (n_{\rm Mn} = 0.6329) n_{\rm O} = 2.532$$

$$K: \frac{0.6330}{0.6329} \approx 1.0$$

Mn:
$$\frac{0.6329}{0.6329} = 1.0$$

O:
$$\frac{2.532}{0.6329} \approx 4.0$$

KMnO₄

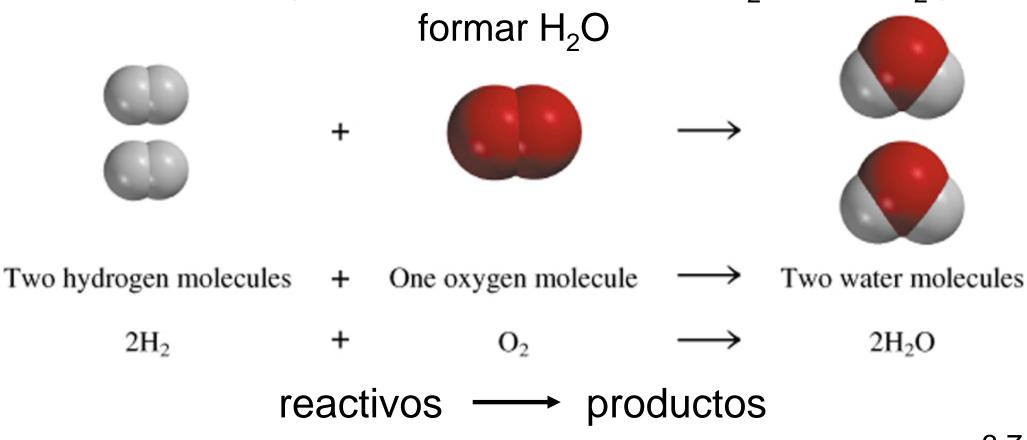
$$g CO_2 \longrightarrow mol CO_2 \longrightarrow mol C \longrightarrow g C$$
 6.0 $g C = 0.5 mol C$

$$g H_2O \longrightarrow mol H_2O \longrightarrow mol H \longrightarrow g H$$
 1.5 $g H = 1.5 mol H$

g of
$$O = g$$
 de la muestra – (g de $C + g$ de H)4.0 g $O = 0.25$ mol O

Fórmula empírica $C_{0.5}H_{1.5}O_{0.25}$

Dividiendo entre el subíndice más pequeño (0.25)


Fórmula empírica C₂H₆O

3.6

Un proceso en el que una o más substancias se transforman en una o más nuevas sustancias se llama *reacción química*

Una ecuación química emplea símbolos químicos para mostrar lo que ocurre en una reacción química

3 maneras de representar la reacción del H₂ con el O₂ para

Cómo "leer" ecuaciones químicas

$$2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$$

2 átomos de Mg + 1 molécula de O₂ forman 2 fórmulas unitarias de MgO

2 moles de Mg + 1 mol O₂ forman 2 moles de MgO

48.6 gramos de Mg + 32.0 gramos de O₂ forman 80.6 g MgO

* NO SE LEE:

2 gramos Mg + 1 gramo O₂ forman 2 g MgO

 Escriba la(s) fórmula(s) correctas para los reactivos en el lado izquierdo de la ecuación y la(s) fórmula(s) correcta(s) de los productos del lado derecho

El etano reacciona con oxígeno y produce dióxido de carbono y agua $C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$

 Cambie los números antecediendo las fórmulas (coeficientes) para igualar el número de átomos en ambos lados de la ecuación. No cambie los subíndices.

2C₂H₆ NO ES IGUAL A C₄H₁₂

3. Comience balanceando los elementos que aparecen en sólo un reactivo y un producto.

$$C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$$
Comience con C o H pero no con O

2 carbonos en el 1 carbono en lado izquierdo el lado derecho

multiplique CO₂ por 2

$$C_2H_6 + O_2 \longrightarrow 2CO_2 + H_2C$$

- 6 hidrógenos en el lado izquierdo
- 2 hidrógenos en el lado derecho multiplique H₂O por 3

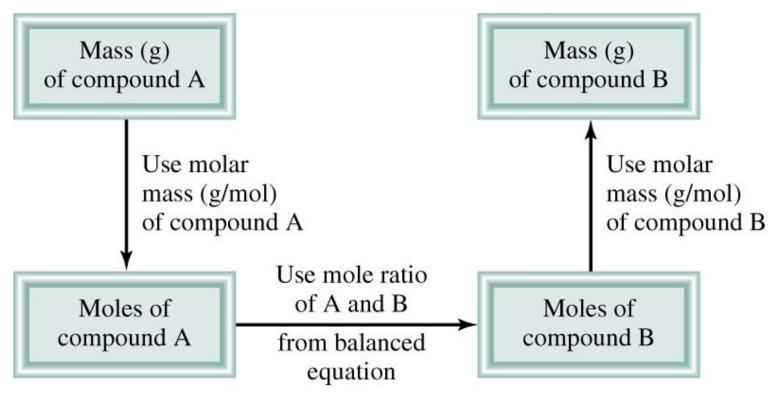
$$C_2H_6 + O_2 \longrightarrow 2CO_2 + 3H_2O$$

 Balancee los elementos que aparecen en dos o más reactivos o productos

$$C_2H_6 + O_2 \longrightarrow 2CO_2 + 3H_2O$$
 Multiplique O_2 por $\frac{7}{2}$

2 oxígenos 4 oxígenos+ 3 oxígenos = 7 oxígenos en el lado (2x2) (3x1) en el lado derecho izquierdo

 $C_2H_6 + \frac{7}{2}O_2 \longrightarrow 2CO_2 + 3H_2O$ Quite la fracción multiplicando ambos lados por 2


 $2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$

 Revise que tenga el mismo número de cada tipo de átomos en ambos lados de la ecuación

$$2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O$$

 $4 C (2 x 2) \qquad 4 C$
 $12 H (2 x 6) \qquad 12 H (6 x 2)$
 $14 O (7 x 2) \qquad 14 O (4 x 2 + 6)$

Reactivos	Productos
4 C	4 C
12 H	12 H
14 O	14 O

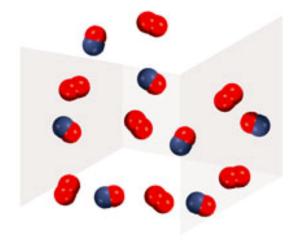
Cantidad de reactivos y productos

- 1. Escriba la ecuación química balanceada.
- Convierta cantidades conocidas de sustancias en moles.
- 3. Use los coeficientes estequiométricos para calcular el número de moles de la cantidad buscada.
- 4. Convierta los moles de la cantidad buscada en las unidades deseadas.

El Metanol hace combustión en el aire según la siguiente ecuación:

$$2CH_3OH + 3O_2 \longrightarrow 2CO_2 + 4H_2O$$

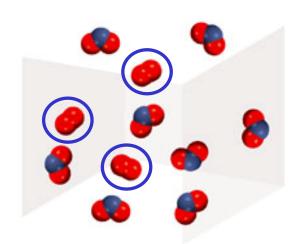
Si 209 g de metanol se consumen en la combustión, ¿qué masa de agua es producida?


gramos $CH_3OH \longrightarrow moles CH_3OH \longrightarrow moles H_2O \longrightarrow gramos H_2O$

CH₃OH

Masa molar Coeficientes en Masa molar la ecuación H₂O

209 g CH₃OH x
$$\frac{1 \text{ mol CH}_3\text{OH}}{32.0 \text{ g CH}_3\text{OH}}$$
 x $\frac{4 \text{ mol H}_2\text{O}}{2 \text{ mol CH}_3\text{OH}}$ x $\frac{18.0 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}}$ =


Before reaction has started

 $2NO + 2O_2 \longrightarrow 2NO_2$

NO es el reactivo limitante

O₂ es el reactivo en exceso

After reaction is complete

¿Entiendes qué es el reactivo limitante?

En un proceso,124 g de Al reaccionan con 601 g de Fe₂O₃

$$2AI + Fe_2O_3 \longrightarrow AI_2O_3 + 2Fe$$

Calcule la masa de Al₂O₃ que se forma.

g Al
$$\longrightarrow$$
 mol Al \longrightarrow moles Fe₂O₃ necesarios \longrightarrow g Fe₂O₃ necesarios

OR

 $g Fe_2O_3 \longrightarrow mol Fe_2O_3 \longrightarrow moles Al necesarios \longrightarrow g Al necesarios$

124 g Al x
$$\frac{1 \text{ mol Al}}{27.0 \text{ g Al}}$$
 x $\frac{1 \text{ mol Fe}_2\text{O}_3}{2 \text{ mol Al}}$ x $\frac{160. \text{ g Fe}_2\text{O}_3}{1 \text{ mol Fe}_2\text{O}_3} = 367 \text{ g Fe}_2\text{O}_3$

Comience con 124 g Al \longrightarrow necesita 367 g Fe₂O₃

Como tiene más Fe₂O₃ (601 g), Al es el reactivo limitante

Use el reactivo limitante (Al) para calcular la cantidad de producto que se puede formar

g Al
$$\longrightarrow$$
 mol Al \longrightarrow mol Al₂O₃ \longrightarrow g Al₂O₃

$$2Al + Fe_2O_3 \longrightarrow Al_2O_3 + 2Fe$$

124 g Al x
$$\frac{1 \text{ mol Al}}{27.0 \text{ g Al}}$$
 x $\frac{1 \text{ mol Al}_2 O_3}{2 \text{ mol Al}}$ x $\frac{102. \text{ g Al}_2 O_3}{1 \text{ mol Al}_2 O_3}$ = 234 g Al₂O₃

Rendimiento de una reacción

El *rendimiento teórico* es la cantidad de producto que resultaría si todo el reactivo limitante reaccionara.

El *rendimiento real* es la cantidad de producto que realmente se obtiene de la reacción.

Rendimiento porcentual de la reacción

La química en acción:

Fertilizantes químicos

Las plantas necesitan: N, P, K, Ca, S, & Mg

$$3H_2(g) + N_2(g) \longrightarrow 2NH_3(g)$$

$$NH_3(ac) + HNO_3(ac) \longrightarrow NH_4NO_3(ac)$$

fluorapatito

$$2Ca_5(PO_4)_3F(s) + 7H_2SO_4(ac) \longrightarrow$$

 $3Ca(H_2PO_4)_2(ac) + 7CaSO_4(ac) + 2HF(g)$

